Isaac Scientific Publishing

Journal of Advances in Molecular Biology

Tryptophan Hydroxylase and Serotonin Receptors 5-HT1A, 5-HT2A, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6 and 5-HT7 in Frog and Turtle Retina: an Immunofluorescence Study

Download PDF (1070.8 KB) PP. 33 - 52 Pub. Date: June 8, 2017

DOI: 10.22606/jamb.2017.11003


  • Liliya Vitanova*
    Dept. Physiology, Medical University, Sofia, Bulgaria
  • Desislava Zhekova
    Dept. Physiology, Medical University, Sofia, Bulgaria
  • Petia Kupenova
    Dept. Physiology, Medical University, Sofia, Bulgaria


Serotonin (5-HT) is one of the major monoamines in the brain. It is also found in the retina, a part of the brain, where a subgroup of amacrine cells are considered to be the sole retinal source of 5-HT. The data, obtained so far, about the serotonin receptors’ function are contradictory. Therefore, our aim was to study the distribution of the 5-HT synthesizing neurons and the serotonin receptors from 5-HT1A to 5-HT7 in frog and turtle retinas, using the indirect immunofluorescent method. We found strong Tryptophan hydroxylase immunoreactivity in many amacrine and bipolar cells. Some horizontal, ganglion and glial cells were also stained, as well as a bundle of parallel axons in the proximal retina. All 5-HT receptors were also very well expressed. Our data show that the serotonin retinal sources are more numerous than was previously thought. The great variety of receptors expressed implies that serotonin may fulfill different functions, serving both as neuro- and glio-transmitter/modulator.


Serotonin, serotonin receptors, tryptophan hydroxylase, retina, frog, turtle


[1] K. Fuxe, A. Dahlstr?m, M. H?istad, D. Marcellino, A. Jansson, A. Rivera, Z. Diaz-Cabiale, K. Jacobsen, B. Tinner-Staines, B. Hagman, G. Leo, W. Staines, D. Guidolin, J. Kehr, S. Genedani, N. Belluardo, and L. F. Agnati, ”From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission”, Brain Research Revews, vol. 55, no. 1, pp. 17-54, 2007.

[2] J. Lavoie, P. Illiano, T.D. Sotnikova , R.R. Gainetdinov, J.M. Beaulieu, and M. Hébert, “The electroretinogram as a biomarker of central dopamine and serotonin: potential relevance to psychiatric disorders”, Biological Psychiatry, vol. 75, no. 6, pp. 479-86, 2014.

[3] P. Thampi, H.V. Rao, S.K. Mitter, J. Cai, H. Mao, H. Li , S. Seo, X. Qi, A.S. Lewin, C. Romano, and M.E. Boulton, ”The 5HT1a receptor agonist 8-Oh DPAT induces protection from lipofuscin accumulation and oxidative stress in the retinal pigment epithelium”. PLoS One, vol. 7, no. 4, e34468, 2012.

[4] J. Shen, K. Ghai, P. Sompol, X. Liu, X. Cao, P.M. Iuvone, and K. Ye, ”N-acetyl serotonin derivatives as potent neuroprotectants for retinas”, Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no.9, pp. 3540-3545, 2012.

[5] N.T. Osborne, D Nesselhut, A. Nikolas, S. Patel, and A.C. Cuello, ”Serotonin-containing neurones in vertebrate retinas”, Journal of Neurochemistry, vol. 39, no. 6, pp. 1519 -1528, 2012.

[6] M. Bennis and C. Versaux-Botteri, ”Catecholamine-, indoleamine-, and GABA-containing cells in the chameleon retina”, Visual Neuroscience, vol. 12, no. 4, pp. 785 -792, 1995.

[7] N.S. Fosser, A. Brusco, and H Ríos, ”Darkness induced neuroplastic changes in the serotoninergic system of the chick retina”, Brain Research. Developmental Brain Research, vol. 160, no. 2, pp. 211-218, 2005.

[8] T. Hayashi, G. Hirose, M. Kawata, and Y. Sano, ”Cytological features of serotonin-containing neurons and their processes in the retina of the carp (Cyprinus carpio): An immunohistochemical study using flat-mount preparations”, Histochemistry, vol. 84, no. 4-6, pp. 423-425, 1986.

[9] R.E. Marc, ”Spatial organization of neurochemically classified interneurons of the goldfish retina-I. Local patterns”, Vision Research, vol. 22, no. 5, pp. 589-608, 1982.

[10] W. Skrandies and H. W?ssle, ”Dopamine and serotonin in cat retina: electroretinography and histology”, Experimnental Brain Research, vol. 71, no. 2, pp. 231-240, 1988.

[11] R. Bragadóttir, M. Kato, and S. Jarkman,”Serotonin elevates the c-wave of the electroretinogram of the rabbit eye by increasing the transepithelial potential”, Vision Research, vol. 37, no. 18, pp. 2495-2503, 1997.

[12] B. Ehinger, “Connexions between retinal neurons with identified neurotransmitters”, Vision Research, vol. 23, no.11, pp. 1281-1289, 1983.

[13] L.B. Hurd 2nd and W.D. Eldred, ”Synaptic microcircuitry of bipolar and amacrine cells with serotonin-like immunoreactivity in the retina of the turtle, Pseudemys scripta elegans”, Visual Neuroscience, vol. 10, no. 3, pp. 455-471, 1993.

[14] J. Vígh, T. Bánv?lgyi, and M. Wilhelm, ”Amacrine cells of the anuran retina: morphology, chemical neuroanatomy, and physiology”, Microscopy Research and Technique, vol. 50, no. 5, pp. 373-383, 2000.

[15] P. Witkovsky, W. Eldred, and H.J. Karten, ”Catecholamine- and indoleamine-containing neurons in the turtle retina”, Journal of Comparative Neurology, vol. 228, no. 2, pp. 217-225, 1984.

[16] R. Weiler and M. Schütte, ”Morphological and pharmacological analysis of putative serotonergic bipolar and amacrine cells in the retina of a turtle, Pseudemys scripta elegans”, Cell and Tissue Research, vol. 241, no. 2, pp. 373-382, 1985.

[17] M. Schütte and R. Weiler, ”Morphometric analysis of serotoninergic bipolar cells in the retina and it implications for retinal image processing”, Journal of Comparative Neurology, vol. 260, no. 4, pp. 619-626, 1987.

[18] M. Schütte, ”Serotonergic and serotonin-synthesizing cells of the Xenopus retina”, International Journal of Neuroscience, vol. 78, no.1-2, pp. 67-73, 1994.

[19] M. Tauchi, ”Single cell shape and population densities of indoleamine-accumulating and displaced bipolar cells in Reeves' turtle retina”, Proceedings of the Royal Society B: Biological Sciences, vol. 238, no. 1293, pp. 351-367, 1990.

[20] I. Florén and A. Hendrickson, ”Indoleamine-accumulating horizontal cells in the squirrel monkey retina”, Investigative ophthalmology & visual science, vol. 25, no. 9, pp. 997-1006, 1984.

[21] H. W?ssle and M.H. Chun, ”Dopaminergic and Indoleamine-Accumulating Amacrine Cells Express GABA-Like lmmunoreactivity in the Cat Retina”, The Journal of Neuroscience, vol. 8, no. 9, pp. 3383-3394, 1988.

[22] B. Zhu, R. Gábriel, and C. Straznicky,”Serotonin synthesis and accumulation by neurons of the anuran retina”, Visual Neuroscience, vol. 9, no. 3-4, pp. 377-388, 1992.

[23] R. Gábriel, B.S Zhu, and C. Straznicky, ”Synaptic contacts of serotonin-like immunoreactive and 5,7-dihydroxytryptamine-accumulating neurons in the anuran retina”, Neuroscience, vol. 54, no. 4, pp. 1103-1114, 1993.

[24] K. Ghai, C. Zelinka, and A.J. Fischer, ”Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina”, Neurochemistry, vol. 111, no. 1, pp. 1-14, 2009.

[25] S. Hidaka, ”Serotonergic synapses modulate generation of spikes from retinal ganglion cells of teleosts”, Journal of Integrative Neuroscience, vol. 8, no. 3, pp. 299-322, 2009.

[26] S.C. Mangel and W.J. Brunken, ”The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina”, Visual Neuroscience, vol. 8, no. 3, pp. 213-218, 1992.

[27] K. Pootanakit and W.J. Brunken, ” 5-HT(1A) and 5-HT(7) receptor expression in the mammalian retina”, Brain Research, vol. 87, no. 1-2, pp. 152-6, 2000.

[28] M. Pennesi, J. Stoddard, K. Michaels et al, ”Expression and Localization of Serotonin Receptor in the Mouse Retina”, Investigative Ophthalmogy and Visual Science, vol. 53, e-abstract 6547, 2012.

[29] K. Pootanakit, K.J. Prior, D.D. Hunter and W.J. Brunken, ”5-HT2a receptors in the rabbit retina: potential presynaptic modulators”, Visual Neuroscence, vol. 16, no. 2, pp. 221-230, 1999.

[30] L. Han, Y. M. Zhong, and X.L. Yang,”5-HT2A receptors are differentially expressed in bullfrog and rat retinas: a comparative study”, Brain Research Bulletin, vol. 73, no. 4-6, pp. 273-277, 2007.

[31] K. Pootanakit and W.J. Brunken, ”Identification of 5-HT (3A) and 5-HT (3B) receptor subunits in mammalian retinae: potential pre-synaptic modulators of photoreceptors”, Brain Research, vol. 896, no. 1-2, pp. 77-85, 2001.

[32] W.J. Brunken and X.T. Jin, ”A role for 5HT3 receptors in visual processing in the mammalian retina”, Visual .Neuroscience, vol. 10, no. 3, pp. 511-522, 1993.

[33] S. Doly, J. Fischer, M.J. Brisorgueil, D. Vergé, and M. Conrath, ”5-HT5A receptor localization in the rat spinal cord suggests a role in nociception and control of pelvic floor musculature”, Journal of Comperative Neurology; vol. 476, no. 4, pp. 316-329, 2004.

[34] G. García-Alcocer, A. Rodríguez, P. Moreno-Layseca, L.C. Berumen, J. Escobar, and R. Miledi, ”Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment”, Neuroscience Letters, vol. 486, no. 3, pp.171-173, 2010.

[35] D.E. Lorke, G. Lu, E. Cho, and D.T. Yew, ”Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients”, BMC Neuroscience, vol. 7:36, 2006.

[36] M.S. Wai, D.E. Lorke, W.H. Kwong, L. Zhang, and D.T. Yew, ”Profiles of serotonin receptors in the developing human thalamus”, Psychiatry Research, vol. 185, no. 1-2, pp. 238-242, 2011.

[37] M.A. Belenky and G.E. Pickard, ”Subcellular distribution of 5-HT(1B) and 5-HT(7) receptors in the mouse suprachiasmatic nucleus”. Journal of Comparative Neurology, vol. 432, no. 3, pp. 371-88, 2001.

[38] B.N. Smith, P.J. Sollars, F.E. Dudek, and G.E. Pickard, ”Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors”, Journal of Biological Rhythms; vol 6, no. 1, pp. 25-38, 2001.

[39] L. Vitanova, P. Kupenova, S. Haverkamp, E. Popova, L. Mitova, and H. W?ssle, ”Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina”, Vision Research; vol. 41, no. 6, pp. 691-704, 2001.

[40] R. Weiler and J. Ammermüller, ”Immunocytochemical localization of serotonin in intracellularly analyzed and dye-injected ganglion cells of the turtle retina”, Neuroscience Letters; vol. 72, no. 2, pp. 147-152, 1986.

[41] L. A. Vitanova and D. I. Zhekova, ”Dopamine and serotonin transporters in frog and turtle retina: Immunofluorescent evidence”, Comptes rendus de l'Academie bulgare des Sciences, vol. 68, no. 12, pp. 1577–1588, 2015.

[42] U. Gether, P.H. Andersen, O.M. Larsson, and A. Schousboe, ”Neurotransmitter transporters: molecular function of important drug targets”, Trends in Pharmacological Sciences, vol. 27, no. 7, pp. 375-383, 2006.

[43] N. Cuenca, S. Haverkamp, and H. Kolb, ”Choline acetyltransferase is found in terminals of horizontal cells that label with GABA, nitric oxide synthase and calcium binding proteins in the turtle retina”, Brain Research, vol.878, no. 1-2, pp. 228-239, 2000.

[44] J. Zhang, A.J. Zhang, and S.M. Wu, ”Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina”, Journal of Comparative Neurology, vol. 499, no. 3, pp. 432-441,2006.

[45] S. Haverkamp and H. W?ssle, ”Immunocytochemical Analysis of the Mouse Retina”, Journal of Comparative Neurology, vol. 424, pp. 1-23, 2000.

[46] R.E. Marc, W.L. Liu, K. Scholz, and J.F. Muller. ”Serotonergic and serotonin-accumulating neurons in the goldfish retina”,.Journal of Neuroscience, vol. 8, no. 9, pp. 3427-5450, 1988.

[47] M. Wilhelm, B. Zhu, R. Gábriel, and C. Straznicky, ”Immunocytochemical identification of serotoninsynthesizing neurons in the vertebrate retina: a comparative study”. Experimental Eye Research, vol. 56, no. 2, pp. 231-240, 1993.

[48] Q. Liu and E.A. Debski, ”Serotonin-like immunoreactivity in the adult and developing retina of the leopard frog Rana pipiens”, Journal of Comparative Neurology; vol. 338, no. 3, pp. 391-404, 1993.

[49] B. Ehinger, O.P. Ottersen, J. Storm-Mathisen, and J.E. Dowling, ”Bipolar cells in the turtle retina are strongly immunoreactive for glutamate”, Proceedings of the National Academy of Sciences of USA, vol. 85, no. 21, pp. 8321-8325, 1988.

[50] J. Liang, J.H. Wessel 3rd, P.M. Iuvone, G. Tosini, and C. Fukuhara, ”Diurnal rhythms of tryptophan hydroxylase 1 and 2 mRNA expression in the rat retina”, Neuroreport, vol. 15, no. 9, pp. 1497-1500, 2004.

[51] M.E. Cornide-Petronio, R. Anadón, M.C. Rodicio, and A. Barreiro-Iglesias, ”The sea lamprey tryptophan hydroxylase: new insight into the evolution of the serotonergic system of vertebrates”, Brain Structure & Function, vol. 218, no. 2, pp. 587-593, 2013.

[52] M. E. Cornide-Petronio, R. Anadón, A. Barreiro-Iglesias, and M.C. Rodicio, ”Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey”, Experimental Eye Research, vol. 135, pp. 81-87, 2015.

[53] N.W. Chong, V.M. Cassone, M. Bernard, D.C. Klein, and P.M. Iuvone, ”Circadian expression of tryptophan hydroxylase mRNA in the chicken retina”, Brain Research Molecular Brain Research, vol. 61, no. 1-2, pp. 243-250, 1998.

[54] C.B. Green, G.M. Cahill, and J.C. Besharse, ”Tryptophan hydroxylase is expressed by photoreceptors in Xenopus laevis retina”.,Visual Neuroscience, vol 12, no. 4, pp. 63-70, 1995.

[55] E. Chanut, J. Nguyen-Legros, B. Labarthe, J.H. Trouvin, and C. Versaux-Botteri, ”Serotonin synthesis and its light-dark variation in the rat retina”, Journal of Neurochemistry, vol. 83, no. 4, pp. 863-869, 2002.

[56] D.E. Nichols and C.D. Nichols, ”Serotonin receptors”, Chemical Reviews, vol. 108, no. 5, pp. 1614-1641, 2008.

[57] M. Pytliak, V. Vargová, V. Mechírová, and M. Fel??ci, ”Serotonin receptors - from molecular biology to clinical applications”, Physiological Research, vol. 60, no. 1, pp. 15-25, 2011.

[58] M. Schütte and P. Witkovsky, ”Serotonin-like immunoreactivity in the retina of the clawed frog Xenopus laevis”, Journal of Neurocytology; vol. 19, no. 4, pp. 504-518, 1990.

[59] L. Lima and M. Urbina, ”Serotonergic projections to the retina of rat and goldfish”, Neurochemistry, vol. 32, no.2, pp. 133-141, 1998.

[60] M.J. Gastinger, A.S. Bordt, M.P. Bernal, and D.W. Marshak, ”Serotonergic retinopetal axons in the monkey retina”, Current Eye Research, vol. 30, no. 12, pp. 1089-1095, 2005.

[61] L. D. Ochoa-de la Paz, A. Estrada-Mondragón, A. Limón, R. Miledi, and A. Martínez-Torres, ”Dopamine and serotonin modulate human GABAρ1 receptors expressed in Xenopus laevis oocytes”, ACS Chemical Neuroscience, vol. 3, no. 2, pp. 96-104, 2012.

[62] R.J. Collier, Y. Patel, E.A. Martin, O. Dembinska, M. Hellberg, D.S. Krueger, M.A. Kapin, and C.Romano, ”Agonists at the serotonin receptor 5-HT(1A) protect the retina from severe photo-oxidative stress”, Investigative Ophthalmology and Visual Sciences, vol. 52, no. 5, pp. 2118-2126, 2011.