Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Magnetic Fe3O4@G-C3N4 Nanocomposites for Visible Light Photocatalysis of RhB

Download PDF (1180.6 KB) PP. 11 - 19 Pub. Date: March 3, 2017

DOI: 10.22606/jan.2017.21002

Author(s)

  • Peitao Liu
    Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China
  • Qiang Xu

    Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China
  • Daqiang Gao*

    Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China
  • Shoupeng Shi

    Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China
  • Baorui Xia

    Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China

Abstract

Visible light-responsive Fe3O4@g-C3N4 nanocomposites were prepared by hydrothermal method with g-C3N4 nanosheets as the substrates. The photocatalytic performances of the Fe3O4@g-C3N4 nanocomposites were evaluated in photo Fenton-like discoloration of RhB dye using H2O2 as an oxidant under visible-light irradiation. Meanwhile, the reusability and magnetic properties were also investigated. The results revealed that the Fe3O4@g-C3N4 nanocomposites showed considerable photocatalytic activity, and exhibited excellent reusability with almost no change after four runs, and more importantly, Fe3O4@g-C3N4 nanocomposites could be recovered magnetically. Therefore, the fabricated Fe3O4@g-C3N4 nanocomposite photocatalyst is a promising candidate for energy conversion and environmental remediation.

Keywords

Hydrothermal method, magnetic Fe3O4@g-C3N4 nanocomposites, photo Fenton-like, photocatalysis.

References

[1] O. Ligrini, E. Oliveros, A. Braun, Chem. Rev., 1993, 93, 671.

[2] M.F. Zhao, Z.B. Tang, P. Liu, J. Hazard Mater Chem., 2008, 158, 43.

[3] A. Kaur, U. Gupta, J. Mater. Chem., 2009, 19, 8279.

[4] M.F. Zhao, P. Liu, Micropor. Mesopor. Mater., 2008, 211, 419.

[5] D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Adv. Mater., 2008, 20, 2777.

[6] K.V. Baiju, S. Shukla, S. Biju, M.L.P. Reddy, K.G.K. Warrier, Mater. Lett., 2009, 63, 923.

[7] M. Groenewolt and M. Antonietti, Adv. Mater., 2005, 17, 1789.

[8] Wang, X, Maeda, K, Thomas, A, Takanabe, K, Xin, G, Carlsson, J. M, Domen, K, Antonietti, M. Nat. Mater., 2009, 8, 76.

[9] A. Thomas, A. Fischer and F. Goettmann, et al. J. Mater. Chem., 2008, 18, 4893.

[10] Liu, G, Niu, P, Sun, C. H, Smith, S. C, Chen, Z. G, Lu, G. Q, Cheng, H. M, J. Am. Chem. Soc., 2010, 132, 11642.

[11] Goettmann , F, Fische r, A, Antonietti, M, Thomas, A. Angew. Chem., Int. Ed., 2006, 45, 4467.

[12] Kailasam, K, Epping, J. D, Thomas, A, Losse, S, Junge, H, Energy Environ. Sci., 2011, 4, 4668.

[13] Zhang, Y. J, Thomas, A, Antonietti, M, Wang, X. C, J. Am. Chem. Soc., 2009, 131, 50.

[14] Yan, S. C, Lv, S. B, Li, Z. S, Zou, Z. G, Dalton Trans., 2010, 39, 1488.

[15] Ge, L., Han, C. C., Liu, J., Appl. Catal., B 2011, 108, 100.

[16] Yang, N, Li, G. Q, Wang, W. L, Yang, X. L, Zhang, W. F, J. Phys. Chem. Solid, 2011, 72, 1319.

[17] Liu, Y, Chen, G, Zhou, C, Hu, Y. D, Fu, D. G, Liu, J, Wang, Q, J. Hazard. Mater., 2011, 190, 75.

[18] Zhang, Y. J, Mori, T, Niu, L, Ye, J. H, Energy Environ. Sci., 2011, 4, 4517.

[19] Ang, T. P, Chan, Y. M, J Phys. Chem. C 2011, 115, 15965.

[20] Boal, A. K, Nanoparticles-Building Blocks for Nanotechnology, Rotello, V, Kluwer Academic/Plenum Publishers: New York, 2004,55, 1.

[21] Perez, M, O’Loughlin, T, Simerone, F. J, Weissleder, R, Josephson, L. J., Am. Chem. Soc., 2002, 124, 2856.

[22] Xi, G, Yue, B, Cao, J, Ye, J, Chem.-Eur. J. 2011, 17, 5145.

[23] Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.

[24] Wang, X. C., Maeda, K., Chen, X. F., Takanabe, K., Domen, K., Chem. Soc., 2009, 131, 1680.

[25] Li, X, Huang, X, Liu, D, Wang, X., Song, S, Zhou, L, Zhang, H, J.Phys. Chem., C 2011, 115, 21567.

[26] Xu, P, Zeng, G. M, Huang, D. L, Feng, C. L, Shuang, H, Zhao, M. H, Lai, C, Zhen, W, Huang, C, Xie, G. X, Liu, Z. F, A Review. Sci.Total Environ., 2012, 424, 1.

[27] Y. Ding, L. Zhu, N. Wang, H. Tang, Appl. Catal. B 2013, 129, 153.

[28] P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater., 2012, 22, 4763.

[29] Santosh Kumar, Surendar T, Bharat Kumar, Arabinda Baruah, Vishnu Shanker , J. Phys. Chem, 2013, 10, 1021.

[30] Chalasani, R.; Vasudevan, S. ACS Nano, 2013, 7, 4093.

[31] J. P. Zou, J. Ma, J. M. Luo, J. Yu, J. K. He, Y. T. Meng, Z. Luo, S. K. Bao, H. L. Liu, S. L. Luo, X. B. Luo, T. C. Chen and S. L. Suib, Appl. Catal., 2015, 179, 220.

[32] Li, X. H., Wang, X. C., Antonietti, M., Chem. Sci., 2012, 3, 2170.

[33] Dong, H. J, Chen, G, Sun, J. X, Li, C. M, Yu, Y. G, Chen, D.H. Appl. Catal., 2013, 134, 46.

[34] Yan, T. J, Long, J. L, Shi, X. C, Wang, D. H, Li, Z. H, Wang, X. X, Environ. Sci. Technol. 2010, 44, 1380.

[35] T. Fujii, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, Phys. Rev. B: Condens. Matter Mater. Phys. 1999 59 3195

[36] Wang, X, Maeda, K, Thomas, A, Takanabe, K, Xin, G, Carlsson, J. M, Domen, K, Antonietti, M. Nat. Mater., 2009, 8, 76.

[37] Xi, G, Yue, B, Cao, J, Ye, J, Chem.-Eur. J. 2011, 17, 5145.