联系我们
Isaac Scientific Publishing
Theoretical Physics
TP > Volume 5, Number 3, September 2020

Antipodal Identification in the Schwarzschild Spacetime

Download PDF  (1576.9 KB)PP. 33-40,  Pub. Date:November 16, 2020
DOI: 10.22606/tp.2020.53002

Author(s)
Miguel Socolovsky
Affiliation(s)
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Ciudad de México, México
Abstract
Through a Möbius transformation, we study aspects like topology, ligth cones, horizons, curvature singularity, lines of constant Schwarzschild coordinates r and t, null geodesics, and transformed metric, of the spacetime (SKS/2)^' that results from: i) the antipode identification in the Schwarzschild-Kruskal-Szekeres (SKS) spacetime, and ii) the suppression of the consequent conical singularity. In particular, one obtains a non simply-connected topology: (SKS/2)^' = R^2* ×S^2 and, as expected, bending light cones.
Keywords
antipodal identification; Schwarzschild spacetime
References
  • [1]  1. Churchill, R.V. “Complex Variables and Applications”, 4th. edition (1984), pp. 194-195.
  • [2]  2. Kruskal, M.D. “Maximal Extension of Schwarzschild Metric”, Phys. Rev. 119 (1960) 1743-5.
  • [3]  3. Corless, R. et al. “On the Lambert W function”, Advances in Computational Mathematics 5 (1996) 329-359.
  • [4]  4. Rindler,W. “Elliptic Kruskal-Schwarzschild Space”, Phys. Rev. Lett. 15 (1965) 1001-2.
  • [5]  5. Sanchez, N. and Whiting, B.F. “Quantum Field Theory and the Antipodal Identification of Black Holes”, Nucl. Phys. B283 (1987) 605-23.
  • [6]  6. Szekeres, Gy. “On the Singularities of a Riemannian Manifold”, Publicationes Mathematicae Debrecent 7 (1960) 285; reprinted: Gen. Rel. Grav. 34 (2002) 2001-16.
  • [7]  7. ’t Hooft, G. “Virtual Black Holes and the Space-Time Structure”, Found. Phys. 48 (2018) 1134-49.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.