Isaac Scientific Publishing

Journal of Advances in Nanomaterials

The Energy Levels Splitting Calculated for Electrons in a Double Cd1-XZnxs Quantum Dot

Download PDF (284.9 KB) PP. 179 - 183 Pub. Date: September 20, 2017

DOI: 10.22606/jan.2017.23006

Author(s)

  • Z. Khéfacha
    Département de Chimie, Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5000 Monastir –Tunisia
  • N. Safta*

    Unité de Physique Quantique, Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5000 Monastir –Tunisia
  • M. Dachraoui

    Laboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire, 2092 Tunis, Tunisia

Abstract

The present work is aimed to investigate theoretically the electronic properties of a double Cd1-xZnxS quantum dot embedded in an insulating material. The quantum dots are assumed to have a flattened cylindrical geometry with a finite barrier at the boundary. This system is studied using the tight binding approximation. The energy levels splitting has been computed, for the electrons, versus the Zn composition and the inter-quantum dot separation as well. An analysis of the results shows that the Zn compositions x = 0.4 and x = 0.6 are appropriate to ensure the best coupling for conduction electrons.

Keywords

Quantum dots, Cd1-xZnxS, energy levels splitting, nanodevices.

References

[1] J. Liu, D. Zhang, X. Pu, and R. Zhang, “Combustion synthesis of Zn1?xCdxS and its photodegradation performance of methylene blue,” Materials Letters., vol. 117, pp. 158-161, 2014.

[2] A. Sakly, N. Safta, and A. Ben Lamine, “Interpretation of the bowing phenomenon in Cd1-xZnxS alloy,” J. Mater. Sci.-Mater. Electron., vol. 15, pp. 351-354, 2004.

[3] N. A. Shah, A. Nazir, W. Mahmood, A. W. Syed, S. Butt, Z. Ali, and A. Maqsood, “Physical properties and characterization of Ag doped CdS thin films, ” J. Alloys Compd., vol. 512, pp. 27–32, 2012.

[4] T. P. Kumar, S. Saravanakumar, and K. Sankaranayanan, “Effect of annealing on the surface and band gap alignment of CdZnS thin films,” Appl. Surf. Sci., vol. 257, pp. 1923-1927, 2011.

[5] N. Safta, “Fluctuations mode of the gap as a function of composition of Cd1-xZnxS ternaries ,” Ann. Chim. Sci. Mat., vol. 29, pp. 105-112, 2004.

[6] B. Bhattacharjee, S. K. Mandal, K. Chakrabarti, D. Ganguli and S. Chaudhui, “Optical properties of Cd1-xZnxS nanocrystallites in sol–gel silica matrix, ” J. Phys. D: Appl. Phys., vol. 35, pp. 2636-2642, 2002.

[7] N. Gawedang and T. Gawedang, “Investigations on chemically deposited Cd1-xZnxS thin films with low Zn content,” Materials Letters., vol. 59, pp. 3577-3584, 2005.

[8] Z. Khéfacha, M. Mnari and M. Dachraoui, “Caractérisation des couches minces de Cd1–xZnxS préparées par dép?t chimique,” Comptes Rendus Chimie., vol. 5, no. 3, pp. 149-155, 2002.

[9] Z. Khéfacha, Z. Benzarti, M. Mnari and M. Dachraoui, “Electrical and optical properties of Cd1?xZnxS (0?x?0.18) grown by chemical bath deposition”, Journal of crystal growth., vol. 260, pp. 400-409, 2004.

[10] Z. Khéfacha, M. Mnari and M. Dachraoui. “Opto – electronical of thin films prepared by chemical bath deposition,” Physical and Chemical News., vol. 14, pp. 77-84, 2003.

[11] N.- K. Cho, J.-W. Yu, Y. H. Kim and S. J. Kang, “Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes,” Jpn. J. Appl. Phys., vol. 53, p. 032101, 2014.

[12] Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Adv. Mater. doi: 10.1002/adma.201403237, 2014.

[13] J. J. Beato-López, C. Fernández-Ponce, E. Blanco, C. Barrera-Solano, M. Ramírez-del-Solar, M. Domínguez, F. García-Cozar and R. Litrán, “Preparation and characterization of fluorescent CdS quantum dots used for the direct detection of GST fusion proteins,” Nanomaterials and Nanotechnology, Art. 2, 10, 2012.

[14] B. Guzelturk, Y. Kelestemur, K. Gungor, A. Yeltik, M. Z. Akgul, Y. Wang, R. Chen, C. Dang, H. Sun and H. V Demir, “Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser,” Adv. Mater. doi: 10.1002/adma.201500418, 2015.

[15] N. Safta, J-P. Lacharme and C.A.Sébene, “Clean Si(110): a surface with intrinsic or extrinsic defects?,” Surf. Sci., vol. 287/288, p. 312, 1993.

[16] N. Safta, J.P. Lacharme, A. Cricenti, A. Taleb-Ibrahimi, Indlekofer, V.Aristov, C.A. Sébenne, G. Le Lay and B. Nesterrnko, “Core level spectra of clean “2 × 8” vicinal Si(110)”, Nuclear Instruments and Methods in Physics Research B, vol. 97, p. 372, 1995.

[17] A. Cricenti, G. Le Lay, V. Yu Aristov, B. Nesterenko, N. Safta, J.P. Lacharme, C.A. Sébenne, A. Taleb-Ibrahimi and G. Indlekofer, “High resolution syncrotron radiation Si 2p core-level spectroscopy of Si(110)16x2”, Journal of Electron Spectroscopy and related phenomena, vol. 76, pp. 613-617, 1995.

[18] Z. Khéfacha, N. Safta and M. Dachraoui, “The Band Gap Energy Calculated for Cd1- xZnxS Quantum Dots grown by the Sol gel Method,” International Journal of Applied Chemistry., Vol. 12, pp. 573-579, 2016.

[19] N. Safta, A. Sakly, H. Mejri and Y. Bouazra, “Electronic and optical properties of Cd1-xZnxS nanocrystals,” Eur. Phys. J. B., vol. 51, pp. 75-78, 2006.

[20] A. Sakly, N. Safta, A. Mejri, H. Mejri and A. Ben Lamine, “The excited electronic states calculated for Cd1-xZnxS quantum dots grown by the sol-gel technique,” J. Nanomater, ID746520, 2010.

[21] N. Safta, A. Sakly, H. Mejri and M. A. Za?di, “Electronic properties of multi-quantum dot structures in Cd1-xZnxS alloy semiconductors,” Eur. Phys. J. B., vol. 53, pp. 35-38, 2006.

[22] S. Marzougui and N. Safta, “The excited electronic states and the oscillator strength calculated for flattened cylindrical Cd1-xZnxS quantum dots,” International Journal of Chemistry and Materials Research., vol. 3, pp. 17-26, 2015.

[23] A. Sakly, N. Safta, H. Mejri and A. Ben Lamine, “The electronic band parameters calculated by the Kronig–Penney method for Cd 1-xZnxS quantum dot superlattices,” J. Alloys Compd., vol. 476, pp. 648-652, 2009.

[24] A. Sakly, N. Safta, H. Mejri and A. Ben Lamine, “The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices, ” J. Alloys Compd., vol. 509, pp. 2493-2495, 2011.

[25] S. Marzougui and N. Safta, “The electronic band parameters calculated by the triangular potential model for Cd1-xZnxS quantum dot superlattices,” IOSR-JAP., vol. 5, pp. 36-42, 2014.

[26] S. Marzougui and N. Safta, “The electronic band parameters calculated by the tight binding approximation for Cd1-xZnxS quantum dot superlattices,” IOSR-JAP., vol. 6, pp. 15-21, 2014.

[27] S. Marzougui and N. Safta, “A theoretical study of the electronic properties of Cd1-xZnxS quantum dot superlattices,” American Journal of Nanoscience and Nanotechnology., vol. 2, pp. 45-49, 2014.

[28] S. Marzougui and N. Safta, “A theoretical study of the heavy and light hole properties of Cd1-xZnxS quantum dot superlattices.,” International Journal of Materials Science and Applications., vol. 3, pp. 274-278, 2014.

[29] S. Marzougui and N. Safta, "The Electronic Band Parameters Calculated by a Novel Potential Model for Cd1-xZnxS Quantum Dot Super lattices,” Research journal of Materials science., vol. 3, pp. 9-14, 2015

[30] S. Marzougui and N. Safta, “The electron transmission coefficient calculated for Cd1-xZnxS quantum dots-Application in the non volatile memories” International Journal of Applied Engineering Research., vol. 10 no. 21, pp. 42275-42278, 2015.