International Journal of Power and Energy Research
Temkin-Pyzhev Kinetics in Intermediate Temperature Ammonia-Fed Solid Oxide Fuel Cells (SOFCs)
Download PDF (1155.6 KB) PP. 43 - 51 Pub. Date: July 1, 2018
Author(s)
- Denver F. Cheddie*
Mechanical Engineering, University of Trinidad and Tobago, Point Lisas Campus, Esperanza Road, Brechin Castle, Couva, Trinidad and Tobago
Abstract
Keywords
References
[1] C. Zamfirescu and I. Dincer, “Using ammonia as a sustainable fuel,” J. Power Sources, vol. 185, pp. 459–465, 2008.
[2] J.O. Jensen, A.P. Vestbo, Q. Li and N.J. Bjerrum, “Development of a high pressure microbalance for hydrogen storage materials”, J. Alloys Compd. Vol. 446-447, pp. 723–728, 2007.
[3] L.M. Zhang, Y. Cong, W.S. Yang and L.W. Lin, “The energy efficiency of onboard hydrogen storage”, Chinese J. Catalysis, vol. 28, pp. 749–751, 2007.
[4] L. Pelletier, A. McFarlan and N. Maffei, “Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes,”, J. Power Sources, vol. 145, pp. 262–265, 2005.
[5] N. Maffei, L. Pelletier, J.P. Charland and A. McFarlan, “Direct ammonia fuel cell using barium cerate proton conducting electrolyte”, J. Power Sources, vol. 140, pp. 264–267, 2005.
[6] Q.L. Ma, R.R. Peng, L.Z. Tian and G.Y. Meng, “Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells”, Electrochem. Comm. Vol. 8, pp. 1791–1795, 2006.
[7] D. Cheddie, “Ammonia as a hydrogen source for fuel cells: a review,” in: D. Minic, Ed., Hydrogen Energy – Challenges and Perspectives, InTech Publishers, 2012, pp. 333-362.
[8] R. Lan, J.T.S. Irvine and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials”, Int. J. Hydrogen Energy, vol. 37, pp. 1482 -1494, 2012.
[9] T.V. Choudhary, C. Svadinaragana and D.W. Goodman, “Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications”, Catal. Lett. Vol. 72, pp. 197, 2001.
[10] S.F. Yin, Q.H. Zhang, B.Q. Xu, W.X. Zhu, C.F. Ng and C.T. Au, “Investigation on the catalysis of COx-free hydrogen generation from ammonia”, J. Catal. Vol. 224, pp. 384, 2004.
[11] S.F. Yin, B.Q. Xu, S.J. Wang, C.F. Ng and C.T. Au, “MgO-CNTs (Magnesia-carbon nanotubes) nanocomposites: Novel support of Ru catalysts for the generation of COx free hydrogen from ammonia”, Catal. Lett. Vol. 96, pp. 113, 2004.
[12] S.J. Wang, S.F. Yin, L. Li, B.Q. Xu, C.F. Ng and C.T. Au, “Investigation on modification of Ru-CNTs catalysts for the generation of COx free hydrogen from ammonia”, Appl. Catal. B: Env. Vol. 52, pp. 287, 2004.
[13] H.C. Liu, H. Wang, J.H. Shen, Y. Sun and Z.M. Liu, “Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia”, App. Cat. A: Gen. vol. 337, pp. 138–147, 2008.
[14] X.K. Li, W.J. Ji, J. Zhao, S.J. Wang and C.T. Au, “Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15”, J. Catal. Vol. 236, pp. 181–189, 2005.
[15] J. Zhang, H.Y. Xu, X.L. Jin, Q.J. Ge and W.Z. Li, “Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition”, App. Catal. A, vol. 290, pp. 87–96, 2005.
[16] W.Q. Zheng., J. Zhang, Q.J. Ge, H.Y. Xu and W.Z. Li, “Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen”, App. Catal. B: Env, vol. 80, pp. 98, 2008.
[17] C. Plana, S. Armenise, A. Monzón and E. García-Bordejé, “Ni on alumina-coated cordierite monoliths for in situ generation of CO-free H2 from ammonia”, J. Catalysis, vol. 275, pp. 228–235, 2010.
[18] Y. Lin, R. Ran, Y. Guo, W. Zhou, R. Cai, J. Wang and Z. Shao, “Proton conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures”, Int. J. Hyd. En., Vol. 35, pp. 2637, 2010.
[19] A.S. Chellappa, C.M. Fisher and W.J. Thomson, “Ammonia decomposition kinetics of Ni-Pt/Al2O3 for PEM fuel cell applications”, App. Catal. A: Gen. vol. 227, pp. 231–240, 2002.
[20] K. Tamaru, “A ‘new’ general mechanism of ammonia synthesis and decomposition on transition metals”, Acc. Chem. Research, vol. 21, pp, 88-94, 1988.
[21] S.A. Vilekar, I. Fishtik and R. Datta, “The Peculiar Catalytic Sequence of the Ammonia Decomposition Reaction and its Steady-State Kinetics”, Chem. Eng. Sci. vol. 71, pp. 333-344, 2012.
[22] J. Zhang, H. Xu and W. Li, “Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect”, App. Catal. A: Gen. vol. 296, pp. 257-267, 2005.
[23] S.H. Israni, B.K.R. Nair and M.P. Harold, “Hydrogen generation and purification in a composite Pd hollow fiber membrane reactor: experiments and modeling”, Cat. Today vol. 139, pp. 299-311, 2009.
[24] A. Di Carlo, A. Dell’Era and Z. Del Prete, “3D simulation of hydrogen production by ammonia decomposition in a catalytic membrane reactor”, Int. J. Hydrogen Energy, vol. 36, pp. 11815-11824, 2011.
[25] M. Ni, D.Y.C. Leung and M.K.H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte”, J. Power Sources, vol. 183, pp. 682-686, 2008.
[26] E. Baniasadi and I. Dincer, “Energy and exergy analyses of a combined ammonia-fed solid oxide fuel cell system for vehicular applications”, Int. J. Hydrogen Energy, vol. 36 pp. 11128-11136, 2011.
[27] S.A. Hajimolana, M.A. Hussain, W.M.A. Wan Daud and M.H. Chakrabarti, “Dynamic modelling and sensitivity analysis of a tubular SOFC fuelled with NH3 as a possible replacement for H2”, Chem. Eng. Res. and Des., vol. 90, pp.1871-1882, 2012.
[28] M. Ni, D.Y.C. Leung and M.K.H. Leung, “Electrochemical modelling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte”, J. Power Sources, vol. 183, pp. 687-692, 2008.
[29] M. Ni, D.Y.C. Leung and M.K.H. Leung, “Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes,”, Int. J. Hydrogen Energy, vol. 33, pp. 5765-5772, 2008.
[30] M. Ni, D.Y.C. Leung and M.K.H. Leung, “An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures”, J. Power Sources, vol. 185, pp. 233-240, 2008.
[31] F. Ishak, I. Dincer and C. Zamfirescu, “Thermodynamic analysis of ammonia-fed solid oxide fuel cells”, J.Power Sources, vol. 202, pp. 157-165, 2012.
[32] M. Ni, “Thermo-electrochemical modelling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode”, Int. J. Hydrogen Energy, vol. 36, pp. 3153-3166, 2011.
[33] D. Cheddie, “Modelling of ammonia-fed solid oxide fuel cells,” in: A. Mendez-Vilas (Ed.), Materials and Processes for Energy: Communicating Current Research and Technological Developments, Formatex Research Center, 2013, pp. 504-511.
[34] D. Cheddie, “Modelling the Hydrogen Inhibition Effect on Ammonia Decomposition”, Journal of Energy and Power Engineering, vol. 8, pp. 662-669, 2014.
[35] R. Suranwarangkul, E. Croiset, M.W.Fowler, P.L. Douglas, E. Entchev and M.A. Douglas, “Performance comparison of Fick’s, dusty gas and Stefan-Maxwell models to predict concentration overpotentials of a SOFC anode”, J. Power Sources, vol. 122, pp. 9-18, 2003.