Isaac Scientific Publishing

Theoretical Physics

On the Time-Like and Space-Like Components of Majorana Field

Download PDF (455.6 KB) PP. 57 - 65 Pub. Date: June 1, 2019

DOI: 10.22606/tp.2019.42002

Author(s)

  • Luca Nanni
    University of Ferrara, 44100-Ferrara, Italy

Abstract

The infinite-component Majorana field is a promising tool for investigating phenomena that cannot yet be explained within the Standard Model framework, such as the oscillation of neutrino flavours, the origin of particle mass and the physical nature of dark matter. In this study, we demonstrated that the Lagrangian density of the fermionic Majorana field can be represented as the sum between the Dirac field with positive energy and the infinite Dirac-like tachyonic fields with negative frequency. Particularly, we demonstrated that the tachyonic components of the field are obtained by the superluminal Lorentz transformation (SLT) of the bradyonic components. Using this result, we obtained the explicit form of the SLT matrices, tachyonic creation and annihilation operators of the four-spinors on which they act. Thus, the Majorana field becomes the sum of the infinite Dirac fields transformed by the finite SLT matrices, which are a familiar tool in the physics of half-integer spin particles. A decay mechanism for an ordinary particle with tachyonic pair production is also proposed. The approach used in this study is an attempt to investigate particle physics beyond the Standard Model.

Keywords

Infinite-dimensional matrices; Dirac field; superluminal Lorentz transformations; tachyon; tachyonic pair production.

References

[1] E. Majorana, Relativistic Theory of Particles with Arbitrary Intrinsic Angular Momentum, Il Nuovo Cimento, 9, 335 (1932). English Translation by C.A. Orzalesi in Technical Report, 792, University of Maryland (1968).

[2] J.L. Strecker, Infinitesimal Lorentz Transformations, Am. J. Phys., 35(1), 1112 (1967).

[3] A.V. Aminova, Lie Algebras of Infinitesimal Projective Transformations of Lorentz Manifolds, Rus. Math. Surv., 50(1), 69 (1995).

[4] G. Gamow, Thirty Years that Shook Physics: the Story of Quantum Theory, Doubleday & Co. Inc., New York (1966).

[5] H. Weyl, The Classical Groups: their Invariants and Representations, Princeton University Press, Princeton (1939).

[6] C.D. Anderson, The Positive Electron, Phys. Rev., 43(6), 491 (1933).

[7] P.A.M. Dirac, The Quantum Theory of Electron, Proc. R. Soc. A, 117(778), 610 (1928).

[8] J. Chadwick Existence of Neutron, Proc. R. Soc., 151(873), 479 (1932).

[9] C.N. Yang, Fermi’s β-Decay, Int. J. Mod. Phys. A, 27, 1 (2012).

[10] C. Strachan, The Theory of Beta-Decay, Elsevier Ltd., New York (1969).

[11] S. Esposito, The Physics of Ettore Majorana, Cambridge University Press, Cambridge (2015).

[12] R. Casalbuoni, Majorana and the Infinite Component Wave Equations, Proc. Of Science, 37, 1 (2006).

[13] D.M. Fradkin, Comment on a Paper by Majorana Concerning Elementary Particles, Am. J. Phys., 34, 314 (1966).

[14] A. Bohm, Y. Ne’eman, A.O. Barut, Dynamical Groups and Spectrum Generating Algebras, World Scientific, Singapore (1988).

[15] A.O. Barut, Symmetry Properties in Elementary Particle Physics – Review of Hadron Symmetries: Multiplets, Supermultiplets and Infinite Multiplets, Proc. Conference, C70-08-26, 454 (1992).

[16] E. Albers, I.T. Grodsky, R.E. Norton, Diseases of Infinite-Component Majorana Field Theories, Phys. Rev., 159(5), 1222 (1967).

[17] E.C.G. Surdashan, N. Mukunda, Quantum Theory of the Infinite-Component Majorana Field and the Relation of Spin-Statistics, Phys. Rev., 1(2), 571 (1970).

[18] L. Nanni, Determining a Quantum Theory of the Infinite-Component Majorana Field, J. Part. Phys., 2(1), 33 (2018).

[19] J. Schwinger, The Majorana Formula, Transactions, 38(1), 170 (1977).

[20] E. Recami, G.D. Maccarone, Revisiting the Superluminal Lorentz Transformations and their Group-Theoretical Properties, Lett. Nuovo Cimento, 34(9), 251 (1982).

[21] E. Recami, G.D. Maccarone, The introduction of Superluminal Lorentz Transformations: a Revisitation, Fund. Of Phys., 14(5), 367 (1984).

[22] E. Recami, R. Mignani, Interpreting Superluminal Lorentz Transformations: Answer to the Comment by Yaccarini, Lett. Nuovo Cimento, 9(9), 357 (1974).

[23] J.M. Hill, B.J. Cox, Einstein’s Special Relativity Beyond the Speed of Light, Proc. R. Soc. A, 468, 4174 (2012).

[24] G. Szekely, The Existence of Superluminal Particle is Consistent with the Kinematics of Einstein’s Special Theory of Relativity, Rep. Math. Phys., 72, 133 (2013).

[25] A.F. Antippa, A.E. Everett, Tachyons, Causality and Rotational Invariance, Phys. Rev. D, 8, 2352 (1973).

[26] M.E. Arons, E.C.G. Surdashan, Lorentz Invariance, Local Field Theory and faster-than-light Particles, Phys. Rev., 173, 1622 (1968).

[27] E. Recami, R. Mignani, Crossing Relation Derived from (Extended) Relativity, Int. J. Th. Phys., 12(5), 299 (1975).

[28] D. Kirilova, Neutrinos from the Early Universe and Physics Beyond Standard Models, Open Phys., 13, 22 (2016).

[29] J.R. Ellis, Lectures at 1998 CERN Summer School, St. Andrews, Beyond the Standard Model for Hillwalkers [arxiv:hep-ph/9812235].

[30] V. Barger, D. Marfatia, K. Whisnant, Progress in the Physics of Massive Neutrinos, Int. J. Mod. Phys., E12, 569 (2003).

[31] J. Hansson, On the Origin of Elementary Particle Masses, Prog. in Phys., 10(2), 71 (2014).

[32] L. Mikealian, V. Sinev, Neutrino Oscillations at Reactors: What is Next?, Phys, Atomic Nuclei, 63(6), 1002 (2000).

[33] G. Bisiacchi, P. Budini, G. Calucci, Majorana Equations for Composite Systems, Phys. Rev., 172, 1508 (1968).

[34] L. Nanni, Quantum Theory of Half-integer Spin Free Particle from the Perspective of the Majorana Equation, arxiv:1603.05965[physics.gen-ph].

[35] H. Lemke, Quantum Mechanics of Spin-1/2 Tachyons, Il Nuovo Cimento, 35(2), 181 (1976).

[36] R.L. Dawe, K.C. Hines, The Physics of Tachyons, Aust. J. Phys., 45, 591 (1992).

[37] J.H. Hubbell, Electron-positron pair Production by Photons: a Historical Overview, Rad. Phys. Chem., 75(6), 614 (2005).

[38] U.D. Jentschura, I. Nandori, Neutrino Pair Cerenkov for Tachyonic Neutrinos, Adv. High. En. Phys., 9850312 (2017).

[39] E. Fishbach, C. Talmadge, Six Years of Fifth Force, Nature, 356, 207 (1992).

[40] Q.R. Ahmad et al., Direct Evidence for Neutrino Flavour Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett., 89(1):011301 (2002).

[41] P. Fisher, B. Kayser, K.S. McFarland, Neutrino Mass Oscillation, Ann. Rev. Nuc. Part. Sc., 49, 481 (1999).

[42] A.A. Aguilar-Arevalo et al., Significant Excess of Electronlike events in the MiniBooNE Short-baseline Neutrino Experiment, Phys. Rev. Lett., 121, 221801 (2018).

[43] P.C.W. Davies, Tachyonic Dark Matter, Int. J. Th. Phys., 43(1), 141 (2004).

[44] J.S. Bagla, H.K. Jassal, T. Padmanabhan, Cosmology with Tachyon Field as Dark Energy, Phys. Rev. D, 67, 063504 (2003).