联系我们
Isaac Scientific Publishing
Advances in Astrophysics
AdAp > Volume 5, Number 3, August 2020

Properties of Infrared Source Based on the Big Data of LAMOST Spectral Survey

Download PDF  (1836.4 KB)PP. 75-85,  Pub. Date:August 17, 2020
DOI: 10.22606/adap.2020.53002

Author(s)
Le Tian, ZhongZhong Zhu, Liyun Zhang, Shuai Wang
Affiliation(s)
1College of Science&College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China 2College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China
1College of Science&College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China 2College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China
1College of Science&College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China 2College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China
1College of Science&College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China 2College of big data and information engineering, Guizhou University, Guiyang 550025, P. R. China
Abstract
Big data of the spectroscopic survey of the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) are important for studying the properties of infrared source. We obtained 5946 spectra of 4843 infrared stars through cross matching of LAMOST DR3 and WISE. We measured the equivalent widths of the Hα line and other Balmer lines, Ca ii H and IRT lines. According to the EWs of Hα lines, we found there are 390 spectra of 294 infrared stars showing strong activity. We found that 77 spectra were first observed by LAMOST. We found 36 objects show chromospheric activity variation in the Hα emission line. In the end, we gave the physical mechanism of the early-type stars and late-type stars activity.
Keywords
infrared source, stars, stellar chromospheric activity, LAMOST
References
  • [1]  Ahmed, A., Sigut, T. A. A., 2017. MNRAS 471, 3398A.
  • [2]  Aumann H. H., et al., 1984. ApJ 278, L23.
  • [3]  Covey, K. R., Ivezié,Z., et al., 2007. AJ 134, 2398.
  • [4]  Catalano, S., Lanza, A. F., et al., 1998. ASPC 154,584.
  • [5]  Cui, X. Q., Zhao, Z. H., et al.,2012. RAA 12, 9, 1197.
  • [6]  Dhital, S., West, A. A., et al., 2012. AJ 143,67.
  • [7]  Egan M. P., Shipman R. F., Price S. D., Carey S. J., Clark F. O., Cohen M., 1998, ApJ 494, L199
  • [8]  Frasca, A., Molenda-Zakowicz, J., et al., 2016. A&A 594, 39.
  • [9]  Golden-Marx, Jesse B., Oey, M. S and Lamb, J. B., et al., 2016. APJ 819, 55G.
  • [10]  Hou, Wen., Luo, A. Li and Hu, Jing-Yao., 2016. RAA 16,138H.
  • [11]  Hawley, S. L., Covey, K. R., Knapp, G. R., et al., 2002. AJ 123,3409.
  • [12]  Koenig, X., Hillenbrand, L. A.,et al.,2015,AJ,150,100K
  • [13]  Koenig, X. P., Leisawitz, D. T., Benford, D. J., et al., 2012. ApJ 744, 130K
  • [14]  Lee, Y. S., Beers, T. C., et al., 2008. AJ 136, 2022.
  • [15]  Luo, A. L., Zhang, H. T., et al., 2012. RAA, 12, 9, 1243.
  • [16]  Montes,D., Crespo-chacón., et al., 2004. LNEA 1, 119.
  • [17]  Oudmaijer, R. D., van der Veen, W. E. C. J., Waters, L. B. F. M., et al. 1992, A&A, 96, 625
  • [18]  Perault, M., et al., 1996. A&A 315, L165
  • [19]  Peretto, N., Fuller G. A., 2010. ApJ 723, 555
  • [20]  Rhee, J. H., song I R. zuckerman, B, et al. 2007, ApJ 660, 1556
  • [21]  Rathborne J. M., Jackson J. M., Simon R., 2006, ApJ 641, 389
  • [22]  Vida, K., Korhonen, H., et al., 2015, A&A, 580, 64.
  • [23]  West, A. A., Morgan, D. P., et al., 2011. AJ 141, 97.
  • [24]  Wright, Edward, L., Eisenhardt, Peter, R. M., et al., 2010. AJ 140, 1868.
  • [25]  Woolf, V. M., West, A. A., 2012, MNRAS, 422, 1489.
  • [26]  Yi, Z. P., Luo, A. L., et al., 2014. AJ 147, 32.
  • [27]  Zhang, L. Y., Pi, Q. F., et al., 2015. RAA 15, 252.
  • [28]  Zhao, G., Zhao, Z. H., et al., 2012. RAA 12, 7, 723.
  • [29]  Zhang, L. Y., Pi, Q. F., et al., 2016. NewA 44, 66.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.