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Abstract Let E be a uniformly smooth and uniformly convex real Banach space and C be a
nonempty, closed and convex subset of E. In this paper, it is shown that {xn} obtained from
Batsari’s[21] CQ algorithm with relatively nonexpansive maps converges strongly to a point x̂ which
is also a common fixed point of some finite relatively nonexpansive mappings and solves a system of
equilibrium problems in E. The result obtained improves some existing results in the literature.
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1 Introduction

Let E be a real Banach space and E∗ be its dual Space. Let C be a nonempty, closed and convex subset
of E. Let {fk} for k ∈ Γ be a family of bifunctions from C × C to R, where R is the set of real numbers
and Γ is an arbitrary index set. The equilibrium problems are to find x̂ ∈ C such that,

fk(x̂, y) ≥ 0, ∀y ∈ C and k ∈ Γ. (1)

If Γ is a singletone then, problem (1) becomes the following equilibrium problem of finding x̂ ∈ C such
that,

f(x̂, y) ≥ 0, ∀y ∈ C. (2)

The solution set of (1) and (2) are denoted by EP (fk) and EP (f) respectively.
Note: For solving the equilibrium problems (1) we assume that, ∀k ∈ Γ the bi-function fk satisfies the
following conditions:

(A1) fk(x, x) = 0, ∀x ∈ C.
(A2) fk is monotone, i.e fk(x, y) + fk(y, x) ≤ 0, for any x, y ∈ C.
(A3) For each x, y, z ∈ C,

lim sup
t→0

fk(tz + (1− t)x, y) ≤ fk(x, y).

(A4) fk(x, ·) is convex and lower semicontinous for each x ∈ C.

Let X, Y be sets such that X ⊂ Y , consider a map S : X → Y , a set F (S) = {z ∈ X : Sz = z} is called
the fixed point set of S.
A mapping S : C −→ E is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let E be a real Banach space and E∗ be its dual, for all x ∈ E and x∗ ∈ E∗ we denote the value of x∗ at
x by 〈x, x∗〉. So, the duality mapping J on E is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

A Banach space E is said to be strictly convex if ‖x+y‖
2 < 1 ∀x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y.

A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2] there exists δ > 0 such that
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‖x+y‖
2 ≤ 1− δ, ∀x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists ∀x, y ∈ S(E) where S(E) = {z ∈ E : ‖z‖ = 1}. Also, the space E is said to be uniformly smooth if
the above limit exists uniformly for x, y ∈ S(E).

The following definition can be found in [11]. Let E be a smooth, strictly convex and reflexive Banach
space, let C be a nonempty, closed and convex subset of E, define a function φ : E × E → R by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

It is obvious from the definition of φ(x, y) that,

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, ∀ x, y ∈ C. (3)

Let E be a smooth, strictly convex and reflexive Banach space, C be a nonempty, closed and convex
subset of E, S : C → C be a mapping and F (S) be the set of fixed points of S. A point p ∈ C is said
to be an asymptotic fixed point of S[15] if there exists a sequence {xn} ⊂ C such that xn ⇀ p and
‖xn − Sxn‖ → 0. The set of all asymptotic fixed points of S is denoted by F̃ (S).
A mapping S : C → C is said to be relatively nonexpansive[15] if
1. F (S) 6= ∅.
2. F (S) = F̃ (S).
3. φ(p, Sy) ≤ φ(p, y), ∀ y ∈ C, p ∈ F (S).
From Alber[17], the generalized projection ΠC from E onto C is defined by

ΠC(x) = argmin
y∈C

φ(y, x), ∀x ∈ E.

A Banach space E is said to have a Kadec-Klee property[15] if for every sequence {xn} in E, xn ⇀
x and ‖xn‖ → ‖x‖ =⇒ ‖xn − x‖ → 0 as n→∞.

Remark : The following basic property is true: We can find in Cioranescu [7] that, if E is uniformly
smooth Banach space, then J is uniformly continuous on each bounded subset of E.

The problem (1) is very general in the sense that, it includes as special cases: optimization problems,
variational inequalities, mini-max problems, Nash equilibrium problem in noncooperative games and
others; see for example [4,11]. Various methods have been proposed to solve problem (1).

In 1953 Mann[18] introduced a well known classical iterative process to approximate a fixed point of a
nonexpansive mapping. The iterative process is defined as

xn+1 = αnxn + (1− αn)T (xn) n ≥ 0, (4)

where initial element x0 is taken in C arbitrarily and the sequence {αn}∞n=0 in [0,1] satisfies
1. limn→∞ αn = 0.
2.
∑∞
n=1 αn =∞.

But, Mann’s iterative process has only weak convergence, even in a Hilbert space. Therefore, many
authors try to modify Mann’s iterative process in order to have strong convergence, the so called hybrid
projection iterative method is one of such modifications.

The hybrid projection iterative algorithm(HPIA) was introduced initially by Haugazeau[19] in 1968.
For over 40 years, HPIA has received rapid developments.

In 2006, Nakajo et al.[19] proposed the following modification of Mann’s iterative scheme for a
nonexpansive mapping T in a real Hilbert space H:

x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x0),

(5)
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where C is a closed, convex subset of H, PCn∩Qn denotes the metric projection from H onto a nonempty,
closed and convex subset Cn ∩Qn of H. They proved that, if the sequence {αn} is bounded above by
one then, the sequence {xn} generated by (5) converges strongly to PF (T )(x0), where, F (T ) is the fixed
point set of T .

In 2009, Takahashi and Zembayashi[15] proposed the following modificaion of Mann’s iterative scheme
for relatively nonexpansive mapping S, in a real uniformly convex and uniformly smooth Banach space E:

x0 = x ∈ C,
yn = J−1(αnJxn + (1− αn)JSxn),
un ∈ C such that f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩ Wn

x,

(6)

where J is the duality mapping on E and f is a bifunction from C×C to R satisfying conditions (A1)-(A4).
They proved that, if lim infn→∞(1− αn) > 0 and {rn} ⊂ [a,∞) for some a > 0 then, the sequence {xn}
generated by (6) converges strongly to ΠF (S)∩EP (f)x, where ΠF (S)∩EP (f) is the generalized projection of
E onto F (S)∩ EP (f).

Duan and Zhao[8] studied a new hybrid methods for equilibrium problems and strictly pseudocontrac-
tions.

In 2010 P. Duan[9] proposed the following iterative scheme for some finite family of strictly pseudo-
contraction mappings and systems of equilibrium problems in a real Hilbert space H:

un = T fM
rM,n

T
fM−1
rM−1,n ...T

f2
r2,n

T f1
r1,n

xn,

Aλn
n = λnI + (1− λn)An,

yn = αnxn + (1− αn)Aλn
n un,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩ Qn

x1,

(7)

where {αn} ⊂ [0, a], {λn} ⊂ [l, b] for some a, l ∈ [0, 1), b ∈ [l, 1) and {rk,n} ⊂ (0,∞) satisfying
lim infn→∞ rk,n > 0 for all k ∈ {1, 2, ...,M}. Then, she proved that, the sequence {xn} generated by (7)
converges strongly to PΩx1, where Ω = ∩Ni=1F (Si)∩ (∩MK=1EP(fk)). She also proved a strong convergence
using cyclic algorithm in the same journal article.

Recently in 2014, U.Y. Batsari[21] proposed the following iterative scheme for some finite family of
φ-nonexpansive mappings and systems of equilibrium problems in a real Banach space E:

yn = j−1(αnjxn + (1− αn)jAλn

N xn),
un = T fM

rM,n
T
fM−1
rM−1,n ...T

f2
r2,n

T f1
r1,n

yn,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, jx1 − jxn〉 ≥ 0},
xn+1 = ΠCn∩ Qn

x1,

(8)

for every n ∈ N, where j ∈ J and J is the duality mapping on E, {αn} ⊂ [0, a] such that lim infn→∞ αn(1−
αn) > 0 for some a ∈ [0, 1), {λn} ⊂ [0, 1), and {rk, n} ⊂ (0,∞) satisfying lim infn→∞ rk,n> 0 for all k
∈ {1, 2, 3, · · · ,M} then, {xn} generated by (8) converges strongly to ΠΩx1.

In this paper, motivated by [15] and [21], a strong convergence theorem for approximating common
fixed points for finite family of relatively nonexpansive maps and common solution of finite family of
equilibrium problems in a uniformly convex and uniformly smooth real Banach space E is studied; which
is an improvement to [15] that consider only one relatively nonexpansive map and one equilibrium problem.
Also, the importance of relatively nonexpansive maps especially the resolvent of maximal monotone
operators inspires the researcher to substitute φ-nonexpansive maps with relatively nonexpansive maps as
used in [21].
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2 Preliminaries

We shall make use of the following results.

Lemma 2.1 [17]. Let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E then,

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C and y ∈ E.

Lemma 2.2 [11]. Let E be a smooth and uniformly convex Banach space, let {xn} and {yn} be sequences
in E such that either {xn} or {yn} is bounded, if limn→∞ φ(xn, yn) = 0 then, limn→∞ ‖xn − yn‖ = 0.

Lemma 2.3 [6]. Let E be a uniformly convex Banach space and r > 0 then, there exists a strictly
increasing, continuous and convex function g : [0, 2r]→ R such that, g(0) = 0 and

‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖),

for all x,y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.4 [15]. Let C be a nonempty, closed and convex subset of a uniformly smooth, strictly convex
and reflexive Banach space E. Let f be a bifunction from C × C to R satisfying (A1)-(A4). For r > 0
define a function Tr : E → C by

Tr(x) = {z ∈ C : f(z, y) + 1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C},

for all x ∈ E then, the following holds
1. Tr is single valued.
2. Tr is firmly nonexpansive type, i.e for all x, y ∈ E

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉 .

3. F (Tr) = EP (f).
4. EP(f) is closed and convex.
5. Tr is relatively nonexpansive.

Now, in view of the above lemma define the maps T fk
rk,n

: E → C for k ∈ {1, 2, · · ·M} by T fk
rk,n

(x) =
{z ∈ C : fk(z, y) + 1

rk,n
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C} ∀x ∈ E, n ∈ N and {rk,n} ⊆ (0,∞). Let

Θkn = T fk
rk,n

T
fk−1
rk−1,n ...T

f2
r2,n

T f1
r1,n

then,

1. If h ∈
⋂M
k=1 EP (fk) we have Θknh = h, ∀k ∈ {1, 2, · · ·M}.

2. ΘMn is relatively nonexpansive hence, φ(h,ΘMn x) ≤ φ(h, x), ∀h ∈ F (ΘMn ) and x ∈ C.

Lemma 2.5 [15]. Let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E, for x ∈ E and q ∈ F (Tr) we have

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.6 [17]. Let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E, let x ∈ E and z ∈ C then,

z = ΠCx⇐⇒ 〈y − z, Jx− Jz〉 ≤ 0, ∀y ∈ C.

Also, for x, y ∈ E ,
φ(x, y) = 0 ⇐⇒ x = y

.
Lemma 2.7. Let E be a real Banach Space. Given a Natural number N, assume for each 1 ≤ i ≤ N ,
Si is a well defined mapping from a subset of E to E. Let An =

∑N
i=1 α

(n)
i Si and Aλn

n = λnI + (1−λn)An,
where {α(n)

i }Ni=1 is a sequence of positive real numbers such that
∑N
i=1 α

(n)
i = 1 ∀n ∈ N, suppose {Si}Ni=1

has a common fixed point ∀N ∈ N then,
⋂N
i=1 F (Si) = F (An) = F (Aλn

n ), ∀ λn ∈ (0, 1).
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Proof. To prove the lemma, it is enough to show that the result holds for N = 2. Now, let N = 2,
First Claim:

⋂2
i=1 F (Si) ⊆ F (An).

Let x ∈
⋂2
i=1 F (Si) then x = Six for i = 1, 2. So,

Anx = (α(n)
1 S1 + α

(n)
2 S2)x

= α
(n)
1 S1x+ α

(n)
2 S2x

= α
(n)
1 x+ α

(n)
2 x

= (α(n)
1 + α

(n)
2 )x

= x.

Thus,
⋂2
i=1 F (Si) ⊆ F (An).

Conversely, let x ∈ F (An) then,

0 = ‖x−Anx‖
= ‖x− (α(n)

1 S1x+ α
(n)
2 S2x)‖

= ‖(α(n)
1 + α

(n)
2 )x− (α(n)

1 S1x+ α
(n)
2 S2x)‖

= ‖(α(n)
1 x− α(n)

1 S1x)− (α(n)
2 S2x− α(n)

2 x)‖

≥
∣∣∣‖α(n)

1 x− α(n)
1 S1x‖ − ‖α(n)

2 S2x− α(n)
2 x‖

∣∣∣ ,
this implies that,

0 =
∣∣∣α(n)

1 ‖x− S1x‖ − α(n)
2 ‖S2x− x‖

∣∣∣ ,
which means that,

0 = α
(n)
1 ‖x− S1x‖ − α(n)

2 ‖S2x− x‖, ∀n ∈ N,

from which we have

α
(n)
1 ‖x− S1x‖ = α

(n)
2 ‖x− S2x‖, ∀n ∈ N.

That is x = S1x and x = S2x. So, x ∈
⋂2
i=1 F (Si) and thus, F (An) ⊆

⋂2
i=1 F (Si). Therefore,⋂2

i=1 F (Si) = F (An).

Second Claim: F (An) = F (Aλn
n ).

Let x ∈ F (An) then,

Aλn
n x = λnx+ (1− λn)Anx

= (λn + (1− λn))x
= x,

which means, F (An) ⊆ F (Aλn
n ).

Conversely, let x ∈ F (Aλn
n ),

0 = ‖x−Aλn
n x‖

= ‖x− (λnx+ (1− λn)Anx)‖
= ‖(1− λn)x− (1− λn)Anx‖
= (1− λn)‖x−Anx‖.

Therefore, Anx = x and so, F (Aλn
n ) ⊆ F (An). Hence, F (An) = F (Aλn

n ).
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3 Main Result

Let E be a uniformly smooth and uniformly convex real Banach space. Let C be a nonempty, closed and
convex subset of E. Let fk for k ∈ {1, 2, 3, ..M}, be a bifunction from C×C to R which satisfies conditions
(A1)-(A4) and fk(x, y) ≤ fk+1(x, y) ∀x, y ∈ C. Let V = {αiSi : C → C| i = 1, 2, · · ·Nand αi ∈
(0, 1]} be a convex set of relatively nonexpansive maps and contain identity map I. Assume that,
Ω = ∩Ni=1F (Si) ∩ (∩Mk=1EP (fk)) 6= ∅. Assume also that {η(n)

i }Ni=1 is a finite sequence of positive numbers
such that ΣN

i=1η
(n)
i = 1 for all n ∈ N and infn≥1 η

(n)
i > 0 for all i, 1 ≤ i ≤ N. Let the mapping Aλn

N be
defined by

Aλn

N = λnI + (1− λn)
N∑
i=1

η
(n)
i Si.

Given x1∈C, let {xn}, {un} and {yn} be sequences which are generated by the following algorithm:
yn = j−1(αnjxn + (1− αn)jAλn

N xn),
un = T fM

rM,n
T
fM−1
rM−1,n ...T

f2
r2,n

T f1
r1,n

yn,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, jx1 − jxn〉 ≥ 0},
xn+1 = ΠCn∩ Qn

x1,

for every n ∈ N, where j ∈ J and J is the duality mapping on E, {αn} ⊂ [0, a] such that lim infn→∞ αn(1−
αn) > 0 for some a ∈ [0, 1), {λn} ⊂ [0, 1), and {rk, n} ⊂ (0,∞) satisfying lim infn→∞ rk,n> 0 for all k
∈ {1, 2, 3, · · · ,M} then, {xn} converges strongly to ΠΩx1.

Proof. Let us denote Θkn = T fk
rk,n

T
fk−1
rk−1,n · · ·T f2

r2,n
T f1
r1,n

for all n ∈ N and k ∈ {1, 2, 3, · · ·M}, then un =
ΘMn yn.

We start by showing that {xn} is well defined.
To prove this, it is enough to show Cn ∩ Qn is nonempty, closed and convex subset of E ∀n ∈ N.

Clearly Cn, Qn are closed and Qn is convex. Also,

φ(z, un) ≤ φ(z, xn)⇐⇒ ‖un‖2 − ‖xn‖2 − 2〈z, jun − jxn〉 ≤ 0.

This implies that, Cn is convex. So, Cn ∩Qn is closed and convex.
Next, we show that Cn ∩Qn 6= ∅.
We are to show Ω ⊂ Cn ∩Qn. As Ω = ∩Ni=1F (Si) ∩ (∩Mk=1EP (Fk)) 6= ∅. Let p ∈ Ω then,

φ(p, un) = φ(p,ΘMn yn)
≤ φ(p, yn)
= φ(p, j−1(αnjxn + (1− αn)jAλn

N xn))
= ‖p‖2 − 2〈p, αnjxn + (1− αn)jAλn

N xn〉+ ‖αnjxn + (1− αn)jAλn

N xn)‖2

≤ ‖p‖2 − 2αn〈p, jxn〉 − 2(1− αn)〈p, jAλn

N xn〉+ αn‖xn‖2 + (1− αn)‖Aλn

N xn‖2

= αnφ(p, xn) + (1− αn)φ(p,Aλn

N xn)
≤ φ(p, xn).

Therefore, p ∈ Cn and this implies that Ω ⊂ Cn for all n ∈ N. Next, we show by induction that,
Ω ⊂ Cn ∩Qn.

From Q1=C we have Ω ⊂ C1 ∩ Q1. Suppose that, Ω ⊂ Ck ∩ Qk for some k ∈ N then, there exists
xk+1 ∈ Qk ∩ Ck such that,

xk+1 = ΠQk∩Ck
x1.

But, from the definition of xk+1 we have

〈xk+1 − z, jx1 − jxk+1〉 ≥ 0, ∀z ∈ Qk ∩ Ck.
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Since, Ω ⊂ Qk ∩ Ck then, ∀z ∈ Ω we have

〈xk+1 − z, jx1 − jxk+1〉 ≥ 0,

which implies that, z ∈ Qk+1 from the definition of Qn in the algorithm given above. So, we have

Ω ⊂ Qk+1,

for Ω ⊂ Cn∀n ∈ N we write
Ω ⊂ Qk+1 ∩ Ck+1,

which means that, Ω ⊂ Qn ∩ Cn for all n ∈ N. Hence, {xn} is well defined.
From the definition of Qn, we have xn = ΠQn

x1. Using lemma 2.1 we have

φ(xn, x1) = φ(ΠQnx1, x1)
≤ φ(p, x1)− φ(p,ΠQnx1)
≤ φ(p, x1), ∀p ∈ Ω ⊂ Qn.

Thus, {φ(xn, x1)} is bounded. Therefore, {xn} and {Sixn} are bounded for all 1 ≤ i ≤ N . Since
xn+1 = ΠQn∩Cn

x1 ∈ Qn ∩ Cn and xn = ΠQn
x1 from the definition of ΠQn

we have

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ∈ N.

Thus, {φ(xn, x1)} is nondecreasing. Therefore, its limit exists. From xn = ΠQn
x1 and lemma 2.1 we also

have

φ(xn+1, xn) = φ(xn+1, ΠQn
x1)

≤ φ(xn+1, x1)− φ(ΠQn
x1, x1)

= φ(xn+1, x1)− φ(xn, x1), ∀n ∈ N.

This means that, limn→∞ φ(xn+1, xn) = 0. From xn+1 = ΠQn∩Cnx1 ∈ Cn we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N.

Therefore,
lim
n→∞

φ(xn+1, un) = 0.

Since limn→∞ φ(xn+1, un) = limn→∞ φ(xn+1, xn) = 0, with E uniformly convex and smooth, from lemma
2.2 we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0.

So, it follows that
lim
n→∞

‖xn − un‖ = 0.

Since J is norm-to-norm uniformly continuous on bounded sets and limn→∞ ‖xn − un‖ = 0, we have

lim
n→∞

‖jxn − jun‖ = 0.

Let r = supn∈N{‖xn‖, ‖Sixn‖} for 1 ≤ i ≤ N . Since E is a uniformly smooth Banach space, we know that,
E∗ is a uniformly convex Banach space. Therefore, from lemma 2.3, there exists a continuous, strictly
increasing and convex function g, with g(0) = 0 such that,

‖αx∗ + (1− α)y∗‖2 ≤ α‖x∗‖2 + (1− α)‖y∗‖2 − α(1− α)g(‖x∗ − y∗‖),
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for x∗, y∗ ∈ B∗r and α ∈ [0, 1]. So, for p ∈ Ω we have

φ(p, un) = φ(p,ΘMn yn)
≤ φ(p, yn)
= φ(p, j−1(αnjxn + (1− αn)jAλn

N xn)
= ‖p‖2 − 2〈p, αnjxn + (1− αn)jAλn

N xn〉+ ‖αnjxn + (1− αn)jAλn

N xn‖2

≤ ‖p‖2 − 2αn〈p, jxn〉 − 2(1− αn)〈p, jAλn

N xn〉+ αn‖xn‖2 + (1− αn)‖Aλn

N xn‖2

−αn(1− αn)g(‖jxn − jAλn

N xn‖)
= αnφ(p, xn) + (1− αn)φ(p,Aλn

N xn)− αn(1− αn)g(‖jxn − jAλn

N xn‖)
≤ φ(p, xn)− αn(1− αn)g(‖jxn − jAλn

N xn‖).

Therefore, we have

αn(1− αn)g(‖jxn − jAλn

N xn‖) ≤ φ(p, xn)− φ(p, un), ∀n ∈ N.

Since

0 ≤ φ(p, xn)− φ(p, un)
= ‖xn‖2 − 2〈p, jxn − jun〉 − ‖un‖2

≤
∣∣‖xn‖2 − ‖un‖2∣∣+ 2

∣∣〈p, jxn − jun〉∣∣
≤
∣∣ ‖xn‖ − ‖un‖ ∣∣(‖xn‖+ ‖un‖) + 2‖p‖ ‖jxn − jun‖

≤ ‖xn − un‖(‖xn‖+ ‖un‖) + 2‖p‖ ‖jxn − jun‖,

for {xn}, {un} being bounded and limn→∞ ‖jxn − jun‖ = limn→∞ ‖xn − un‖ = 0, we have

lim
n→∞

φ(p, xn)− φ(p, un) = 0.

From lim infn→∞ αn(1− αn) > 0 , we have

lim
n→∞

g(‖jxn − jAλn

N xn‖) = 0.

From the property of g, we have
lim
n→∞

‖jxn − jAλn

N xn‖ = 0.

As J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn −Aλn

N xn‖ = 0.

Since {xn} is bounded then, there exists a subsequence {xnj} of {xn} such that xnj ⇀ x̂ and together
with the fact of Aλn

N ∈ V we have x̂ ∈ F (Aλn

N ) ∀N ∈ N. But, F (Aλn

N ) = ∩Ni=1F (Si).
Next we show x̂ ∈ EP (fk) ∀k ∈ {1, 2, ...M}. Now, from un = ΘMn yn, lemma 2.5 and φ(p, yn) ≤ φ(p, xn)

we have

φ(un, yn) = φ(ΘMn yn, yn)
≤ φ(p, yn)− φ(p,ΘMn yn)
≤ φ(p, xn)− φ(p,ΘMn yn)
= φ(p, xn)− φ(p, un).

So, we have
lim
n→∞

φ(un, yn) = 0.

Since E is uniformly convex and smooth, we have from lemma 2.2 that

lim
n→∞

‖un − yn‖ = 0. (9)
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Using ‖xn − un‖ → 0 and (9) we have ynk ⇀ x̂ and unk ⇀ x̂. For J norm-to-norm uniformly continuous
on bounded sets and (9) we have

lim
n→∞

‖jun − jyn‖ = 0.

From rk,n ∈ (0,∞) ∀k ∈ {1, 2, · · ·M} with n,M ∈ N we have

lim
n→∞

‖jun − jyn‖
rM,n

= 0. (10)

From un = ΘMn yn, we have

fM (un, y) + 1
rM,n

〈y − un, jun − jyn〉 ≥ 0, ∀y ∈ C,

from which we have

fM (unj , y) + 1
rM,nj

〈y − unj , junj − jynj〉 ≥ 0,

and from (A2) we have

1
rM,nj

〈y − unj , junj − jynj〉 ≥ −fM (unj , y)

≥ fM (y, unj).

Letting j →∞, we have from (10) and (A4) that

fM (y, x̂) ≤ 0, ∀y ∈ C.

Since, fk(x, y) ≤ fk+1(x, y) ∀x, y ∈ E then

fk(y, x̂) ≤ 0, ∀y ∈ C and k ∈ {1, 2, ...M}.

For 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C we have yt ∈ C and
fk(yt, x̂) ≤ 0 ∀k ∈ {1, 2, ...M}. So, from (A1) and (A4) we have

0 = fk(yt, yt)
≤ tfk(yt, y) + (1− t)fk(yt, x̂)
≤ tfk(yt, y), ∀k ∈ {1, 2, ...M}.

Dividing by t and letting t→ 0, together with (A3) we have

fk(x̂, y) ≥ 0, ∀y ∈ C and ∀k ∈ {1, 2, ...M}.

Therefore, x̂ ∈ EP (fk) ∀k ∈ {1, 2, ...M}, which implies that x̂ ∈ ∩Mk=1EP (fk). Hence, x̂ ∈ Ω.
Let h = ΠΩx1 from xn+1 = ΠCn∩Qn

x1 and h ∈ Ω ⊂ Cn ∩Qn, we have

φ(xn+1, x1) ≤ φ(h, x1).

Since a norm is weakly lower semi-continuous, we have

φ(x̂, x1) = ‖x̂‖2 − 2〈x̂, jx1〉+ ‖x1‖2

≤ lim inf
j→∞

(‖xnj‖2 − 2〈xnj , jx1〉+ ‖x1‖2)

= lim inf
j→∞

φ(xnj , x1)

≤ lim sup
j→∞

φ(xnj , x1)

≤ φ(h, x1).
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From the definition of ΠΩ , we have x̂ = h. Hence, limj→∞ φ(xnj , x1) = φ(h, x1) therefore,

0 = lim
j→∞

φ(xnj , x1)− φ(h, x1)

= lim
j→∞

(‖xnj‖2 − ‖h‖2 − 2〈xnj − h, Jx1〉)

= lim
j→∞

(‖xnj‖2 − ‖h‖2).

Since E has the Kadec-Klee property, we have that xnj → h = ΠΩx1, hence {xn} converges strongly to
ΠΩx1.

4 Conclusion

Nonlinear operators are of vital importance in the study/discussion of fixed point theory. It is clear that,
the result obtained in this research improves the work in [15] by using a linear combination of relatively
nonexpansive mappings compared to the single relatively nonexpansive map used in [15]. Also, establishing
a result with different classes of nonlinear operators rather than only one class is an achievement; as the
application of the result can now have wider coverage. Although, the research conducted adopt almost
all the procedures and technique used in [21] with some little adjustments where necessary but, the
mappings used in [21] were substituted with relatively nonexpansive mappings due to their application
importance especially in resolvent of a maximal monotone operators as can be seen in [22] and therein.
Future research can be conducted by using a linear combination of both the relatively nonexpansive and
φ-nonexpansive mappings in a single algorithm or just using mappings of more application importance.
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