Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Comparison of Three Polypyrrole-Cellulose Nanocomposites Synthesis

Download PDF (1326.1 KB) PP. 105 - 114 Pub. Date: December 20, 2016

DOI: 10.22606/jan.2016.12007

Author(s)

  • Benoit Bideau, Eric Loranger*, Claude Daneault*
    Lignocellulosic Materials Research Center, Université du Québec à Trois-Rivières, , Trois-Rivières, QC, Canada

Abstract

In this study, composite films based on TEMPO-oxidized cellulose nanofibers (TOCN), and polypyrrole (PPy) were synthesized by three different processes. The flexible composite films were investigated with scanning electron microscopy, thermogravimetric analysis, contact angle measurements, and finally, by mechanical and electrical testing. The developed composites have shown interesting mechanical properties (TOCN/PPy-3) as Young modulus (6.35 GPa) and tensile stress (65.6 MPa) or electrical conductivity (TOCN/PPy-1; 51.6 S/cm) for further applications such as flexible electrode. From proposed methods, the grafting of N-(3-aminopropyl)pyrrole was also interesting because it presented intermediate properties from all composites, and could represent a good compromise between the mechanical and electrical properties. Depending of their final application and by choosing an appropriate fabrication method, these composites could be considered in the design of high-performance electrodes for supercapacitor, battery, sensor or various packaging.

Keywords

Polypyrrole, cellulose nanofibers, mechanical and electrical properties, composite.

References

[1] Ambade R. B., Ambade S. B., Shrestha N. K., Nah Y. C, Han S. H., Lee W. and Lee S. H., “Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes”, Chem. Commun., 2013, vol. 49, pp. 2308 -2310.

[2] Wang, Z., Tammela, P., Zhang, P., Str?mme, M.and Nyholm, I. “Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance”, J. Mater. Chem. A, 2014, vol. 2, pp. 7711-7716.

[3] Molina, J., Fernández, J., Del Río A.I, Lapuente, R., Bonastre, J. and Cases, F., “Stability of Conducting Polyester/Polypyrrole Fabrics in Different pH Solutions, Chemical and Electrochemical Characterization”, Polym. Degrad. Stab., 2010, vol. 95, pp. 2574-2583.

[4] Chougulea, M. A., Pawar, S. G., Godse, P. R., Mulik, R. N., Sen, S. and Patil, V. B. “Synthesis and Characterization of Polypyrrole (PPy) Thin Films”, Soft. Nanosci. Lett., 2011, vol. 1, pp. 6–10.

[5] Shinde, S. and Gund, G. “Morphological Modulation of Polypyrrole Thin Films Through Oxidizing Agents and Their Concurrent Effect on Supercapacitor Performance”, Electrochim. Acta., 2014, pp. 119, 1-10.

[6] Sangawar, V.S. and Moharil, N.A. “Study of electrical, thermal and optical behavior of polypyrrole filled PVC: PMMA thin film thermoelectrets”, Chem. Sci. Trans., 2012, vol. 1, pp. 447–455.

[7] Ionescu, R. E., Abu-Rabeah, K., Cosnier, S., Durrieu C., Chovelon, J-M. and Marks, R. S. “Amperometric algal Chlorella vulgaris cell biosensors based on alginate and polypyrrole-alginate gels”, Electroanalysis, 2006, vol. 18, pp. 1041-1046.

[8] Zare, E. N., Lakouraja, M. M. and Mohsenib, M. “Biodegradable polypyrrole/dextrin conductive nanocomposite, Synthesis, characterization, antioxidant and antibacterial activity”, Synth. Met., 2014, vol. 187, pp. 9–16.

[9] Sasso, C., Beneventi, D., Zeno, E., Petit-Conil, M., Chaussy, D. and Belgacem, M.N., “Carboxymethylcellulose, Aconductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium”, Synth. Met.,2011, vol. 161, pp. 397–403.

[10] Cabuk, M., Alan, Y., Yavuz, M. and Unal, H. I. Synthesis, “Characterization and Antimicrobial Activity ofBiodegradable Conducting Polypyrrole-Graft-Chitosan Copolymer”, Appl. Surf. Sci., 2014, vol. 318, pp. 168-175.

[11] Jradi, K., Bideau, B., Chabot, B. and Daneault, C. “Characterization of Conductive Composite Films Based onTEMPO-Oxidized Cellulose Nanofibers and Polypyrrole”, J. Mater. Sci., 2012, vol. 47, pp. 3752-3762.

[12] Ding, C., Qian, X. and Yu, G., “A Dopant Effect and Characterization of Polypyrrole–Cellulose CompositesPrepared by In Situ Polymerization Process”, Cellulose., 2010, vol. 17, pp. 1067-1077.

[13] Sasso, C., Zeno, E., Petit-Conil, M., Chaussy, D., Belgacem, M.N., Tapin-Lingua, S. and Beneventi, D. “HighlyConducting Polypyrrole/Cellulose Nanocomposite Films with Enhanced Mechanical Properties”, Macromol.Mater. Eng., 2010, vol. 295, pp. 934–941.

[14] Carlsson, D. O., Mihranyan, A., Str?mme, M. and Nyholm, L. “Tailoring Porosities and ElectrochemicalProperties of Composites Composed of Microfibrillated Cellulose and Polypyrrole”, RSC Adv., 2014, vol. 4, pp.8489-8497.

[15] Olsson, H., Nystr?m, G., Str?mme, M., Sj?din, M. and Nyholm, L. “Cycling Stability and Self-ProtectiveProperties of a Paper-Based Polypyrrole Energy Storage Device”, Electrochem Commun., 2011, vol. 13, pp. 869-871.

[16] Shukla, S. K. “Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing”, Inter. J.Biolog. Macromol., 2013, vol. 62, pp. 531-536.

[17] Mihranyan, A., Nyholm, L., Garcia-Bennett, A. E. and Str?mme, M. “A Novel High Specific Surface AreaConducting Paper Material Composed of Polypyrrole and “Cladophora” Cellulose”, J. Phys. Chem. B,. 2008, vol.112, pp. 12249–12255.

[18] Cai, J., Kimura, S., Wada, M. and Kuga, S. “Nanoporous cellulose as metalnanoparticles support“,Biomacromol., 2008, vol. 10, no. 1, pp. 87–94.

[19] Olsson, H., Carlsson, D. O., Nystr?m, G., Sj?din, M., Nyholm, L. and Str?mme, M. “Influence of the CelluloseSubstrate on the Electrochemical Properties of Paper-based Polypyrrole Electrode Materials”, J. Mater. Sci., 2012,vol. 47, pp. 5317–5325.

[20] Carlsson, D. O., Sj?din, M., Nyholm, L. and Str?mme, M. “A Comparative Study of the Effects of Rinsing andAging of Polypyrrole/Nanocellulose Composites on Their Electrochemical Properties”, J. Phys. Chem. B., 2013,vol. 117, pp. 3900-10.

[21] Paquin, M., Loranger, E., Hannaux, V., Chabot, B. and Daneault, C. “The Use of Weissler Method for Scale-Upa Kraft Pulp Oxidation by TEMPO-Mediated System from a Batch Mode to a Continuous Flow-ThroughSonoreactor”, Ultrason Sonochem., 2013, vol. 20, pp. 103-8.

[22] Rattaz, A., Mishra, S., Chabot, B. and Daneault, C. “Cellulose Nanofibres by Sonocatalysed-TEMPO-Oxidation”, Cellulose, 2011, vol. 18, pp. 585–593.

[23] Syverud, K. and Stenius, P. “Strength and barrier properties of MFC films”, Cellulose, 2009, vol. 16, pp. 75–85.

[24] Saito, T. and Isogai, A. “TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditionson Chemical and Crystal Structures of the Water-Insoluble Fractions”, Biomacromol., 2004, 5, 1983–1989.

[25] Lee, J. Y. and Schmidt, C. E. “Pyrrole-hyaluronic acid conjugates for decreasing cell binding to metals andconducting polymers”, Acta Biomat., 2010, vol. 6, pp. 4396-4404.

[26] Hu, W., Chen, S., Yang, Z., Liu, L. and Wang, H. “Flexible electrically conductive nanocomposite membranebased on bacterial cellulose and polyaniline”, J. Phys. Chem. B, 2011, 115, pp. 8453–8457.

[27] Naji, A., Cretin, M., Persin, M. and Sarrazin, S. “Electrical characterization of the ionic interactions in N-[3-(dimethylpyridyl-2-yl) aminopropyl] polypyrrole and N-(3-aminopropyl) polypyrrole membranes”, J. MembraneSci., 2003, 212, pp. 1–11.

[28] Bideau, B., Cherpozat, L., Daneault, C. and Loranger, E. “A conductive nanocomposite based on TEMPOoxidized cellulose and poly(N-3-aminopropylpyrrole-co-pyrrole)”, Ind. Crop. Prod,DOI:10.1016/j.indcrop2016.06.003.

[29] Bideau, B., Bras, J., Saini, S., Daneault, C. and Loranger, E. “Mechanical and antibacterial properties of ananocellulose composite multilayer”, Mat. Sci. Eng. C Mater. Biol. Appl., 2016, vol. 69, pp. 977-984.

[30] Zhang, D., Zhang, Q., Gao, X. and Piao, G. “A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose”, Int. J. Polym. Sci., 2013, vol. 2013, pp. 1-6.

[31] Xu, J., Zhu, L., Bai, Z., Liang, G., Liu, L., Fang, D. and Xu, W. “Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes”, Org. Electron., 2013, vol. 14, pp. 3331-3338.

[32] Muller, D., Rambo, C. R., Porto, L. M., Schreiner, W. H. and Barra, G. M. O. “Structure and properties of polypyrrole/bacterial cellulose nanocomposites”, Carbohyd Polym., 2013, vol. 94, pp. 655-662.