Isaac Scientific Publishing

Annals of Advanced Agricultural Sciences

Plant Growth Promoting Abilities of Phosphate Solubilizing Bacteria Native from a High P-Sorbing Ultisol

Download PDF (187.1 KB) PP. 1 - 10 Pub. Date: August 14, 2017

DOI: 10.22606/as.2017.11001

Author(s)

  • Edith Mora
    Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical, Laboratorio de Agroecología, Apdo. 47058, Caracas 1041A, Venezuela.
  • Marcia Toro
    Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical, Laboratorio de Agroecología, Apdo. 47058, Caracas 1041A, Venezuela.
  • Edgar Flores
    Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical, Laboratorio de Agroecología, Apdo. 47058, Caracas 1041A, Venezuela.
  • Danilo López-Hernández*
    Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical, Laboratorio de Agroecología, Apdo. 47058, Caracas 1041A, Venezuela.

Abstract

P adsorption isotherms were used to analyze P-sorption characteristics in a weathered slightly acid savanna ultisol. High P adsorption in this soil indicates significant P limitation in the experimental area. Microorganisms able to dissolve sparingly soluble phosphates of Fe and Al in the ultisol were studied in the rhizospheres of Galactia jussiaeana and Centrosema venosum, which showed Burkholderia cepacia as the dominant P-solubilizing bacteria species. Its promoting plant growth capacity was tested inoculating sterile Zea mays seeds; inoculated seeds germinated 100% while non-inoculated showed only 71% of germination. After three weeks, inoculated plants showed 28% increase in root length, higher biomass and foliar concentration of phosphate compared to noninoculated. Improvement of phosphate availability and a higher production of promoting root growth hormones by bacteria may explain these results. Burkholderia cepacia, native from tropical acid soils showed potential as a biofertilizer able to increase plant P nutrition in high P fixing soils.

Keywords

Acid soils, biofertilizers, burkholderia cepacia, plant growth promoting rhizobacteria (PGPR), phosphorus, sustainability

References

[1] J. M. Anderson and J. S. Ingram, ?Tropical soil biology and fertility: a handbook of methods, ? CAB International, UK.1993.

[2] H. Antoun and D. Prévost, ?Ecology of plant growth promoting rhizobacteria,? in Z. A.Siddiqui (ed.) PGPR: Biocontrol and Biofertilization. Springer, 2005, pp. 1-38.

[3] P. N. Bhattacharyya and D. K. Jha, ?Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture,? World J Microbiol Biotechnol, vol.28: pp. 1327-1350, 2012.

[4] G. D. Bowen and A. D. Rovira,?The rhizosphere and its management to improve plant growth,? Advances in Agronomy, vol.66: pp 1-102,1999.

[5] L. Chapuis-Lardy, R. C. Le Bayon, M. Brossard, D. Lopez-Hernandez and E. Blanchart, ?Role of soil macrofauna in P cycling,? in E. K, Bünemann, A. Oberson, E. Frossard (eds.) Phosphorus in Action -- Biological Processes in Soil Phosphorus Cycling, Biology Series 26, Springer Soil. Springer, 2011, pp. 199-213.

[6] E. Casanova, ?Limitación, potencial y uso agrícola de las tierras en Venezuela,? in Introducción a la ciencia del suelo. Universidad Central de Venezuela. Consejo de Desarrollo Científico y Humanístico, 1996.

[7] R. Castro-González, L. Martínez-Aguilar, A. Ramírez-Trujillo, P. Estrada-de los Santos and J. Caballero-Mellado, ?High diversity of culturable Burkholderia species associated with sugarcane, ? Plant Soil, vol. 345: 155-169, 2011.

[8] B. R.Glick, ?The enhancement of plant growth by free-living bacteria,? Can J Microbiol, vol. 41: 109-117,1995.

[9] E. J. Hewitt, ?Sand and water culture methods used in the study of plant nutrition,? CABI. Farnham Royal, 1966.

[10] P. Jeffries and J. M. Barea, ?Arbuscular Micorriza –a key component of sustainable plant-soil ecosystems,? The Mycota, vol. 4: 95-113,2000.

[11] L. Kellogg, S. Bridgham and D. López-Hernández, ? Organic phosphorus mineralization. A comparison of isotopic and non-isotopic methods,? Soil Sci Am Jour, vol. 70: 1349-1358, 2006.

[12] J.W. Kloepper, ?Plant-growth-promoting rhizobacteria as biological control agents? in F. B. Jr Metting, (ed.) Soil Microbial Ecology, Marcel Dekker Inc, 1993, pp.255-273.

[13] J. W. Kloepper, R. Lifshitz, R. M. Zablotowicz, ?Free-living bacterial inocula for enhancing crop productivity,? Trends Biotechnology, vol. 7: 39-43,1989.

[14] J. C. López-Gutiérrez, M.Toro and D. López-Hernández,? Seasonality of organic phosphorus mineralisation in the rhizosphere of the native savanna grass, Trachypogon plumosus,?Soil Biol. Biochem, vol. 36: 1675-1684,2004a.

[15] J. C. López-Gutiérrez, M. Toro and D. López-Hernández,? Arbuscular mycorrhyza and enzymatic activities in the rhizosphere of Trachypogon plumosus in three acid savanna soils,? Soil Agric and Environ,vol. 103: 405-411, 2004b.

[16] D. López-Hernández,? La Química del Fósforo en Suelos ácidos, ? Casa Editora: Ediciones de la Biblioteca. Universidad Central de Venezuela.1977.

[17] D. López-Hernández and D. Flores, ? La desorción de fosfatos en suelos. Implicaciones fisioecológicas en el proceso,? Acta Científica Venezolana, vol. 30: 23-35, 1979.

[18] D. López-Hernández, I. Coronel and L. Alvarez, ? Uso de la isoterma de adsorción para evaluar requerimientos de fósforo. I. Isoterma de adsorción de los suelos,? Turrialba, vol. 31: 169-180,1981.

[19] D. López-Hernández, G. Siegert and J. V. Rodríguez, ?Competitive adsorption of phosphate with malate and oxalate by tropical soils,? Soil Sci Soc Amer J, vol. 50: 1460-1462, 1986.

[20] D. López-Hernández, M. Toro and J. C. López-Gutiérrez, ?Role of microbial, enzymatic and pedofauna activities in making good the adaptation of Trachypogon to phosphorus depleted environments,? in M. Miransari (ed). Soil Nutrients. Nova Science Publishers, 2011. pp. 93-126.

[21] J. M. Mac Faddin, ?Pruebas bioquímicas para la identificación de bacterias de importancia clínica,? Editorial Panamericana. 1980.

[22] E. Mora and M. Toro, ?Estimulación del crecimiento vegetal por Burkholderia cepacia, una cepa nativa de suelos ácidos de sabanas venezolanas,? Agronomía Tropical, vol. 57: 123-128, 2007.

[23] E. Mora, M. Toro and D. López-Hernández, ?A survey of arbuscular mycorrhizae, Rhizobium and phosphate solubilizing bacteria in low fertility savanna soils in Central Venezuela (Estación Experimental La Iguana), ? in Miransari M. (ed.) Soil Microbiology. Nova Science Publishers Inc. 2012, pp. 98-112.

[24] L. Moreno and F. Galvis, ?Potencial biofertilizante de bacterias diazótrofas aisladas de muestras de suelo rizosférico,? Pastos y Forrajes, vol. 36: 33-37, 2013.

[25] J. Murphy and J. P. Riley, ?A modified single solution method for the determination of phosphate in natural waters,? Analytical Chimica Acta, vol. 26: 31-36, 1962.

[26] E. I. Newman, ?A method of estimating the total length of root in a sample,? J Appl Ecol, vol. 3: 139-145, 1966.

[27] E. Osorio, ?Estudio de los ácidos orgánicos producidos por microorganismos del suelo y su aplicación en la solubilización de fosfatos inorgánicos,? Trabajo Especial de Grado. Escuela de Química, Facultad de Ciencias, Universidad Central, Venezuela. 2007.

[28] K. K. Pal, R. Dey, D. M. Bhatt and S. M. Chauhan, ?Plant growth promoting fluorescent pseudomonads enhanced peanut growth, yield and nutrient uptake,? available http://www.ag.auburn.edu/~mlowens/argentina/pdfmanuscripts/pal.pdf. 1999.

[29] R. Patrick, E. Baron, P. M. Faller, F. Tenover and R. Yolken,? Manual of Clinical Microbiology,? 7 edition. American Society for Microbiology, 1999.

[30] A. Peix, A. Rivas-Boyero, P. F. Mateos, C. Rodríguez-Barrueco, E. Martínez-Molina and E. Velázquez, ?Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions,? Soil Biol Biochem, vol. 33: 103- 110,2001.

[31] M. E. Ponce, V. González, J. Brandín and M. E. Ponce,? Análisis de la vegetación asociada a una toposecuencia en los Llanos Centro-Orientales de Venezuela,? Ecotropicos, vol. 7: 11- 22,1994.

[32] E. Purnomo, A. Mursyid, M. Syarwani, A. Jumberi, T. Hashidoko, Y. Hasegawa, S. Honma and M. Osaka, ?Phosphorus Solubilizing Microorganisms in the Rhizosphere of Local Rice Varieties Grown without Fertilizer on Acid Sulfate Soils,? Soil Sci Plant Nut, vol.51: 679- 685, 2005.

[33] A. Ramette, J. LiPuma and J. M. Tiedje, “Species Abundance and Diversity of Burkholderia cepacia Complex in the Environment,” Appl Environ Microbiol, vol 71(3): 1193–1201, 2005.

[34] A. E. Reynaud, B. Coude Du Foresto and A. L. Courtieu, ?Etude comparative de diverses galeries API pour l′identificaction des bacteries gram negative,? Ann Biol Clin, vol. 46: 259- 262, 1988.

[35] P Sánchez and J. Salinas, ?Suelos ácidos y estrategias para su manejo con bajos insumos en América Tropical,? SCCS.1983.

[36] G. Schaller, ?pH changes in the rhizosphere in relation to the pH-buffering of soils,? Plant Soil, vol. 97: 439- 444, 1987.

[37] S. Sheraz Mahdhi, G. I. Hassan, S. A. Samoon, H. A. Rather, S. A. Dar and B. Zehra, ?Bio-fertilizers in organic agriculture,? Journal of Phytology, vol. 2: 42--54. 2010.

[38] S. Tabacchioni, A. Bevivino, C. Dalmastri, L. Chiarini, ?Burkholderia cepacia complex in the rhizosphere: a minireview,? Annals of Microbiology, vol. 52: 103-117, 2002.

[39] K. Tan and W. Keltjens, ?Interaction between aluminium and phosphorus in sorghum plants. II. Studies with the aluminium tolerant sorghum genotype,? Plant Soil, vol. 124: 25—32, 1995.

[40] D. Tennant, ?A test of modified line intersect method of estimating root length,? J Ecol, vol. 63: 995-1001, 1975.

[41] G. V. Thomas and M. V. Shantaram, ?Solubilization of inorganic phosphates for bacteria from coconut plantation soils,? Journal of Plantation Crops, vol. 14: 42-48, 1986.

[42] L. Torbeck, D. Raccasi, D. Guilfoyle, R.L. Friedman and D. Hussong, ?Burkholderia cepacia: This Decision Is Overdue, ” PDA J Pharm Sci and Tec, vol 65, 535-543, 2011.

[43] D. Torriente, ?Aplicación de bacterias promotoras del crecimiento vegetal en el cultivo de la ca?a de azúcar. Perspectivas de su uso en Cuba, ?. Cultivos Tropicales, vol. 31: 19-26, 2010.

[44] M. Toro, R. Azcón and J. M. Barea, ?Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling,? Appl. Environ. Microbiol, vol.63: 4408-4412, 1997.

[45] M. Toro and D. López-Hernández, ?Potencialidades del manejo de las Micorrizas Arbusculares para el desarrollo sostenido de los sistemas agrícolas de bajos insumos del ecotono sabana-bosque amazónico,? in R J. Carrillo (ed.) Memorias del IV Congreso Interamericano sobre el medio ambiente, Caracas, Venezuela. Colección Simposia, 1998. pp. 222--227.

[46] M. Toro, R. Azcón and J M. Barea, ?The use of isotopic dilution techniques to evaluate the interactive effects of Rhyzobium genotype, mycorrhizal fungi, phosphate solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa,? New Phytol, vol. 138: 265-273,1998.

[47] M. Toro, I. Bazó and M. López,?Micorrizas Arbusculares y bacterias promotoras de crecimiento vegetal, biofertilizantes nativos de sistemas agrícolas bajo manejo conservacionista,? Agronomía Tropical, vol. 58: 78-83, 2008.

[48] J. Vessey, ?Plant growth promoting rhizobacteria as biofertilizers,? Plant Soil, vol. 255: 571- 586, 2003.

[49] C. L. Wenzel, A. E. Ashford and B. A. Summerell, ?Phosphate solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R.Br.],? New Phytol, vol. 128: 487- 496, 1994.