Isaac Scientific Publishing

Advances in Astrophysics

Challenging Aspects in Evaluating the Potential Danger of Space Objects Breakups and Collisions for Space Flights

Download PDF (570.4 KB) PP. 83 - 90 Pub. Date: May 8, 2018

DOI: 10.22606/adap.2018.32003

Author(s)

  • Vitaly Adushkin
    Institute of Geosphere Dynamics, RAS, Moscow, Russia
  • Oleg Aksenov
    Scientific Research Center “Kosmos”, MoD, Moscow, Russia
  • Stanislav Veniaminov*
    Scientific Research Center “Kosmos”, MoD, Moscow, Russia
  • Stanislav Kozlov
    Institute of Geosphere Dynamics, RAS, Moscow, Russia

Abstract

The increasing near-Earth space (NES) exploration with its technogeneous contamination, and the resulting growth of space objects breakups risk for space flights makes more urgent the problem of estimating this danger, an adequate and accurate estimate being very important. In practice, given the complexity of obtaining the accurate estimates of this characteristic because of the large uncertainty in the initial data, it is a common practice simplifying the calculations, neglecting a set of factors, included some essential ones. In this work, some challenging aspects in evaluating and using the estimates of potential danger of space objects breakups and possible ways of improving these estimates are discussed.

Keywords

Space flight, orbital debris, manmade contamination, near-Earth space, breakup, collision, fragmentation

References

[1] S Veniaminov, Space debris – a hazard to Mankind. 2-nd edition. RAS publ. Moscow, Ser. “Mechanics, guidance, informatics”, 2013, 207 p. (Вениаминов С.С., Космический мусор – угроза человечеству. Изд. 2-е исправл. и дополн. Изд. ИКИ РАН, сер. механика, управление, информатика. 207 c., М., 2013 г., ISSN 2075-6836)

[2] V.Adushkin, S. Veniaminov, S.Kozlov, М. Silnikov, Orbital missions safety – A survey of kinetic hazards // Acta astronautica, v. 126, pp.510-516, 2016;

[3] S. Veniaminov, I. Oleynikov, E. Melnikov, Indices of growth of danger for space activities from orbital debris and the related mitigation measures // “Kinematics and Physics of Celestial Bodies”, Allerton Press, Springer Link, v.32, №5, pp.227-232, 2016, ISSN0884-5913, doi:10.3103/S088459131605010X

[4] The effect of rocket techniques on the environment, Moscow, Geos Publ. 2016, 795 p. (Воздействие ракетно-космической техники на окружающую среду. Изд. ?ГЕОС?, М., 2016 г.)

[5] P. Anz-Meador, Top Ten Satellite Breakups Reevaluated // Orbital Debris Quarterly News, v. 20, i. 1&2, pp. April 2016.

[6] Grego, Laura (2006), A Hystory of Anti-Satellite Weapons Programs, 2006; online: Union of Concerned Scientists, http://www.ucsusa.org/global_security/space_weapons/a-hystory-of-asat-programs.html

[7] Kaufman, M., and White, J. (2008), Navy missile hits dying spy satellite, says Pentagon // Washington Post, 21 February 2008

[8] V. Adushkin, S. Veniaminov, S. Kozlov, et al. Natural and technogeneous contamination of near-Earth space // Acta Astronautica, http://dx.doi.org/10.1016/j.actaastro.2016.12.038

[9] A.Nazarenko, Space debris modeling, RAS publ. Moscow, Ser. “Mechanics, guidance, informatics”, 2013, 215 p. (А. И. Назаренко, Моделирование космического мусора, ИКИ РАН, Москва, 2013 г.)

[10] Potter, A. (1993), Early detection of Collisional cascading // Proceedings of the 1st European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany, 1993

[11] D. McKnight, The Need For Wake Debris Modeling // Orbital Debris Quarterly News, v. 2, i. 1, pp. 4-5, 1997

[12] J. Opiela and A. Vavrin, New Version of DAS Now Available // Orbital Debris Quarterly News, v. 21, i. 1, pp. 4-7, 2017

[13] M. Matney, P. Krisko, et al., ORDEM 3.0 Verification and Validation Findings // Orbital Debris Quarterly News, v. 20, i. 1&2, pp. 5, 7-10, 2016

[14] P. Krisko, S. Flegel, et al., ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison // Orbital Debris Quarterly News, v. 19, i. 2, pp. 4-6, 2015.