Isaac Scientific Publishing

Theoretical Physics

Impuriton-Phonon Quasiparticles Possibility and Rapid Dissolution of 3He Inclusions in 4He Crystal

Download PDF (1807.2 KB) PP. 145 - 162 Pub. Date: December 1, 2017

DOI: 10.22606/tp.2017.24001

Author(s)

  • Victor Lykah*
    Department of Physics and Technology, NTU "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
  • Eugene Syrkin
    Theoretical Department, B.I. Verkin Institute of Low Temperature Physics of the NASU, Kharkiv, Ukraine & Department of Physics and Technology, NTU "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

Abstract

The properties of quantum solid solutions are investigated theoretically taking into account the interaction between waves of different nature: phonons and impuritons. The wave’s interaction leads to a nonlinear Schrodinger equation that describes soliton - the impuriton-phonon, a new quasiparticle. As shown, the impuriton-phonons have velocity comparable to sound speed. Under heat step at the inclusion-matrix boundary a chemical potential step is formed. This leads to transition of 3He atoms into the matrix with one of the following mechanisms: (i) phonon emission and band movement of the impuriton; (ii) threshold emission of the impuriton-phonon (the photoelectric effect analogy). It is shown that the narrow impuriton band cannot describe the rapid movement of the impuriton-phonon quasiparticle; alternative descriptions, channeling and induced transformation of the band, are proposed. It qualitatively explains the experiments with rapid dissolution of the 3He phase inclusion in the 4He matrix.

Keywords

Solid helium, quantum tunneling of defects, matter waves, phonon interactions with other quasi-particles.

References

[1] S. B. Trickey, W. P. Kirk, and E. D. Adams, “Thermodynamic, elastic, and magnetic properties of solid helium,” Reviews of Modern Physics, vol. 44, no. 4, p. 668, 1972.

[2] A. F. Andreev and I. M. Lifshitz, “Quantum theory of crystal defects,” Sov. Phys. JETP, vol. 29, p. 1107, 1969.

[3] V. N. Grigoriev, “Impuritons detection in solid helium,” Sov. Journ. Low Temp. Phys., vol. 1, no. 1, p. 227, 1975.

[4] A. M. Kosevich, The crystal lattice: phonons, solitons, dislocations, superlattices. John Wiley & Sons, Weinheim, 2006.

[5] C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, 2004.

[6] R. A. Guyer, R. C. Richardson, and L. I. Zane, “Excitations in quantum crystals (a survey of nmr experiments in solid helium),” Reviews of Modern Physics, vol. 43, no. 4, pp. 532–600, 1971.

[7] A. F. Andreev, “Diffusion in quantum crystals,” Soviet Physics Uspekhi, vol. 19, no. 2, p. 137U148, 1976.

[8] V. N. Grigor’ev, “Diffusion in solid helium (a review),” Low Temperature Physics, vol. 23, no. 1, pp. 3–14, 1997.

[9] V. Maidanov, A. Ganshin, V. Grigor’ev, N. Omelaenko, A. Penzev, E. Rudavskii, and A. Rybalko, “Kinetics of dissolution of the 3he inclusions in solid 4he,” Physica B: Condensed Matter, vol. 284, pp. 371–372, 2000.

[10] A. N. Gan’shin, V. N. Grigor’ev, V. A. Maidanov, N. F. Omelaenko, A. A. Penzev, E. Y. Rudavskii, A. S. Rybalko, and Y. A. Tokar, “Growth and dissolution kinetics of 3he inclusions in phase-separated 3he-4he solid mixtures,” Low Temperature Physics, vol. 25, pp. 592–606, 1999.

[11] A. Ganshin, V. Grigor’ev, V. Maidanov, P. A. Omelaenko, N., E. Rudavskii, and A. Rybalko, “Threshold effect during dissolution of 3he inclusions in solid 4he,” Journal of low temperature physics, vol. 116, no. 5-6, pp. 349–357, 1999.

[12] Y. Kagan and L. A. Maksimov, “Theory of particle transfer in extremely narrow bands,” Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki, vol. 65, no. 2, pp. 622–632, 1973.

[13] Y. Kagan, “Quantum diffusion in solids,” Journal of Low Temperature Physics, vol. 87, no. 3, pp. 525–569, 1992. [Online]. Available: http://dx.doi.org/10.1007/BF00114916

[14] V. A. Lykah and E. S. Syrkin, “Quantum behavior of the twin boundary and the stacking fault in hcp helium crystals,” Journal of Low Temperature Physics, vol. 181, no. 1-2, pp. 10–29, 2015.

[15] O. Pelleg, J. Bossy, E. Farhi, M. Shay, V. Sorkin, and E. Polturak, “Opticlike excitations in bcc 4he: An inelastic neutron scattering study,” Physical Review, vol. B 73, no. 18, p. 180301(R), 2006.

[16] J. H. Hetherington, “Formation of nonlocalized vacancies in bcc 3he,” Physical Review, vol. 176, no. 1, pp. 231–238, 1968.

[17] R. A. Guyer, “Vacancy waves,” Journal of Low Temperature Physics, vol. 8, no. 5-6, pp. 427–447, 1972.

[18] A. F. Andreev, “Quantum crystals,” Progress in Low Temperature Physics, vol. 8, pp. 67–131, 1982.

[19] V. A. Mikheev, B. N. Eselson, V. N. Grigor’ev, and N. P. Mihin, “Detecting of impuritons scattering on phonons in solid helium,” Soviet Journal Low Temperature Physics, vol. 3, pp. 386–388, 1977.

[20] L. D. Landau, E. M. Lifshits, and L. P. Pitaevskii, Theory of Elasticity. Pergamon Press, New York, 1986.

[21] A. M. Kosevich, Y. A. Kosevich, and E. S. Syrkin, “Generalized rayleigh waves and the geometry of isofrequency surfaces of sound oscillation waves in crystals,” Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki, vol. 88, no. 3, pp. 1089–1097, 1985.

[22] Y. A. Kosevich and E. S. Syrkin, “Existence criterion and properties of deeply penetrating rayleigh waves in crystals,” Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki, vol. 89, no. 6, pp. 2221–2229, 1985.

[23] J. M. Ziman, Principles of the Theory of Solids. Cambridge university press, 1972.

[24] I. M. Lifshitz, M. Y. Azbel, and M. I. Kaganov, Electron Theory of Metals. Consultants Bureau, New York, 1973.

[25] G. L. Bir and G. E. Pikus, Symmetry and deformation effects in semiconductors. Nauka, Moscow (in Russian), 1972.

[26] P. M. Platzman and P. A. Wolff, Waves and interactions in solid state plasmas. Academic Press, 1973.

[27] A. G. Gurevich and G. A. Melkov, Magnetization oscillations and waves. CRC press, 1996.

[28] Y. V. Gulyaev and F. S. Hickernell, “Acoustoelectronics: History, present state, and new ideas for a new era,” in Ultrasonics Symposium, 2004 IEEE, vol. 1. IEEE, 2004, pp. 182–190.

[29] A. S. Davydov, Solitons in molecular systems. Springer Netherlands, 1984, vol. 1.

[30] A. N. Bugay and S. V. Sazonov, “Electrical solitons in molecular chains, taking into account the higher spatial dimensions,” Theoretical Physics, vol. 9, pp. 86–92, 2008 (in Russian).

[31] L. D. Landau and E. M. Lifshits, Statistical Physics. Oxford: Pergamon Press, 1980, vol. 1.

[32] A. A. Penzev, Phase diagram and mass transfer at the separation in solid solutions of helium isotopes. PhD Thesis, Kharkov, 141 p. (in Russian), 2003.

[33] D. O. Edwards and S. Balibar, “Calculation of the phase diagram of 3he - 4he solid and liquid mixtures,” Physical Review B, vol. 39, no. 7, pp. 4083–4097, 1989.

[34] D. S. Greywall, “Elastic constants of hcp 4he,” Physical Review B, vol. 16, no. 11, pp. 5127–5128, 1977.

[35] U. I. Uggerh?j, “The interaction of relativistic particles with strong crystalline fields,” Reviews of modern physics, vol. 77, no. 4, pp. 1131–1171, 2005.

[36] W. Eisenmenger, “Phonon imaging,” Le Journal de Physique Colloques, vol. 42, no. C6, pp. C6–201, 1981.

[37] A. G. Every, G. L. Koos, and J. P. Wolfe, “Ballistic phonon imaging in sapphire: Bulk focusing and critical-cone channeling effects,” Physical Review B, vol. 29, no. 4, pp. 2190–2209, 1984.