Isaac Scientific Publishing

Journal of Particle Physics

Local Scale Invariance and Inflation

Download PDF (594.6 KB) PP. 23 - 32 Pub. Date: July 1, 2018

DOI: 10.22606/jpp.2018.23001

Author(s)

  • Naveen K. Singh*
    Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, 144011, Punjab, India
  • Sukanta Panda
    Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India

Abstract

We study the inflation and the cosmological perturbations generated during the inflation in a local scale invariant model. The local scale invariant model introduces a vector field Sμ in this theory. In this paper, for simplicity, we consider the temporal part of the vector field St. We show that the temporal part is associated with the slow roll parameter of scalar field. We consider a cosmological solution which provides sufficient number of e-foldings for the inflation. Finally, we estimate the power spectrum of scalar perturbation in terms of the parameters of the theory.

Keywords

Scale invariance, cosmological perturbation, inflation.

References

[1] A. A. Starobinsky, “Relict gravitation radiation spectrum and initial state of the universe,” JETP Lett., vol. 30, pp. 682–685, 1979.

[2] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett., vol. B91, pp. 99–102, 1980.

[3] D. Kazanas, “Dynamics of the universe and spontaneous symmetry breaking,” Astrophys. J., vol. 241, pp. L59–L63, 1980.

[4] K. Sato, “First order phase transition of a vacuum and expansion of the universe,” Mon. Not. Roy. Astron. Soc., vol. 195, pp. 467–479, 1981.

[5] A. H. Guth, “The inflationary universe: A possible solution to the horizon and flatness problems,” Phys. Rev., vol. D23, pp. 347–356, 1981.

[6] A. D. Linde, “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems,” Phys. Lett., vol. 108B, pp. 389–393, 1982.

[7] A. D. Linde, “Coleman-weinberg theory and a new inflationary universe scenario,” Phys. Lett., vol. 114B, pp. 431–435, 1982.

[8] A. D. Linde, “Scalar field fluctuations in expanding universe and the new inflationary universe scenario,” Phys. Lett., vol. 116B, pp. 335–339, 1982.

[9] A. Albrecht and P. J. Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking,” Phys. Rev. Lett., vol. 48, pp. 1220–1223, 1982.

[10] P. Jain, S. Mitra, and N. K. Singh, “Cosmological implications of a scale invariant standard model,” JCAP, vol. 0803, p. 011, 2008.

[11] P. K. Aluri, P. Jain, and N. K. Singh, “Dark energy and dark matter in general relativity with local scale invariance,” Mod. Phys. Lett., vol. A24, pp. 1583–1595, 2009.

[12] P. K. Aluri, P. Jain, S. Mitra, S. Panda, and N. K. Singh, “Constraints on the cosmological constant due to scale invariance,” Mod. Phys. Lett., vol. A25, pp. 1349–1364, 2010.

[13] P. Jain, G. Kashyap, and S. Mitra, “The fine tuning of the cosmological constant in a conformal model,” Int. J. Mod. Phys., vol. A30, no. 32, p. 1550171, 2015.

[14] P. D. Mannheim, “Conformal cosmology with no cosmological constant,” Gen. Rel. Grav., vol. 22, pp. 289–298, 1990.

[15] P. D. Mannheim and D. Kazanas, “Current status of conformal weyl gravity,” in Proceedings, Astrophysics Workshop on After the first three minutes: College Park, Maryland, USA, October 15-17, 1990. College Park, Maryland, USA, 1991, pp. 541–544.

[16] S. Deser, “Scale invariance and gravitational coupling,” Annals Phys., vol. 59, pp. 248–253, 1970.

[17] M. Shaposhnikov and D. Zenhausern, “Quantum scale invariance, cosmological constant and hierarchy problem,” Phys. Lett., vol. B671, pp. 162–166, 2009.

[18] M. Shaposhnikov and D. Zenhausern, “Scale invariance, unimodular gravity and dark energy,” Phys. Lett., vol. B671, pp. 187–192, 2009.

[19] G. Kashyap, S. Mitra, and P. Jain, “Non-relativistic matter and dark energy in a quantum conformal model,” Astropart. Phys., vol. 75, pp. 64–71, 2016.

[20] P. Jain and S. Mitra, “Cosmological symmetry breaking, pseudo-scale invariance, dark energy and the standard model,” Mod. Phys. Lett., vol. A22, pp. 1651–1661, 2007.

[21] F. Englert, C. Truffin, and R. Gastmans, “Conformal invariance in quantum gravity,” Nucl. Phys., vol. B117, pp. 407–432, 1976.

[22] H. Cheng, “The possible existence of weyl’s vector meson,” Phys. Rev. Lett., vol. 61, p. 2182, 1988.

[23] K. Bamba, S. D. Odintsov, and P. V. Tretyakov, “Inflation in a conformally-invariant two-scalar-field theory with an extra r2 term,” Eur. Phys. J., vol. C75, no. 7, p. 344, 2015.

[24] N. K. Singh, P. Jain, S. Mitra, and S. Panda, “Quantum treatment of the weyl vector meson,” Phys. Rev., vol. D84, p. 105037, 2011.

[25] R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland Publishing Company, 1982.

[26] P. A. R. Ade et al., “Planck 2015 results. xx. constraints on inflation,” Astron. Astrophys., vol. 594, p. A20, 2016.