Isaac Scientific Publishing

Annals of Advanced Agricultural Sciences

SNP Association in the Leptin Gene and Beef Quality Traits in Indigenous Sudanese Baggara Cattle

Download PDF (390.3 KB) PP. 1 - 10 Pub. Date: February 28, 2021

DOI: 10.22606/as.2021.51001

Author(s)

  • Romaz M.A. Omer
    Institute for Studies and Promotion of Animal Exports, University of Khartoum, Sudan
  • Mai A. Masri
    Department of Zoology, Faculty of Science, University of Khartoum, Sudan
  • Lutfi M.A. Musa
    Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Sudan
  • Ikhlas A. Nour
    Institute for Studies and Promotion of Animal Exports, University of Khartoum, Sudan; Department of Meat Production, Faculty of Animal Production, University of Khartoum, Sudan
  • Mitsuru Tsubo
    Arid Land Research Centre (ALRC), Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
  • Faisal M. El-Hag*
    Arid Land Research Centre (ALRC), Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; Agricultural Research Corporation (ARC), Sudan
  • Ahmed D.A. Biraima
    Department of Meat Production, Faculty of Animal Production, University of Khartoum, Sudan
  • Khaleel I.Z. Jawasreh
    Department of Animal Productions, Faculty of Agriculture, Jordan University of Science and Technology, Jordan
  • Yasunori Kurosaki
    Arid Land Research Centre (ALRC), Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
  • Mohammed-Khair A. Ahmed
    Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Sudan

Abstract

The present study was conducted on 112 Sudanese Baggara bulls (Nyalawi and Mesairi strains) from two separate locations in Darfur and Kordofan, Sudan, raised under dryland farming conditions. A single nucleotide polymorphism (C/T) Arg25Cys in exon 2 of the bovine leptin gene (NC_032653.1) was studied and the association of leptin genotypes with meat quality attributes was evaluated for these two Sudanese Baggara cattle strains which comprise the mainstay of Sudan export and local beef trade. The accuracy of genotyping was checked through PCR-RFLP technique followed by DNA sequencing and analyzed using BioEdit, MEGA6 and project Hope softwares. The genotype frequencies for CC, CT and TT genotypes in Nyalawi strain were 37.5, 39.3 and 23.2%, respectively, whereas the respective genotypic frequencies for Mesairi strain were 46.4, 28.6 and 25%. Significant differences (P<0.05) were found in hot carcass weight, dressing percentage, Myofibril fragmentation index (MFI), water holding capacity (WHC), cooking loss, moisture and fat between the two Baggara cattle strains. Association between the C>T SNP at the leptin gene and carcass weight, dressing and fat percentages was significant (P<0.05). It was concluded that Leptin gene polymorphisms contributed to the observed meat quality differences among these Sudanese cattle strains. This will allow for the use of molecular information in future selection of beef cattle in Sudan. The possible value of the leptin gene and its polymorphisms have been elucidated for the first time in Baggara cattle.

Keywords

Baggara cattle strains; dryland; Leptin genotypes; meat quality traits.

References

[1] Alsiddig, M. A., Babiker, S. A., Galal, M. Y. and Mohammed, A. M. (2010). Phenotypic characterization of Sudan Zebu cattle (Baggara Type). Res J Anim Vet Sci, 5:48-52.

[2] AOAC (2016). Official Methods of Analysis (20th edition). Association of Official Analytical Chemists (AOAC). AOAC International Suite 300 2275 Research Blvd Rockville, Maryland 20850–3250, USA.

[3] Awan, F. M., Obaid A., Ikram, A. and Janjua, H. A. (2017). Mutation-Structure-Function Relationship Based Integrated Strategy Reveals the Potential Impact of Deleterious Missense Mutations in Autophagy Related Proteins on Hepatocellular Carcinoma (HCC): A Comprehensive Informatics Approach. Int. J. Mol. Sci., 18: 139. doi:10.3390/ijms18010139

[4] Bierman, C. D., Marshall, D. M., Campbell, E. and Granholm, N. H. (2004). Associations of a Leptin gene polymorphism with beef carcass traits. South Dakota State University, SDSU Beef Report, 2003-2004, Brookings, SD.

[5] Biscarini, F, Nicolazzi, E. L., Stella, A., Boettcher, P. J. and Gandini, G. (2015). Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet., 6:33. doi: 10.3389/fgene.2015.00033

[6] Bouton, P. E., Harris, P. E., Shorthose, W. R. and Ellis, R. W. (1978). Comparison of some properties of meat from normal steers and steers heterozygous for muscular hypertrophy. Meat Science, 2:161-167.

[7] Choudhary, V., Kumar, P., Bhattacharya, T. K., Bhushan, B. and Sharma, A. (2005). DNA polymorphism of leptin gene in Bos indicus and Bos taurus cattle. Genetics and Molecular Biology, 28, 4: 740-742.

[8] da Silva, R. C. G., Ferraz, J. B. S., Meirelles, F. V., Eler, J. P., Balieiro, J. C. C., Cucco, D. C., Mattos, E. C., Rezende, F. M. and Silva, S. L. (2012). Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle. Genetics and Molecular Research, 11(4): 3721-3728.

[9] Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to quantitative genetics. 4th ed. Longman, Essex, UK.

[10] Fergusson, D. M. (2004). Objective on-line assessment of marbling: A brief review. Aust J of Exp Agric, 44, 681-685. DOI: 10.1071/EA02161

[11] Fiona, C., Buchanan, A., Fitzsimmons, C. J., Andrew, G., VanKessel, A., Tracey, D., Winkelman-Sim, T. D. C. and Schmutz, S. M. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol., 34: 105–116.

[12] Geary, T. W., McFadin, E. L., MacNeil, M. D., Gringe, E. E., Short, R. E., Funston, R. N. and Keisler, D. H. (2003). Leptin as a predictor of carcass composition in beef cattle. J. Anim. Sci., 81(1):1-8. https://doi.org/10.2527/2003.8111

[13] Harris, R. B. S. (2014). Direct and indirect effects of Leptin on adipocyte metabolism. Biochim Biophys Acta. 1842(3): 414–423. doi: 10.1016/j.bbadis.2013.05.009.

[14] Hopkins, D. L., Littlefield, P. J. and Thompson, J. M. A. (2000). A research note on factors affecting the determination of myofibrillar fragmentation. Meat Sci., 56:19–22. DOI: 10.1016/s0309-1740(00)00012-7

[15] Kaur, P. K., Tripathi, N., Desale, J., Neelagiri, S., Yadav, S., Bharatam P. V., and Singh, S. (2016). Mutational and Structural Analysis of Conserved Residues in Ribose5-Phosphate Isomerase B from Leishmania donovani: Role in Substrate Recognition and Conformational Stability. PLoS ONE 11(3): e0150764

[16] Koopaee, H. and Koshkoiyeh, A. E. (2014). SNPs genotyping technologies and their applications in farm animals breeding programs: Review. Brazilian Archives of Biology and Technology [online]. 57 (1): 87-95.

[17] MacDougald, O. A., Hwang, C-S., Fan, H. and Lane, M. D. (1995). Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. (USA), 92: 9034-9037

[18] Meyers, L. S., Gamst, G. and Guarino, A. J. (2009). Data Analysis Using SAS Enterprise Guide. Cambridge University Press. www.cambreidge.org/9780521130073

[19] Miller, S. P. (2010). Genetic improvement of beef cattle through opportunities in genomics. R. Bras. Zootec. [online]. 39, 247-255. DOI: 10.1590/S1516-35982010001300027

[20] Miller, S. A., Dykes, D. D. and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 16: 12-15. doi: 10.1093/nar/16.3.1215

[21] Mohamed, S. E. I., Ahmed, R. M., Jawasreh, K. I. Z., Salih, M. A. M., Abdelhalim, D. M., Abdelgadir, A. W., Obeidat, Md. T., Musa, L. M. A. and Ahmed, M-K. A. (2020). Genetic polymorphisms of fecundity genes in Watish Sudanese desert sheep. Veterinary World, 13(4): 614-621.

[22] Mrode, R., Ojango, J. M. K., Okeyo, A. M. and Mwacharo, J. M. (2019). Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front. Genet. 9:694. doi: 10.3389/fgene.2018.00694

[23] Nkrumah, J. D., Li, C., Yu, J. and Hansen, C. (2005). Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J Anim Sci, 83: 20-28. doi:10.2527/2005.83120x.

[24] Omer, R. M. A., Masri, M. A. R. M., Jawasreh, K. I., Nour, I. A., Biraima, A. D. A., Musa, L. M. A. and Ahmed, M-K. A. (2018). Molecular detection of selected genetic polymorphisms in growth hormone and Insulin like growth factor 1 genes in indigenous Sudanese Baggara Cattle. Kafkas Univ Vet Fak Derg, 24 (2): 187-194. DOI: 10.9775/kvfd.2017.18556

[25] Ramos-Lobo, A. M. and Donato Jr., J. (2017). Comprehensive review. The role of leptin in health and disease. Temperature, 4 (3): 258–291. https://doi.org/10.1080/23328940.2017.1327003

[26] Shafey, H. I., Mahrous, K. F., Hassan, A. A. M., Rushdi, H-E. and Ibrahim, M. A. M. (2020). Single-nucleotide polymorphisms in FABP4 gene associated with growth traits in Egyptian sheep. Veterinary World, 13(6): 1126-1132. doi: www.doi.org/10.14202/vetworld.2020.1126-1132

[27] Shin, S. C. and Chung, E. R. (2007). Association of SNP marker in the Leptin gene with carcass and meat quality traits in Korean cattle. Asian-Australasian J Anim Sci, 20(1). DOI: 10.5713/ajas.2007.1

[28] Souza, F. R., Mercadante, M. E., Fonseca, L. F. and Ferreira, L. M. (2014). Assessment of DGAT1 and LEP gene polymorphisms in three Nelore (Bos indicus) lines selected for growth and their relationship with growth and carcass traits. J Anim Sci, 88: 435-441. doi:10.2527/jas.2009-2174.

[29] Tajima, F. and Nei, M. (1984). Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol, 1: 269-285. DOI: 10.1093/oxfordjournals.molbev.a040317.

[30] Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6 molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 30 (12): 2725-2729. DOI: 10.1093/molbev/mst197.

[31] Tartaglia, L. A. (1997). The leptin receptor. J Biol Chem, 272: 6093-6096, doi: 10.1074/jbc.272.10.6093.

[32] Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L. and Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 8;11:548. doi: 10.1186/1471-2105-11-548. PMID: 21059217; PMCID: PMC2992548.

[33] Warner, R. (2014). Measurement of Meat Quality: Measurements of Water-holding Capacity and Color – Objective and Subjective. In: Carrick Devine & Michael Dikeman, editors-in-chief. Encyclopedia of Meat Sciences 2e, Vol. 2, Oxford: Elsevier; 2014. pp. 164-171

[34] Wilson, R. T. (2018). Livestock in the Republic of the Sudan: Policies, production, problems, and possibilities. Anim. Husb. Dairy Vet Sci, 2(3): 1-12.

[35] Woronuk, G. N., Marquess, F. L., James, S. T., Palmer, J., Berryere, H., Deobald, T., Howie, S. and Kononoff, P. J. (2012). Association of leptin genotypes with beef cattle characteristics, Anim Genet., 43(5):608-610. doi: 10.1111/j.1365-2052.2012.02320.x.

[36] Zhang, Y., Proenca, R., Maffei, M. and Barone, M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372: 425-432. DOI:10.1038/372425a0