Isaac Scientific Publishing

Environmental Pollution and Protection

Causes, Human Health Impacts and Control of Harmful Algal Blooms: A Comprehensive Review

Download PDF (409.6 KB) PP. 40 - 55 Pub. Date: March 9, 2018

DOI: 10.22606/epp.2018.31004

Author(s)

  • Sangeeta Sonak*
    Centre for Environment and Natural Resource Management, F-4, Models Exotica, St Inez, Panaji- Goa, 403001, India
  • Kavita Patil
    The Energy and Resources Institute, Alto-St Cruz, Bambolim, Goa, 403 202, India
  • Prabha Devi
    Bioorganic Chemistry Lab, National Institute of Oceanography, CSIR, Dona Paula, Goa, India

Abstract

Harmful algal blooms (HABs) are increasingly attracting attention all over the world. A diverse set of algal species including diatoms, flagellates, chrysophytes and dinoflagellates can cause harmful blooms, and many produce toxins that harm other organisms and human health. Intensive cyanobacterial blooms, in particular, have been associated with high costs for society due to their potential toxicity. Algal blooms can produce different toxins. These toxins present a long-standing threat to human and environmental health. For example, the severe Karenia bloom of 2005 in the eastern Gulf of Mexico demonstrates the complexities and magnitude of the challenges of managing algal blooms for both environmental and public health. With increasing events and severe impacts of algal blooms on human health, it becomes necessary to monitor and manage toxic algal blooms. Hence this paper presents a review of causes, impacts and control of algal blooms.

Keywords

Causes, human health impacts, harmful algal blooms

References

[1] Chattopadhyay, J., Sarkar, R.R., Pal. S., Mathematical modelling of harmful algal blooms supported by experimental findings. Ecological Complexity, 2004, 1, 225–235.

[2] Van den Bergh, J.C.J.M., Nunes, P.A. L.D., Dotinga, H.M., Kooistra, W.H.C.F., Vrieling, E. G., Peperzak. L., Exotic harmful algae in marine ecosystems: an integrated biological – economic – legal analysis of impacts and policies. Marine Policy, 2002, 26, 59–74.

[3] Fleming, L. E., Easom, J., Baden, D., Rowan, A., Levin, B., Emerging harmful algal blooms and human health: Pfiesteria and related organisms. Toxicol Patho., 1999, 27, 573 – 581.

[4] Ulèn, B.M., Weyhenmeyer, G.A., Adapting regional eutrophication targets for surface waters—influence of the EU Water Framework Directive, national policy and climate change. Environmental Science and policy, 2007,10,734-742.

[5] Onderka, M., Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)—A simple regression model. Ecological Modelling, 2007, 209, 412-416.

[6] O’Neil J. M., Davis T. W., Burford M A., Gobler C. J. (2012) The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change Harmful Algae 2012, 14, 313–334

[7] Chapra, S.C., Surface Water-quality Modeling, The McGraw-Hill, New York, 1997, p. 526.

[8] Zingone, A. and Enevoldsen, H.O, The diversity of harmful algal blooms: challenge for science and management. Ocean and Coastal Management, 2000, 43,725-748.

[9] Preece E. P., Hardy F. J., Moore B. C., Bryan M., A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk, Harmful Algae, 2017, 61, 31-45.

[10] Smith, V.H., Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton, Science, 1983, 221,669–671.

[11] Bulgakov, N. G., Levich, A. P., The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure. Arch. Hydrobiol., 1999, 146, 3–22.

[12] Lukatelich, R.J., McComb, A.J., Nutrient levels and the development of diatom and blue-green algal blooms in a shallow Australian estuary. J. Plankton Res., 1986, 8, 597–618.

[13] Horner, R. A., Garrison, D.L., Plumley, F.G., Harmful algal blooms and red tide problems on the U.S. west coast. Limnol Oceanography, 1997, 42, 1076 – 1088.

[14] Silbergeld, E. K., Grattan L, Oidach, D., Morris, J.G., Pfiesteria: harmful algal blooms as Indicator of Human: Ecosystem interactions. Environmental Research Section A, 2000, 82, 97-105.

[15] Garcia-Hernandez, J., Garcia-Rica, L., Jara-Marini, E. E., Barraza-Guaradado, R., Weaver, A. H., Concentrations of heavy metal in sediments and organism during a harmful algal bloom (HAB) at Kun Kaak Bay, Sonora, Mexico. Marine Pollution Bulleti., 2005, 50, 733-739.

[16] Semeneh, M., Dehairs, F., Elskens, M., Baumann, M.E.M., Kopezynska, E.E., Lancelot, C., Goeyens, L., Nitrogen uptake regime and phytoplankton community structure in the Atlantic and Indian Sectors of the southern ocean. Journal of Marine Systems, 1998, 17, 159-177.

[17] News Report number PII: S2225-326X (01) 00229-6. Red tides and dust storms. Marine Pollution Bulletin, 2001, 42, p. 796.

[18] Albert, S., O’Neil, M. J., Udy, J.W., Ahern, S. K., O’Sullivan, C. M., and Dennison, W.C., Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites common factors. Marine Pollution Bulletin, 2005, 51, 428-437.

[19] Gobler, C. J., Donat, J. R., Consolvo, IIIb. J. A, Sanudo-wilhemy, S.A., Physicochemical speciation of iron during coastal algal blooms. Marine Chemistry, 2002, 77, 71-89.

[20] Peperzak, L., Climate change and harmful algal blooms in the North Sea. Acta. Oecologica, 2003, 24, S139-S144.

[21] Sharma, G.S., Upwelling off the Southwest coast of India. Indian Journal of Marine Sciences, 1978, 7, 209-218.

[22] Ramana ,T.V., Reddy, M.P.M., Upwelling and sinking in the Arabian sea along Dakshina Kannada coast. Environment & Ecology, 2006, 24, 379-384.

[23] Anil, A.C., Venkat, K., Sawant, S. S., Dileepkumar. M., Dhargalkar, V. K., Ramaiah, N., Harkantra, S. N., and Ansari, Z. A., Marine bioinvasion: concern for ecology and shipping. Current Science, 2002, 83, 214-218.

[24] Untawale, A.G., Agadi, V.V., Dhargalkar, V.K., Mahasagar: Bulletin National Institute of Oceanography, 1980, 23, 179-181.

[25] Waldichuk, M., Marine biotoxins and human activity. Marine Pollution Bulletin, 1990, 21, 215-216.

[26] Carmichael W. W., Boyer G. L., Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes Harmful Algae, 2016, 54, 194-212

[27] HARRNESS Harmful Algal Research and Response: A National Environmental Science Strategy 2005 – 2015 (eds Ramsdell, J. S., Anderson, D.M., Glibert, P.M.,) Ecological Society of America, Washington DC, 2005, p. 96.

[28] Maga?a, H.A., Contreras, C., Villareal, T. A., A historical assessment of Karenia brevis in the western Gulf of Mexico. Harmful Algae, 2003, 3, 163–171.

[29] Batorèu, M. C. C., Dias, E., Pereira, P., Franca, S., Risk of human exposure to paralytic toxins of algal origin. Environmental Toxicology and Pharmacology, 2005, 19, 401-406.

[30] Taylor, H.F., Mortality of fishes on the west coast of Florida. Report of the U. S., Commission on Fisheries Document, 1917, 848, 1-24.

[31] Akiba, T., Hattori Y., Food poisoning caused by eating asari and oyster-toxic substance, venerupin. Japanese Journal Experimental Medicine, 1949, 20, 271-284.

[32] Nakajima, M. Studies on the source of shellfish poison in Lake Hamana. I. Relation of the abundance of a species of dinoflagellate, Prorocentrum sp. to shellfish toxicity. Bulletin. Japanese Society Scientific Fishery, 1965 a, 31, 198-203.

[33] Nakajima. M., Studies on the source of shellfish poison in Lake Hamana. II. Shellfish toxicity during the 'red-tide'. Bulletin. Japanese Society Scientific Fishery, 1965 b, 31, 204-207.

[34] Nakajima, M., Studies on the source of shellfish poison in Lake Hamana. III. Poisonous effects of shellfish feeding on Prorocentrum sp. Bulletin. Japanese Society Scientific Fishery, 1965 c, 31, 281-285.

[35] Nakajima, M., Studies on the source of shellfish poison in Lake Hamana. IV. Identification and collection of the noxious dinoflagellates. Bulletin. Japanese Society Scientific Fishery, 1968, 34, 130-131.

[36] Woodcock, A.H., Note concerning human respiratory irritation associated with high concentrations of plankton and mass mortality of marine organisms. Journal of Marine Research, 1948, 7, 56- 62.

[37] Heil, C.A., Steidinger, K. A., Monitoring, management, and mitigation of Karenia blooms in the eastern Gulf of Mexico. Harmful Algae, 2009, 8, 611–617

[38] Backer, L. C., Impacts of Florida red tides on coastal communities. Harmful Algae, 2009, 8, 618–622.

[39] Music, S.I., Howell, J.T., Brumback, L.C., Red tide: its public health implications. Journal of the Florida Medical Association, 1973, 60, 27-29.

[40] Bhat, S.R. and Matondkar, S.G.P., Algal blooms in the seas around India - networking for research and outreach. Current Science, 2004, 87, 1079 - 1083.

[41] Nayak, B.B., Karunasagar, I., Karunasagar, I., Bacteriological and physio-chemical factors associated with Noctiluca miliaris bloom, along Mangalore, southwest coast of India. Indian Journal of Marine Sciences. 2000, 29,139-143.

[42] Venugopal, P., Harida, P., Madhupratap, M., Rap, T.S.S., Incidence of red water along South Kerala coast. Indian Journal of Marine Sciences, 1979, 8, 94-97

[43] Tangen, K., Shellfish poisoning and the occurrence of potentially toxic dinoflagellates in Norwegian waters. Sarsia, 1983, 68, 1-7.

[44] Langeland, G., Hasselgaard, T., Tangen, K., Skulberg, O.M., Hjelle, A., An outbreak of paralytic shellfish poisoning in western Norway. Sarsia, 1984, 69, 185-193.

[45] http://www.whoi.edu/redtide/.

[46] Bhat, S.R., Devi, P., D'Souza, L., Verlecar, X. N., Naik, C. G., Harmful algal blooms. In Multiple dimensions of global environmental change (eds Sonak, S.), TERI Press, New Delhi, 2006, pp. 419-431.

[47] Sombrito, E. Z., Bulos, A. M., Sta, Maria, E. J., Honrado, M.C.V., Azanza, R.V., Furio E, F., Application of 210Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyrodinium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines. Journal of Environmental Radioactivity, 2004, 76, 177–194.

[48] Karunasagar, I., Segar, K., Karunasagar, I., Potentially Toxic Dinoflagellates in shellfish harvesting areas along the coast of Karnataka state (India). In Red Tides ( eds Okaichi, T., Aderson, M. D., Nemoto, T., ) Elsevier Science Publishing Co., New York, 1989, pp. 65-68.

[49] Freudenthal, A. R. and Jijina, J., Shellfish poisoning episodes involving or coincidental with dinoflagellates. In Toxic Dinoflagellates (eds Anderson, D.M., White, A. W, and Baden, D.G.), Elsevier, New York, 1985, pp. 461-466.

[50] Morris, P., Campbell, D.S., Taylor, T.J., Freeman, J.I., Clinical and epidemiological features of neurotoxic shellfish poisoning in North Carolina. American Journal of Public Health. 1991, 81, 471-473.

[51] Watkins, S.M., Reich, A., Fleming, L.E., Hammond, R., Neurotoxic shellfish poisoning. Marine Drugs, 2008, 6, 431-455.

[52] Kirkpatrick, B., Fleming, L.E., Squicciarini, D., Backer, L.C., Clark, R., Abraham, W., Benson, J., Chenge, Y.S., Johnson, D., Pierce, R., Zaias, J., Bossart, G. D., Baden, D. G., Literature review of Florida red tide: implications for human health effects Barbara. Harmful Algae, 2004,3, 99-115.

[53] Shanmugam, P., Ahn,Y., Prakya, S.R., SeaWiFS .Sensing of hazardous algal blooms and their underlying mechanisms in shelf-slope waters of the Northwest Pacific during summer. Remote Sensing of Environment, 2008, 112, 3248-3270

[54] Backer, L.C., Fleming, L. E., Rowan, A., Cheng, Y., Benson, J., Pierce, R. H., Zaias, J., Bean, J., Bossart, G.D., Johnson, D., Quimbo, R., Baden, D.G., Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae, 2003, 2, 19-28.

[55] http://ioc-unesco.org/hab/index.php?option=com_oe&task=viewDoclistRecord&doclistID=59 Last accessed on 26/06/09.

[56] Kirkpatrick, B., Fleming, L.E., Backer, L.C., Bean, J.A., Tamer, R., Kirkpatrick, G., Kane, T., Wanner, A., Dalpra, D., Reich, A., Baden, D.G., Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions. Harmful Algae, 2006, 5, 526-533.

[57] Dharani, G., Nazar, A. A. K., Kanagu. L., Venkateshwaran, P., Kumar, T.S., Ratnam, K., Venkatesan, R., Ravendran, M., On the recurrence of Noctiluca Scintillans blooms in Minnie Bay, Port Blair: Impact on Water quality and bioactivity of extracts. Current Science, 2004, 87, 990-994.

[58] http://www.glf.dfo-mpo.gc.ca/os/northumberland/si-is/summary-algal_sommaire-algues-e.php#top.

[59] Pierce, R. H., Henry, M.S., Blum, P.C., Hamel, S.L, Kirkpatrick, B., Cheng, Y.S., Zhou, Y., Irvin, C.M., Naar, J., Weidner, A., Fleming, L.E., Backer, L.C., Baden, D.G., Brevetoxin composition in water and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins. Harmful Algae, 2005, 4, 965-972.

[60] Sahayak, S., Joythibabu ,R., Jayalakshmi, K.J., Habeebreeman, H., Sabu, P., Prabhakaran M, P., Jasmine, P., Shaiju, P., Rejomon, G., Thiresiamma, J., Nair, K., K. C., Red tide of Noctiluca Miliaris off south of Thiruvananthapuram subsequent to the stench event at the southern Kerala coast. Current science, 2005, 89,1472-1473.

[61] Ramaiah, N., Paul, J.T. Fernandes, V., Raveendran, T., Raveendran, O., Sundar, D., Revishandran, C., Shenoy, D.M., Mangesh, G., Kurian, S., Gerson, V.J., Shoh, D.T., Madu, N.V., Kumar, S.S., Lokabharathi, P.A., Shetye, S.R., The September 2004 stench off the southern Malabar coast - A consequence of Holoccolithophore bloom. Current science, 2005, 88, 551-554.

[62] Jin, D., Hoagland, P., The value of harmful algal bloom predictions to the nearshore commercial shellfish fishery in the Gulf of Maine. Harmful Algae, 2008, 7, 772-781.

[63] Trainer, V.L., Cochlan, W.P., Erickson, A., Bill, B.D., Cox, F.H., Borchert, J.A., Lefebvre, K. A ., Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae, 2007, 6, 449-459.

[64] Kirkpatrick, B., Currier, R., Nierenberg, K., Reich, A., Backer, L.C., Stumpf, R., Fleming, L., Kirkpatrick, G., Florida red tide and human health: a pilot beach conditions reporting system to minimize human exposure. Science of the total environment, 2008, 402, 1-8.

[65] Kudela, R.,Overview of Harmful Algal Blooms: A Global Perspective.2016. Available online at https://www.epa.gov/sites/production/files/2016-03/documents/overview-habs-global-perspective.pdf

[66] Leon, S. C. Y., Introduction to Bloom Species in Singapore and its vicinity.2015.Available online at http://iocwestpac.org/files/upload_manual/Lecture2_BlmSpecies_Sandric.pdf

[67] Hoa, J. C., Michalak A. M., Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie. Journal of Great Lake Research, 2015, 41, 317-325. http://dx.doi.org/10.1016/j.jglr.2015.01.001

[68] Hickey, H.,Ocean conditions contributed to unprecedented 2015 toxic algal bloom. Available online at http://www.ocean.washington.edu/story/2015_Toxic_Algal_Bloom

[69] Lim, L. P. and Leong, S., Harmful Algal Blooms in Singapore Coastal Waters.2015 Available online at: https://www.tmsi.nus.edu.sg/files/Lim%20Lay%20Peng_HABs%20in%20Singapore.pdf

[70] Red Tide status report south west coast Florida. 2016. http://www.bradenton.com/latest-news/article71114842.ece/BINARY/Red%20tide%20in%20southwest%20Florida,%20April%208,%202016.

[71] Wiegand, C. and Pflugmacher, S., Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicology and Applied Pharmacology, 2005, 203, 201-18.

[72] Weiss, K.R., Paying a price for paradise: Sea breeze carries arsenal of toxins ashore during red tide outbreaks. The Baltimoresun.com, From the Los Angeles Times, third of five parts, 2006. Available online at: http://www.baltimoresun.com/news/health/balte.oceans01aug01,0,7230859.story?coll=bal-health-headlines . 54 Environmental Pollution and Protection, Vol. 3, No. 1, March 2018.

[73] Stewart, J.E., Marks, L.J., Gilgan, M.W., Pfeiffer, E., Zwicker, B.M., Microbial Utilization of the neurotoxin domoic acid:blue mussels (Mytilus edulis and soft clams (Mya arenaria) as sources of the microorganisms. Canadian Journal of Microbiology, 1998, 44, 456-464.

[74] O'shea, T., Environmental Contaminants and Marine Mammals. In Biology of Marine Mammals (eds Reynolds, J.E. and Rommel, S.A), Smithsion Institution Press, Washington, D. C. 1999.

[75] Scholin, C.A., Gulland, F., Doucette, G.J., Benson, S., Busman, M., Chavez, F.P., Cordaro, J., DeLong, R., DeVogelaere, A., Harvey, J., Haulena, M., Lefebvre, K., Lipscomb, T., Loscutoff ,S., Lowenstine, L.J., Marin III, R., Miller, P.E., McLellan, W.A., Moeller, P.D.R., Christine, Powell CL, Rowles, T., Silvagni, P., Silver, M., Spraker, T., Trainer, V., Van Dolah, F.M. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 2000, 403, 80-84.

[76] Rue, E., Bruland, K., Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Marine Chemistry, 2001, 76, 127-134.

[77] Gubbins, M. J., Eddy, F. B., Gallacher, S., Stagg, R. M., Paralytic shellfish poisoning toxins induce xenobiotic metabolizing enzymes in Atlantic salmon (Salmo Salar). Marine Environmental Research, 2000, 50, 479-483.

[78] Mak., K.Y.C., Yu, H., Choi, M.C., Shen, X., Lam, M. W. H. , Marin, M., Wu, R.S.S., Wong, P. S., Richardson, B.J., Lam, P.S.K., Okadiac acid, a causative toxin of diarrhetic shellfish poisoning in green-lipped mussels Perna Viridis from Hong Kong Fish culture zones: Method and development and monitoring. Marine Pollution Bulletin, 2005, 51, 1010-1017.

[79] Davis, C.C., Gymnodinium brevis sp. nov., a cause of discolored water and animal mortality in the Gulf of Mexico. Botanical Gazette, 1948, 109, 358-360.

[80] Tester, P. A., and Steidinger, K. A., Gymnodinium breve red tide blooms: Initiation, transport, and consequences of surface circulation. Limnol. Oceanogr. 1997,42, 1039-1051.

[81] Martins, J. C., Lea?o, P. N., Vasconcelos V Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon, 2009, 53, 409-416.

[82] Kiirikki, M., et al., Evaluating the effects of nutrient load reductions on the biomass of toxic nitrogen-fixing cyanobacteria in the Gulf of Finland, Baltic Sea, Boreal. Environmental Research, 2001, 6, 131-146.

[83] Schernewski, G., Neumann, T., Perspectives on eutrophication abatement in the Baltic Sea. In Littoral 2002: The Changing Coast, 2, pp. 503-511. Eurocoast/ EUCC, 2002

[84] Shapiro, J., Wright, D. I., Lake restoration by biomanipulation: Round Lake, Minnesota-the first two years. Freshw. Biol., 1984, 14, 371-383.

[85] Shapiro, J., et. al., Biomanipulation: an ecosystem approach to lake restoration. In Water Quality Management through Biological Control (eds Brezonik, P.L. and Fox, J.L.), University of Florida, 1975, pp. 85-96.

[86] Carpenter, S.R., Kitchell, J.F., The Trophic Cascade in Lakes, Cambridge University Press, 1993.

[87] Elser, J. J. et al., Pelagic C: N: P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems, 2000, 3, 293-307.

[88] Scheffer, M., et. al., Alternative equilibria in shallow lakes. Trends Ecol. Evol., 1993, 8, 275-279.