# Frontiers in Signal Processing

### Review of Unbiased FIR Filters, Smoothers, and Predictors for Polynomial Signals

Download PDF (1713.2 KB) PP. 1 - 29 Pub. Date: January 17, 2018

### Author(s)

**Yuriy S. Shmaliy**^{*}

Electronics Engineering Department, DICIS, Universidad de Guanajuato, Salamanca, Mexico**Yrjö Neuvo**

Department of Communications and Networking, Aalto University, Aalto, Finland**Sanowar Khan**

Department of Electrical and Electronic Engineering, City, University of London, London EC1V 0HB, UK

### Abstract

### Keywords

### References

[1] Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles, Techniques, and Software. Artech House,1993.

[2] B. Hofmann-Wellenhof, B. H. Lichtenegger, and J. Collins, GPS Theory and Practice, 2nd Ed. Springer-Verlag,1997.

[3] Y. S. Shmaliy, GPS-based Optimal FIR Filtering of Clock Models. Nova Science, 2009.

[4] A. Shukla and E. Alkhalifa, Biomedical Engineering and Information Systems: Technologies, Tools and Applications. IGI Global Medical Information Science Reference, 2010.

[5] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering,vol. 82, no. 1, pp. 35–45, 1960.

[6] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering, vol. 83D, no. 1, pp. 95–108, 1961.

[7] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press, 1970.

[8] W. Kwon and S. Han, Receding Horizon Control: Model Predictive Control for State Models. Springer, 2005.

[9] Y. S. Shmaliy, “Linear optimal FIR estimation of discrete time-invariant state space models,” IEEE Trans. on Signal Processing, vol. 58, no. 6, pp. 3086–3096, 2010.

[10] N. Wiener, The extrapolation, interpolation, and smoothing of stationary time series. John Wiley & Sons,1949.

[11] C. F. Gauss, Theory of the Combination of Observations Least Subject to Errors. SIAM Publ., 1995.

[12] S. M. Key, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, 1993.

[13] L. A. Zadeh and J. R. Ragazzini, “An extension of Wiener’s theory of prediction,” Journal of Applied Physics,vol. 21, no. 2, pp. 645–655, 1950.

[14] K. R. Johnson, “Optimum, linear, discrete filtering of signals containing a nonrandom compionent,” IRE Trans. Information Theory, vol. 2, no. 2, pp. 49–55, 1956.

[15] M. Blum, “On the mean square noise power of an optimum linear discrete filter operating on polynomial plus white noise input,” IRE Trans. Information Theory, vol. 3, no. 4, pp. 225–231, 1957.

[16] W. F. Trench, “A general class of discrete time-invariant filters,” Journal of the Society for Industrial and Applied Mathematics, vol. 9, no. 3, pp. 405–421, 1961.

[17] Y. S. Shmaliy and O. Ibarra-Manzano, “Noise power gain for discrete-time FIR estimators,” IEEE Signal Processing Letters, vol. 18, no. 4, pp. 207–210, 2011.

[18] P. Peebles, “An alternate approach to the prediction of polynomial signals in noise from discrete data,” IEEE Trans. on Aerospace Electron. Systems, vol. 6, no. 4, pp. 534–543, 1970.

[19] P. Kovanic, “Accuracy limitations in an unbiased optimum data treatment,” Journal of Computational Physics,vol. 6, no. 3, pp. 473–482, 1970.

[20] S. Alterman, “Discrete-time least squares, minimum mean square error, and minimax estimation,” IEEE Trans. Comm. Tech., vol. 14, no. 3, pp. 302–308, 1966.

[21] P. Heinonen and Y. Neuvo, “FIR-median hybrid filters with predictive FIR substructures,” IEEE Trans. Acoust. Speech Signal Process., vol. 36, no. 6, pp. 892–899, 1988.

[22] J. Astola, P. Heinonen, and Y. Neuvo, “Linear median hybrid filters,” IEEE Trans. Circuits and Systems,vol. 36, no. 11, pp. 1430–1438, 1988.

[23] T. G. Campbell and Y. Neuvo, “Predictive FIR filters with low computational complexity,” IEEE Trans. Circuits and Systems, vol. 38, no. 9, pp. 1067–1071, 1991.

[24] S. J. Ovaska, O. Vainio, and T. I. Laakso, “Design of predictive IIR filters via feedback extension of FIR forward predictors,” IEEE Trans. on Instrum. and Measur., vol. 46, no. 5, pp. 1196–1210, 1997.

[25] P. T. Harju and T. I. Laakso, “Polynomial predictors for complex-valued vector signals,” Electron. Letters, vol. 31, no. 19, pp. 1650–1652, 1995.

[26] P. H?ndel and P. Tichavsky, “Asymptotic noise gain of polynomial predictors,” Signal Processing, vol. 62, no. 2, pp. 247–250, 1997.

[27] K. Koppinen, “Analysis of the asymptotic impulse and frequency responses of polynomial predictors,” Signal Processing, vol. 84, no. 3, pp. 549–560, 2004.

[28] S. Samadi and A. Nishihara,“Explicit formula for predictive FIR filters and differentiators using Hahn orthogonal polynomials,” IEICE Trans. Fundamentals, vol. E90-A, no. 8, pp. 1511–1518, 2007.

[29] S. J. Ovaska, O. Vainio, and T. I. Laakso, “Design of predictive IIR filters via feedback extension of FIR forward predictors,” IEEE Trans. Instrum. Measur., vol. 46, no. 5, pp. 1196–1201, 1997.

[30] R. Wichman, J. T. Astola, P. J. Heinonen, and Y. A. Neuvo, “FIR-median hybrid filters with excellent transient response in noisy conditions,” IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 12, pp.2108–2117, 1990.

[31] O. Vainio and S. J. Ovaska, “Noise reduction in zero crossing detection by predictive digital filtering,” IEEE Trans. Industr. Electron., vol. 42, no. 1, pp. 58–62, 1995.

[32] T. I. Laakso and S. J. Ovaska, “Prefiltering approach for optimal polynomial prediction,” IEEE Trans. Signal Process., vol. 4, no. 3, pp. 701–705, 1996.

[33] J. M. A. Tanskanen and V. Dimitrov, “Round-off error-free fixed-point design of polynomial FIR predictors and predictive FIR differentiators,” Digital Signal Processing, vol. 13, no. 1, pp. 42–57, 2003.

[34] J. A. Honkanen, T. I. Laakso, S. J. Ovaska, and I. Hartimo, “Lowpass IIR predictors for discrete-time signal processing,” Digital Signal Processing, vol. 5, no. 3, pp. 133–139, 1995.

[35] Y. S. Shmaliy, “A simple optimally unbiased MA filter for timekeeping,” IEEE Trans. on Ultrason. Ferroelec. Freq. Control, vol. 49, no. 6, pp. 789–797, 2002.

[36] ——, “An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping,”IEEE Trans. on Ultrason. Ferroelec. Freq. Control, vol. 53, no. 5, pp. 862–870, 2006.

[37] ——, “An iterative Kalman-like algorithm ignoring noise and initial conditions,” IEEE Trans. Signal Processing,vol. 59, no. 6, pp. 2465–2473, 2011.

[38] P. Castro-Tinttori and Y. S. Shmaliy, “Implementation of digital FIR filters with polynomial impulse responses,”Circuits, Systems, Signal Processing, vol. 31, no. 2, pp. 611–626, 2012.

[39] ——, “Computationally efficient FIR filtering of polynomial signals in DFT domain,” Circuits, Systems, Signal Processing, vol. 31, no. 6, pp. 2153–2166, 2012.

[40] L. R. Rabiner and B. Gold, Theory and Applications of Digital Signal Processing. Prentice-Hall, 1975.

[41] Y. S. Shmaliy, “Unbiased FIR filtering of discrete time polynomial state space models,” IEEE Trans. on Signal Processing, vol. 57, no. 4, pp. 1241–1249, 2009.

[42] J. Levine, “The statistical modeling of atomic clocks and the design of time scales,” Review of Scientific Instruments, vol. 83, no. 2, pp. 021 101–1–021 101–28, 2012.

[43] ——, “Time synchronization over the Internet using an adaptive frequency-locked loop,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 46, no. 4, pp. 888–896, 1999.

[44] T. Iwata, M. Imae, T. Suzuyama, H. Murakami, and K. Y., “Simulation and ground experiments of remote synchronization system for on-board crystal oscillator of Quazi-Zenith Satelite System,” Journal of the Institute of Navigation, vol. 53, no. 4, pp. 231–235, 2006.

[45] Y. Kou, Y. Jiao, D. Xu, M. Zhang, Y. Liu, and L. X., “Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation,” Advances in Space Research, vol. 51, no. 6, pp. 969–977, 2013.

[46] L. Arceo-Miquel, Y. S. Shmaliy, and O. Ibarra-Manzano, “Optimal synchronization of local clocks by GPS 1PPS signals using predictive FIR filters,” IEEE Trans. Instrum. Meas., vol. 58, no. 6, pp. 1833–1840, 2009.

[47] Y. S. Shmaliy, “An unbiased p-step predictive FIR filter for a class of noise free discrete-time models with independently observed states,” Signal, Image and Video Processing, vol. 3, no. 2, pp. 127–135, 2009.

[48] L. J. Morales-Mendoza and Y. S. Shmaliy, “Moving average hybrid filter to the enhancing ultrasound image processing,” IEEE Latin America Trans., vol. 8, no. 1, pp. 9–16, 2010.

[49] Y. S. Shmaliy and L. J. Morales-Mendoza, “FIR smoothing of discrete-time polynomial models in state space,”IEEE Trans. Signal Processing, vol. 58, no. 5, pp. 2544–2555, 2010.

[50] Y. S. Shmaliy and L. Arceo-Miquel, “Efficient predictive estimator for holdover in GPS-based clock synchronization,” IEEE Trans. on Ultrason. Ferroelec. Freq. Control, vol. 55, no. 10, pp. 2131–2139, 2008.

[51] Y. S. Shmaliy, “Linear unbiased prediction of clock errors,” IEEE Trans. on Ultrason. Ferroelec. Freq. Control,vol. 56, no. 9, pp. 2027–2029, 2009.

[52] O. Vite-Chavez, R. Olivera-Reyna, O. Ibarra-Manzano, Y. S. Shmaliy, and L. Morales-Mendoza, “Time-variant forward-backward fir denoising of piecewise-smooth signals,” Int. J. Electron. Commun. (AEU), vol. 67, no. 5, pp. 406–413, 2013.

[53] H. Hamboa-Rosales, L. Morales-Mendoza, and Y. S. Shmaliy, “Unbiased impulse responses - A class of discrete orthogonal polynomials,” ICIC Express Letters, vol. 7, no. 7, pp. 2005–2010, 2013.

[54] L. J. Morales-Mendoza, H. Gamboa-Rosales, and Y. S. Shmaliy, “A new class of discrete orthogonal polynomials for blind fitting of finite data,” Signal Processing, vol. 93, no. 7, pp. 1785–1793, 2013.

[55] L. Chang, “On Kalman-like finite impulse response filters,” arXiv:1501.07132.

[56] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.

[57] A. Lepek, “Clock prediction and characterization,” Metrologia, vol. 34, no. 5, pp. 379–386, 1997.

[58] L. Yin, R. Yang, and Y. Neuvo, “Weighted median filters: a tutorial,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 43, no. 3, pp. 157–192, 1996.

[59] L. J. Morales-Mendoza, R. F. Vazquez-Bautista, E. Morales-Mendoza, Y. S. Shmaliy, and H. Gamboa-Rosales,“A new recursive scheme of the unbiased FIR filter to image processing,” Procedia Engineering, vol. 35.

[60] “ITU-T Recommendation G.810. Definitions and terminology for synchronization networks.”

[61] “EN 300 462-4-1 v1.1.1, European Standard (Telecommunications series) Transmission and Multiplexing(TM); Generic requirements for synchronization networks; Part 4-1: Timing characteristics of slave clocks suitable for synchronization supply to Synchronous Digital Hierarchy (SDH) and Plesiochronous Digital Hierarchy (PDH) equipment.”

[62] Y. S. Shmaliy, O. Ibarra-Manzano, L. Arceo-Miquel, and J. Munoz-Diaz, “A thinning algorithm for GPS-based unbiased FIR estimation of a clock TIE model,” Measurement, vol. 41, no. 5, pp. 538–550, 2008.

[63] Y.-K. Lee, S.-H. Yang, C.-B. Lee, and M.-B. Heo, “Estimation of GPS holdover performance with ladder algorithm used for an UFIR filter,” Journal of Institute of Control, Robotics and Systems, vol. 21, no. 7, pp.669–676, 2015.

[64] K. Gentile, “The AD9548 as a GPS Disciplined Stratum 2 Clock. Analog Devices,” AN-1002 Application Note.

[65] J. Lee, S. Hwang, D.-H. Yu, C. Park, and S. Lee, “Software-based performance analysis of a pseudolite time synchronization method depending on the clock source,” Journal of Positioning, Navigation and Timing,vol. 3, no. 4, pp. 163–170, 2014.

[66] Y. Zhang, W. Lu, D. Lei, Y. Huang, and D. Yu, “Effective PPS signal generation with predictive synchronous loop for GPS,” IEICE Trans. on Communications, vol. E97-B, no. 8, pp. 1742–1749, 2014.

[67] Y. Chen, S. Ding, Z. Xie, Z. Qi, and X. Liang, “Design study for a quasisynchronous CDMA sensor data collection system: an LEO satellite uplink access technique based on GPSS,” International Journal of Distributed Sensor Networks, vol. ID 421745.

[68] R. Y. Ramlall, “Method for Doppler-aided GPS carrier-tracking using p-step ramp unbiased finite impulse response predictor,” International Journal of Distributed Sensor Networks, vol. U.S. Patent 8 773 305, July 8.

[69] J. B. Fu, J. Sun, F. Gao, and L. S., “Maneuvering target tracking with improved unbiased FIR filter,” in Proc. 2014 Int. Radar Conf. (Radar). IEEE, 2014, pp. 1–5.

[70] J. Fu, J. Sun, S. Lu, and Y. Zhang, “Maneuvering target tracking with modified unbiased FIR filter,” Journal of Beijing Univ. of Aeronautics and Astronautics, vol. 41, no. 1, pp. 77–82, 2015.