Isaac Scientific Publishing
Annals of Advanced Agricultural Sciences
AS > Volume 4, Number 2, May 2020

Effect of Total Solids on Biogas Production in a Fixed Dome Laboratory Digester under Mesophilic Temperature

Download PDF  (343.6 KB)PP. 26-33,  Pub. Date:March 25, 2020
DOI: 10.22606/as.2020.42003

Barasa H. Masinde, Daudi M. Nyaanga, Musa R. Njue, Joseph W. Matofari
Mechanical and Industrial Engineering Department, Masinde Muliro University of Science and Technology, P.O. Box 190 – 50100, Kakamega, Kenya
Agricultural Engineering Department, Egerton University, P.O. Box 536 – 20115, Egerton, Kenya
Agricultural Engineering Department, Egerton University, P.O. Box 536 – 20115, Egerton, Kenya
Dairy, Food Science and Technology Department, Egerton University, P.O. Box 536 – 20115, Egerton, Kenya
An investigation on the effect of total solids on biogas production was done using a laboratory scale batch reactor of 0.15 m3 capacity. The feedstock was dung from dairy cows managed under a free-range system. Experiments were done on a substrate having total solids of 6%, 7%, 8%, 9%, and 10% at a constant temperature of 35°C; and the mean biogas production was 0.249, 0.304, 0.487, 0.287, and 0.244 m3 of biogas per m3 of digester volume per day (m3/m3d), respectively. It was concluded that the highest average biogas production of 0.487 m3/m3d is attained at total solids of 8%.
total solids, biogas production, fixed dome, laboratory digester
  • [1]  Sovacool B.K. The political economy of energy poverty: A review of key challenges. Energy for Sustainable Development, 2012, 16 (3):272-282.
  • [2]  Elaiyaraju P., Partha N. Studies on biogas production by anaerobic process using agroindustrial wastes. Research in Agricultural Engineering, 2016, 62 (2):73-82.
  • [3]  Taherzadeh M., Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 2008, 9 (9):1621-1651.
  • [4]  Tricase C., Lombardi M. State of the art and prospects of Italian biogas production from animal sewage: technical-economic considerations. Renewable Energy, 2009, 34 (3):477-485.
  • [5]  Charlton S., Dollmeyer T., Grana T. Meeting the US heavy-duty EPA 2010 standards and providing increased value for the customer. SAE International Journal of Commercial Vehicles, 2010, 3 (2010-01-1934):101-110.
  • [6]  Verma S. Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes. 2002.
  • [7]  Buswell A., Mueller H. Mechanism of methane fermentation. Industrial and Engineering Chemistry, 1952, 44 (3):550-552.
  • [8]  Achinas S., Euverink G.J.W. Theoretical analysis of biogas potential prediction from agricultural waste. Resource-Efficient Technologies, 2016, 2 (3):143-147.
  • [9]  Parawira W., Murto M., Read J., Mattiasson B., Profile of Hydrolyses and Biogas., 2005.
  • [10]  Dolud M., Andree H., Hügle T. Rapid analysis of liquid hog manure using near-infrared spectroscopy in flowing condition. Precision livestock farming ‘05. Wageningen Acad. Publ., Wageningen, the Netherlands, 2005, 115- 122.
  • [11]  Barnes R., Dhanoa M.S., Lister S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied spectroscopy, 1989, 43 (5):772-777.
  • [12]  Meegoda J., Li B., Patel K., Wang L. A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 2018, 15 (10):2224.
  • [13]  Moset V., Poulsen M., Wahid R., Højberg O., Møller H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial biotechnology, 2015, 8 (5):787-800.
  • [14]  Lettinga G., Field J., Van Lier J., Zeeman G., Pol L.H. Advanced anaerobic wastewater treatment in the near future. Water Science and Technology, 1997, 35 (10):5-12.
  • [15]  Franke-Whittle I.H., Walter A., Ebner C., Insam H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management, 2014, 34 (11):2080-2089.
  • [16]  EPA. Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. U.S. Environmental Protection Agency, 2001.
  • [17]  APHA. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, 1999.
  • [18]  Mudhoo A., Moorateeah P., Mohee R. Effects of microwave heating on biogas production, chemical oxygen demand, and volatile solids solubilization of food residues. World Academy of Science, Engineering and Technology, 2012, 69.
  • [19]  Nyaanga D., Performance of Tropical Biogas, Egerton University International ConferenceEgerton University, Kenya, 2011.
  • [20]  Lemmer A., Naegele H.-J., Sondermann J. How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full- Scale Agricultural Biogas Digesters. Energies, 2013, (6):6255-6273.
  • [21]  Gujer W., Zehnder A. Conversion processes in anaerobic digestion. Water Science and Technology, 1983, 15 127- 167.
  • [22]  Li Y., Park S., Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev, 2011, 15 821-826.
  • [23]  Pavlostathis S., Giraldo‐Gomez E. Kinetics of anaerobic treatment: a critical review. Critical Reviews in Environmental Science and Technology, 1991, 21 (5-6):411-490.
  • [24]  van Lier J., Mahmoud N., Zeeman G. Anaerobic Wastewater Treatment. In Biological Wastewater Treatment: Principles, Modelling and Design. International Water Association, UK, 2008, 401-442.
  • [25]  Bergman H., Wichmann T., DeLong M.R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 1990, 249 (4975):1436-1438.
  • [26]  Deublein D., Steinhauser A. Biogas from Waste and Renewable Resources: An Introduction. John Wiley and Sons: Hoboken, NJ, USA, 2008.
  • [27]  Akuzawa M., Hori T., Haruta S., Ueno Y., Ishii M., Igarashi Y. Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microbial ecology, 2011, 61 (3):595-605.
  • [28]  Hansen C., Cheong D., Agricultural Waste Management in Food Processing, Academic Press, Cambridge, MA, USA, 2013.
  • [29]  Cirne D., Paloumet X., Björnsson L., Alves M., Mattiasson B. Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renew. Energy, 2007, 32 965-975.
  • [30]  Budiyono, Widiasa I., Johari S., Sunarso. The influence of total solid contents on biogas yield from cattle manure using rumen fluid inoculum. Energy Research Journal, 2010, 1 (1):6-11.
  • [31]  Nopharatana A., Pullammanappallil P.C., Clarke W.P. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste management, 2007, 27 (5):595-603.
  • [32]  Varma R., Vesvikar M., Karim K., Hoffman R., De Paoli D., Klasson K., Winterberg A., Alexander C., Bioenergy production from anaerobic digestion of animal and farm wastes, Energy summitMissouri University of Science and Technology, 2009.
  • [33]  Ferry J. The chemical biology of methanogenesis. Planet. Space Sci, 2010, 58 1775–1783.
  • [34]  Belay N., Sparling R., Daniels L. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl. Environ. Microbiol., 1986, 52 (5):1080-1085.
  • [35]  Lovley D., Klug M. Methanogenesis from Methanol and Methylamines and Acetogenesis from Hydrogen and Carbon Dioxide in the Sediments of a Eutrophic Lake. Appl. Environ. Microbiol., 1983, 45 1310-1315.
  • [36]  Dinopoulou G., Rudd T., Lester J. Anaerobic acidogenesis of a complex wastewater: The influence of operational parameters on reactor performance. Biotechnol. Bioeng, 1988, 31 958-968.
  • [37]  Stams A., Plugge C. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol, 2009, 7 568-577.
  • [38]  De Vrieze J., Hennebel T., Boon N., Verstraete W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol, 2012, 112 1-9.
  • [39]  Kiener A., Leisinger T. Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol, 1983, 4 305-312.
  • [40]  Richards M., Lie T., Zhang J., Ragsdale S., Leigh J., Price N. Exploring hydrogenotrophic methanogenesis: A genome scale metabolic reconstruction of methanococcus maripaludis. J. Bacteriol, 2016, 198 3379-3390.
  • [41]  Castillo R.-T., Luengo P., Alvarez J.M. Temperature effect on anaerobic of bedding manure in a one phase system at different inoculums concentration. Agriculture, Ecosystems and Environment, 1995, 54 55-66.
  • [42]  Yi J., Dong B., Jin J., Dai X. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis. PMCID: PMC4106828, 2014, 9 (7).
  • [43]  Demirel B., Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 2008, (7):173-190.
  • [44]  Conklin A., Stensel H., Ferguson J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion Water Environ Res, 2006, (78):486-496.
  • [45]  Bourque J., Guiot S., Tartakovsky B. Methane production in an UASB reactor operated under periodic mesophilic-thermohilic conditions. Biotechnol Bioeng, 2008, (100):1115-1121.
  • [46]  Igoni A.H., Abowei M., Ayotamuno M., Eze C. Effect of total solids concentration of municipal solid waste on the biogas produced in an anaerobic continuous digester. Agricultural Engineering International: CIGR Journal, 2008.
  • [47]  Itodo I., Awulu J. Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield. Transactions of the ASAE 1999, 42 (6):1853-1855.
  • [48]  Abbassi-Guendouz A., Brockmann D., Trably E., Dumas C., Delgenès J. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 2012, 111 55-61.
  • [49]  Forster-Carneiro T., Pérez M., Romero L. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste Bioresour Technol, 2008, (99):6994-7002.
  • [50]  Beevi B.S., Madhu G., Sahoo D.K. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste. Waste management, 2015, 36 93-97.
  • [51]  Tsunatu D., Azuaga I., Agabison J. Evaluation of the effect of total solids concentration on biogas yields of agricultural wastes. International Research Journal of Environment Sciences, 2014, 3 (2).
  • [52]  Liu Z., Jian L. The effect of total solids concentration and temperature on biogas production by anaerobic digestion. Energy sources, Part A: Recovery, utilization, and environmental effects, 2016, 38 (23):3534-3541.
  • [53]  Eltawil M., Belal E. Evaluation and scrubbing of biogas generation from agricultural wastes and water hyacinth biological engineering. Misr Journal Ag. Eng, 2009, 26 (1):534-560.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.