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1 Introduction

Due to numerous applications the nonlinear ordinary differential equations occupy an important place in
the theory of differential equations and numerous works are devoted to them (see [1] and cited works in
it, [2 - 8]). Except in rare cases these equations cannot be integrated explicitly. Therefore the study of
such characteristics of their solutions as global existence, oscillation, asymptotic behavior, stability and
plays an important role.

Let p0(t;w), q0(t;w) and r0(t;w) be continuous on [t0; +∞)× (−∞; +∞) real valued functions, and
let p0(t;w) > 0, t ≥ t0, w ∈ (−∞; +∞). Consider the equation

(p0(t;φ(t))φ′(t))′ + q0(t;φ(t))φ′(t) + r0(t;φ(t))φ(t) = 0, t ≥ t0. (1.1)

Like the linear differential equations of the second order, this equation can be interpreted as a system
of nonlinear differential equations of the first order (see [3], p. 381):

φ′(t) = ψ(t)
p0(t;φ(t)) ;

ψ′(t) = −r0(t;φ(t))φ(t)− q0(t;φ(t))
p0(t;φ(t))ψ(t).

(1.2)

By Peano’s theorem (see [3], p. 21, 22) for every φ(0) and φ(1) (here and henceforth φ(0) and φ(1) are real
numbers) and t1 ≥ t0 the system (1.2) has a solution (φ(t), ψ(t)) in the neighborhood of the point t1 (in the
case t1 = t0 in some right neighborhood of t0), satisfying the initial conditions: φ(t1) = φ(0), ψ(t1) = φ(1).
Therefore, for any φ(0), φ(1) and t1 ≥ t0 eq. (1.1) has a solution in some neighborhood of the point t1,
satisfying the initial conditions: φ(t1) = φ(0), φ

′(t1) = φ(1).
Remark 1.1. The solution φ(t) of eq. (1.1), satisfying the initial conditions: φ(t1) = φ(0), φ

′(t1) = φ(1)
in general, is not the unique. However, under additional restrictions on the functions p0(t;w), q0(t;w)
and r0(t;w) it is the unique. For example, due to (1.2), if the functions f1(t;u; v) ≡ v

p0(t;u) , f2(t;u; v) ≡
r0(t;u)u + q0(t;u)

p0(t;u)v satisfy the Lipschitz condition jointly u, v in the region O ≡ {(t;u; v) : |t − t1| ≤
δ, |u−φ(0)| ≤M, |v−φ(1)| ≤ N}, δ > 0, M > 0, N > 0 (see [3]. p. 13), then by virtue of the Picard -
Lindellef’s theorem (see [3], p. 19) the solution φ(t) of eq. (1.1) with φ(t1) = φ(0), φ

′(t1) = φ(1) exists on
the interval [t1; t2] and is the unique, where t2 ≡ min{δ,

√
M2+N2

M0
},M0 ≡ max

(t;u;v)∈O

√
f2

1 (t;u; v) + f2
2 (t;u; v)

(as far as the solution (φ(t), ψ(t)) of the system (1.2) with φ(t1) = φ(0), ψ(t1) = φ(1) exists on the interval
[t1; t2]).
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Example 1.1. For p0(t;u) ≡ |u|σ, σ > 0, q0(t;u) ≡ 0, r0(t;u) ≡ |u|ν , ν < 0 the functions fj(t;u; v), j =
1, 2, satisfy the Lipschtz condition in the region |t− t1| ≤ δ, δ > 0, |u− 1| ≤ 1

2 , |v| ≤ 1, but not in the
region |t− t1| ≤ δ, δ > 0, |u− 1| ≤ 2, |v| ≤ 1.
Example 1.2. For p0(t;u) ≡ 1+ t2 +u4, q0(t;u) ≡ t+u3, r0(t;u) ≡ t3−u the functions fj(t;u; v), j =
1, 2, satisfy the Lipschtz condition in the region |t− t1| ≤ δ, |u| ≤M, |v| ≤ N, δ > 0, M > 0, N > 0.

In this paper the Riccati equation method is applied to establish some criteria of existence of two-
parameter family of global solutions of the equation (1.1). Two oscillatory theorems are proved. The
obtained results are applied to Emden - Fowler’s equation and to the Van der Pol type equation.

2 Auxiliary Propositions

Throughout this paragraph let φ0(t) be a solution of eq.(1.1) on the interval [t0;T ) (T ≤ +∞); y0(t) ≡
p0(t;φ0(t))φ

′
0(t)
φ0(t) . Consider the Riccati equation

y′(t) + y2(t)
p0(t;φ0(t)) + q0(t;φ0(t))

p0(t;φ0(t))y(t) + r0(t;φ0(t)) = 0, t ∈ [t0;T ). (2.1)

Let φ0(t) 6= 0, t ∈ [t1; t2)(⊂ [t0;T )). It is not difficult to check, that the function y0(t) is a solution of eq.
(2.1) on the interval [t1; t2). We have:

φ0(t) = φ0(t1) exp
{ t∫
t1

φ′0(τ)
φ0(τ)dτ

}
= φ0(t1) exp

{ t∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ

}
, t ∈ [t1; t2). (2.2)

Consider the linear equation

z′(t) + y0(t) + q0(t;φ0(t))
p0(t;φ0(t)) z(t) + r0(t;φ0(t)) = 0, t ∈ [t1; t2). (2.3)

By virtue of the Cauchy’s formula the general solution of this equation on the interval [t1; t2) is given by
the formula

z(t) = c exp
{
−

t∫
t1

y0(τ) + q0(τ ;φ0(τ))
p0(τ ;φ0(τ)) dτ

}
−

−
t∫

t1

exp
{
−

t∫
τ

y0(s) + q0(s;φ0(s))
p0(s;φ0(s)) ds

}
r0(τ ;φ0(τ))dτ, c = const. (2.4)

By (2.1) y0(t) is a solution of (2.3). Therefore from (2.4) it follows:

y0(t) = y0(t1) exp
{
−

t∫
t1

y0(τ) + q0(τ ;φ0(τ))
p0(τ ;φ0(τ)) dτ

}
−

−
t∫

t1

exp
{
−

t∫
τ

y0(s) + q0(s;φ0(s))
p0(s;φ0(s)) ds

}
r0(τ ;φ0(τ))dτ, t ∈ [t1; t2). (2.5)

By (1.1) the following equality holds

[p0(t;φ0(t))φ′0(t)]′ + q0(t;φ0(t))
p0(t;φ0(t)) [p0(t;φ0(t))φ′0(t)] + r0(t;φ0(t))φ0(t) = 0, t ≥ t0.
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Therefore,

p0(t;φ0(t))φ′0(t) = p0(t1;φ0(t1))φ′0(t1) exp
{
−

t∫
t1

q0(τ ;φ0(τ))
p0(τ ;φ0(τ))dτ

}
−

−
t∫

t1

exp
{
−

t∫
τ

q0(s;φ0(s))
p0(s;φ0(s))ds

}
r0(τ ;φ0(τ))φ0(τ)dτ, t ∈ [t0;T ). (2.6)

Dividing both sides of this equality on p0(t;φ0(t)) and integrating from t1 to t we obtain:

φ0(t) = φ0(t1) + p0(t1;φ0(t1))φ′0(t1)
t∫

t1

exp
{
−

τ∫
t1

q0(s;φ0(s))
p0(s;φ0(s))ds

}
dτ

p0(τ ;φ0(τ))−

−
t∫

t1

dτ
p0(τ ;φ0(τ))

τ∫
t1

exp
{
−

τ∫
s

q0(ξ;φ0(ξ))
p0(ξ;φ0(ξ))dξ

}
r0(s;φ0(s))φ0(s)ds. (2.7)

Let p1(t;w), q1(t;w) and r1(t;w) be real valued continuous functions on the [t0; +∞)× (−∞; +∞),
and let p1(t;w) > 0, t ≥ 0, w ∈ (−∞; +∞). Along with the (1.1) consider the equation

(p1(t;φ(t))φ′(t))′ + q1(t;φ(t))φ′(t) + r1(t;φ(t))φ(t) = 0, t ≥ t0. (2.8)

Throughout this paragraph let φ1(t) be a solution of eq.(2.8) on the interval [t0;T ) (T ≤
≤ +∞); y1(t) ≡ p1(t;φ1(t))φ

′
1(t)
φ1(t) . Consider the Riccati equation

y′(t) + y2(t)
p1(t;φ1(t)) + q1(t;φ1(t))

p1(t;φ1(t))y(t) + r1(t;φ1(t)) = 0, t ∈ [t0;T ). (2.9)

Let φ1(t) 6= 0, t ∈ [t1; t2) (⊂ [t0;T ). Then as in the case of eq. (2.1) the function y1(t) is a solution of eq.
(2.9) on the interval [t1; t2) and

φ1(t) = φ1(t1) exp
{ t∫
t1

y1(τ)
p1(τ ;φ1(τ))dτ

}
, t ∈ [t1; t2). (2.10)

Since y0(t) and y1(t) are solutions of eq. (2.1) and eq. (2.9) respectively, we have:

y′j(t) +
y2
j (t)

pj(t;φj(t))
+ qj(t;φj(t))
pj(t;φ1(t))yj(t) + rj(t;φj(t)) = 0, j = 0, 1.

Therefore,

[y1(t)− y0(t)]′ + y0(t) + y1(t) + q1−j(t;φ1−j(t))
p1−j(t;φ1−j(t))

[y1(t)− y0(t)] +

+
[

1
p1(t;φ1(t)) −

1
p0(t;φ0(t))

]
y2
j (t) +

[
q1(t;φ1(t))
p1(t;φ1(t)) −

q0(t;φ0(t))
p0(t;φ0(t))

]
yj(t) +

+ r1(t;φ1(t))− r0(t;φ0(t)) = 0, t ∈ [t1; t2), j = 0, 1. (2.11)

By (2.5) from (2.11) we have:

y1(t)− y0(t) = [y1(t1)− y0(t1)] exp
{
−

t∫
t1

y0(τ) + y1(τ) + q1−j(τ ;φ1−j(τ))
p1−j(τ ;φ1−j(τ)) dτ

}
−
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−
t∫

t1

exp
{
−

t∫
τ

y0(s) + y1(s) + q1−j(s;φ1−j(s))
p1−j(s;φ1(s)) ds

}[(
1

p1(τ ;φ1(τ)) −
1

p0(τ ;φ0(τ))

)
y2
j (τ)+

+
(
q1(τ ;φ1(τ))
p1(τ ;φ1(τ)) −

q0(τ ;φ0(τ))
p0(τ ;φ0(τ))

)
yj(τ) + r1(τ ;φ1(τ))− r0(τ ;φ0(τ))

]
dτ, j = 0, 1. (2.12j)

Lemma 2.1. Let y0(t1) ≥ 0, and let the inequality

r0(t;w) ≤ 0 for 0 < w ≤ Y0(t), t ∈ [t1; t2), (2.13)

holds, where Y0(t) ≡ max
ξ∈[t1;t]

|φ0(ξ)|. Then

y0(t) ≥ 0, t ∈ [t1; t2), (2.14)

and if y0(t1) > 0, then
y0(t) > 0, t ∈ [t1; t2), (2.15)

Proof. It follows from (2.13), that r0(t, φ(t)) ≤ 0, t ∈ [t1; t2). Then

t∫
t1

exp
{
−

t∫
τ

y0(s) + q0(s, φ0(s))
p0(s, φ0(s)) ds

}
r0(τ, φ0(τ))dτ ≤ 0, t ∈ [t1; t2).

From here, from (2.5) and from the inequality y0(t1) ≥ 0 (y0(t1) > 0) it follows (2.14) ((2.15)). The proof
of the lemma is complete.
Definition 2.1. We say, that [t1; t2) is maximum interval of existence for the solution φ0(t) (y0(t), φ1(t), y1(t)),
if φ0(t) (y0(t), φ1(t), y1(t)) exists on the interval [t1; t2) and cannot be continued to right of t2 as a
solution of eq. (1.1) ((2.1), (2.8), (2.9)).
Lemma 2.2. Let y0(t) ≥ 0, t ∈ [t1; t2), and let

t2∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ < +∞. (2.16)

Then [t1; t2) is not maximum interval of existence for y0(t).
Proof. Since y0(t) is nonnegative, it follows from (2.2) and (2.16), that there exists finite limit

lim
t→t2−0

φ0(t) = φ0(t1) exp
{

lim
t→t2−0

t∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ

}
6= 0. (2.17)

By (2.6) from here and from continuity of p0(t;w), q0(t;w), r0(t;w) it follows existence of finite limit
lim

t→t2−0
φ′0(t). Therefore, [t1; t2) is not maximum interval of existence for φ0(t), and, so, by virtue of (2.17)

the function p0(t;φ0(t))φ
′
0(t)
φ0(t) is defined on the interval [t1; t2 + ε) for some ε > 0. It follows from here,

that [t1; t2) is not maximum interval of existence for y0(t). The proof of the lemma is completed.
Let u = u(t) 6= 0, v = v(t), x = x(t) be continuous functions on the interval [t0; +∞),

I+
u,v(t1; t) ≡

t∫
t1

exp
{
−

τ∫
t1

v(s)ds
}

dτ
u(τ) , I−v,x(t1; t) ≡

t∫
t1

exp
{
−

t∫
τ

v(s)ds
}
x(τ)dτ,

P (t), Q(t) and R(t) be real valued continuous functions on the interval [t0; +∞), and let P (t) > 0, t ≥ t0.
Denote:

F (t1; t; c1; c2) ≡ |c1| exp
{
c2I

+
P,Q(t1; t)−

t∫
t1

I−Q,R(t1; τ) dτ
P (τ)

}
, t1, t ≥ t0.
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Lemma 2.3. Let y0(t) ≥ 0, t ∈ [t1; t2), and let for some ε > 0 the following inequalities hold:

p0(t;w) ≥ P (t), q0(t;w)
p0(t;w) ≥ Q(t), R(t) ≤ r0(t;w) ≤ 0 (2.18)

for |w| ≤ F (t1; t; c1; c2) + ε, t ∈ [t1; t2), where c1 ≡ φ0(t1) 6= 0, c2 ≡ y0(t1). Then

t∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ ≤ y0(t1)I+

P,Q(t1; t)−
t∫

t1

I−Q,R(t1; τ) dτ
P (τ) , t ∈ [t1; t2). (2.19)

Proof. Suppose, that for some t3 ∈ (t1; t2) the inequality (2.19) is not true. Then because this inequality
holds for t = t1, then taking into account (2.2) we get, that there exists t4 ∈ (t1; t3) such, that

|φ0(t4)| > F (t1; t4; c1; c2); (2.20);

|φ0(t)| ≤ F (t1; t; c1; c2) + ε, t ∈ [t1; t4).

From the last inequality and from(2.20) it follows, that

p0(t;φ0(t)) ≥ P (t), q0(t;φ0(t))
p0(t;φ0(t)) ≥ Q(t); R(t) ≤ r0(t;φ0(t)) ≤ 0, t ∈ [t1; t4].

By virtue of nonnegativity of y0(t) from here and (2.5) it follows:

y0(t)
p0(t;φ0(t)) ≤

c2

P (t) exp
{
−

t∫
t1

Q(τ)dτ
}
− 1
P (t)I

−
Q,R(t1; t); t ∈ [t1; t4].

Integrate this inequality from t1 to t4. We obtain:

t4∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ ≤ c2I

+
P,Q(t1; t4)−

t4∫
t1

I−Q,R(t1; τ) dτ
P (τ) .

Consequently, |φ0(t4)| ≤ F (t1; t4; c1; c2), which contradicts (2.20). The obtained contradiction proves
(2.19). The proof of the lemma is complete.

Denote: Gx(t1; t; c1; c2) ≡ |c1| exp
{
c2I

+
P,Q(t1; t) +

t∫
t1

x(τ)
P (τ) dτ

}
.

Lemma 2.4. Let y0(t) ≥ 0, t ∈ [t1; t2), and let for some ε > 0 the following inequalities hold:

p0(t;w) ≥ P (t), q0(t;w) ≥ Q(t) ≥ 0, r0(t;w) ≤ 0,
∣∣∣∣p0(t;w)r0(t;w)

q0(t;w)

∣∣∣∣ ≤ Q̃(t) for |w| ≤

≤ GM (t1; t; c1; c2) + ε, t ∈ [t1; t2), where Q̃(t) is a continuous function on the interval [t1; t2), M(t) ≡
max
ξ∈[t1;t]

{Q̃(ξ)}, c1 = φ0(t1), c2 = y0(t1). Then

t∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ ≤ y0(t1)I+

P,Q(t1; t)−
t∫

t1

M(τ)
P (τ) dτ, t ∈ [t1; t2).

This lemma can be proved by analogy of the lemma 2.3. In its proof can be used the following easily
verifiable inequality

t∫
t1

exp
{
−

t∫
τ

y0(s) + q0(s;φ0(s))
p0(s;φ0(s))

}
|r0(τ ;φ0(τ))|dτ ≤M(t), t ∈ [t1; t2).
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Lemma 2.5. Let the following conditions hold:
a1) y1(t1) > y0(t1);
b1) φ1(t1) ≥ φ0(t1) > 0, φ′1(t1) > φ′0(t1) ≥ 0 or

φ1(t1) ≤ φ0(t1) < 0, φ′1(t1) < φ′0(t1) ≤ 0;
c1) p0(t;w) ≤ p1(t;w1), r0(t;w) ≥ r1(t;w1), for t ∈ [t1; t2), |w| ≤ |w1|, w,

w1 ∈ (−∞; +∞);
d1) p0(t;w) ≥ p1(t;w1) for t ∈ [t1; t2), |w| ≥ |w1|, w, w1 ∈ (−∞; +∞);
e1) q0(t;w)

p0(t;w) ≤
q1(t;w1)
p1(t;w1) ; y1(t) ≥ 0 or y0(t) ≥ 0 for t ∈ [t1; t2), |w| ≤ |w1|,

w,w1 ∈ (−∞; +∞).
Then

y1(t) > y0(t), t ∈ [t1; t2). (2.21)

Proof. Suppose (2.23) is false. Then from a1) it follows:

y1(t) > y0(t), t ∈ [t1; t3); (2.22)

y1(t3) = y0(t3) (2.23)

for some t3 ∈ (t1; t2). From b1) it follows:

|φ1(t)| ≥ |φ0(t)|, t ∈ [t1; t4), (2.24)

for some t4 ∈ [t1; t3]. Let us show, that

|φ0(t)| ≤ |φ1(t)|, t ∈ [t1; t3). (2.25)

Suppose, that it is not so. Then it follows from (2.24), that

|φ0(t)| ≤ |φ1(t)|, t ∈ [t1; t5], (2.26)

|φ0(t)| > |φ1(t)|, t ∈ (t5; t3), (2.27)

where t5 = sup{t ∈ [t1; t3) : |φ0(t)| ≤ |φ1(t)|} ∈ (t1; t3). On the strength of (2.2) and (2.10) from d1),
(2.23), (2.26) and (2.27) it follows:

|φ0(t)| = |φ0(t5)| exp
{ t∫
t1

y0(τ)
p0(τ ;φ0(τ))dτ

}
≤ |φ1(t5)| exp

{ t∫
t1

y1(τ)
p1(τ ;φ1(τ))dτ

}
= |φ1(t)|,

t ∈ [t5; t3), which contradicts (2.27). The obtained contradiction proves (2.25). By (2.12) from c1), e1)
and (2.25) it follows, that y1(t3) > y0(t3), which contradicts (2.23). The obtained contradiction proves
(2.21). The proof of the lemma is complete.
Remark 2.1. It follows from the conditions c1) and d1), that p0(t;w) = p1(t;w), t ∈∈ [t1; t2), w ∈
(−∞; +∞) and p0(t;w) increases (in the wide sense) by w on the interval [0; +∞) and decreases (in the
wide sense) by w on the interval (−∞; 0] for every t ∈ [t1; t2), in particular when p0(t;w) = p1(t;w) =
p(t), t ∈ [t1; t2), then the conditions B1) and r1) hold.

Let us consider the Riccati equation

y′(t) + y2(t)
P (t) + Q(t)

P (t)y(t) +R(t) = 0, t ≥ t0. (2.28)

Lemma 2.6. Let the following conditions hold:
a2) y0(t) ≥ 0, t ∈ [t1; t2)(⊂ [t0;T ));
b2) P (t) ≥ p0(t;φ0(t)), Q(t)

P (t) ≤
q0(t;φ0(t))
p0(t;φ0(t)) , R(t) ≤ r0(t;φ0(t)), t ∈ [t1; t2).

Then the solution y2(t) of eq. (2.28), satisfying the condition y2(t1) ≥ y0(t1), exists on the interval [t1; t2).
Proof. Let [t1; t3) be the maximum interval of existence for y2(t). It is to show, that t3 ≥ t2. Suppose

t3 < t2. Then taking into account the inequality y2(t1) ≥ y0(t1), and (2.120) we conclude: it follows from a2)
and b2), that for p1(t;w) ≡ P (t), q1(t;w) ≡ Q(t), r1(t;w) ≡ R(t) the inequality y2(t) ≥ y0(t), t ∈ [t1; t3),

76 Advances in Analysis, Vol. 2, No. 2, April 2017

AAN Copyright © 2017 Isaac Scientific Publishing



holds. Since y0(t) is continuous on the interval [t1; t3], it follows from the last inequality, that the function

f(t) ≡
t∫
t1

y2(τ)
P (τ) dτ is bounded from below on the interval [t1; t3). It follows from here (see [9, p. 3, the

lemma 2.2]), that [t1; t3) is not maximum interval of existence for y2(t). The obtained contradiction shows,
that t3 ≥ t2. The proof of the lemma is complete.
Lemma 2.7. Let r0(t;w) ≥ 0, t ∈ [T0;T ), w ∈ (−∞; +∞) (t0 ≤ T0 < T ≤ +∞),
φ0(T1) = 0 for some T1 ∈ [T0;T ), and let sup

t∈[T0;T )
|φ0(t)| > 0. Then φ0(t) changes its sign on the interval

[T0;T ).
Proof. Since sup

t∈[T0;T )
|φ0(t)| > 0, there exists T2 ∈ [T0;T ) such, that φ0(T2) 6= 0. Let T2 < T1 (the proof in

the case T2 > T1 by analogy). Then there exists T3 ∈ (T2;T1] such, that

φ0(T3) = 0, (2.29)

φ0(t) 6= 0, t ∈ [T2;T3). (2.30)

By Lagrange’s mean value theorem it follows from (2.29) the existence of a ξ ∈ (T2;T3) such, that
φ′0(ξ) = −φ0(T2)

T3−T2
. So,

sign φ′0(ξ) = −sign φ0(T2). (2.31)

To complete the proof of the lemma it is enough to show, that

sign φ′0(T3) = −sign φ0(T2). (2.32)

It follows from (2.30), that y0(t) exists on the interval [T2;T3). Therefore, by virtue of (2.5) it follows
from the nonnegativity of r0(t;w), that sign y0(T3) = sign y0(ξ). From here and (2.31) it follows (2.32).
The proof of the lemma is complete.

3 Some Global Solvability and Oscillatory Criteria

Let P (t), Q(t) and R(t) be the same functions as in the previous section.
Theorem 3.1. Let φ(0) 6= 0, φ(1)

φ(0)
≥ 0, and let for some ε > 0 the following inequalities hold

p0(t;w) ≥ P (t), q0(t;w)
p0(t;w) ≥ Q(t), R(t) ≤ r0(t;w) ≤ 0 (3.1)

for |w| ≤ F
(
t0; t;φ(0); p(t0;φ(0))

φ(1)
φ(0)

)
+ε, t ≥ t0. Then the solution φ0(t) of eq. (1.1), satisfying the initial

value conditions: φ0(t0) = φ(0), φ0(t0) = φ(1), exists on the interval [t0; +∞). The function |φ0(t)| is
positive, nondecreasing and satisfies the estimate

|φ0(t)| ≤ F
(
t0; t;φ(0); p0(t0;φ(0))

φ(1)

φ(0)

)
, t ≥ t0. (3.2)

In this case if φ(1) 6= 0, then
φ′(t) 6= 0, t ≥ t0. (3.3)

Proof. Let φ(0) > 0 (the proof in the case φ(0) < 0 by analogy), φ0(t) be the solution of eq. (1.1), satisfying
the initial value conditions: φ0(t0) = φ(0), φ

′
0(t0) = φ(1) (existence of φ0(t) follows from the connection

between (1.1) and (1.2) and from the Peano’s theorem; see [3, p. 21, the theorem 2.1]), and let [t0;T )
be the maximum interval of existence for y0(t) ≡ p0(t;φ0(t))φ

′
0(t)
φ0(t) (it assumes, that φ0(t) exists on the

interval [t0;T ) and does not vanish on it). Let us show, that

y0(t) ≥ 0, t ∈ [t0;T ). (3.4)
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Suppose, that it is not so. Then since y0(t0) = p0(t0;φ(0))
φ(1)
φ(0)
≥ 0, there exists t̃0, t̃1 such, that

y0(t) ≥ 0, t ∈ [t0; t̃0], (3.5)

y0(t) < 0, t ∈ (t̃0; t̃1). (3.6)

By (3.1) for c1 = φ(0), c2 = p0(t0;φ(0))
φ(1)
φ(0)

, t1 = t0 the inequalities (2.20) of the lemma 2.3 hold.
Therefore taking into account (2.2) we will have:

φ0(t) ≤ F
(
t0; t;φ(0); p0(t0;φ(0))

φ(1)

φ(0)

)
, t ∈ [t0; t̃0].

By (2.2) from here and from (3.6) it follows:

M̃(t) ≡ max
ξ∈[t0;t]

φ0(ξ) ≤ F
(
t0; t;φ(0); p0(t0;φ(0))

φ(1)

φ(0)

)
, t ∈ [t0; t̃1).

Then taking into account third of the inequalities (3.1) we will have: r0(t;w) ≤ 0 for 0 < w ≤ M̃(t), t ∈
[t0; t̃1). On the strength of the lemma 2.1 we conclude from here, that y0(t) ≥ 0 for t ∈ [t0; t̃1),which
contradicts (3.6). The obtained contradiction proves (3.4). Let us show, that T = +∞. Suppose T < +∞.
By virtue of the lemma 2.3 from (3.1) and (3.3) it follows:

t∫
t0

y0(τ)
p0(τ ;φ0(τ))dτ ≤ y0(t0)I+

P,Q(t0; t)−
t∫

t0

I−Q,R(t0; τ) dτ
P (τ) , t ∈ [t0;T ). (3.7)

Therefore,
T∫
t0

y0(τ)
p0(τ ;φ0(τ))dτ < +∞. On the strength of the lemma 2.2 it follows from here, that [t0;T ) is

not maximal interval of existence for y0(t). The obtained contradiction shows, that T = +∞. So (3.7) is
valid for all t ≥ t0. Therefore, by (2.2) the inequality (3.2) holds. Since φ0(t0) = φ(0) > 0, and y0(t) is
nonnegative, by (2.2) the function φ0(t) is positive and nondecreasing on the interval [t0; +∞). And if
φ(1) > 0, then by (2.2) and the lemma 2.1 the inequality (3.3) holds. The proof of the theorem is complete.
Remark 3.1. A solution φ∗(t) of the equation

(P (t)φ′(t))′ +Q(t)φ′(t) +R(t)φ(t) = 0, , t ≥ to,

such, that φ∗(t) 6= 0, t ∈ [t1; t2), is connected with the function F by the following relation

|φ∗(t1)| exp
{
φ∗(t)
φ∗(t1)

}
= F

(
t1; t;φ∗(t1);P (t1)φ

′
∗(t1)
φ∗(t1)

)
exp
{

1−P (t1)φ
′
∗(t1)
φ∗(t1)×

×
t∫

t1

dτ
P (τ)

τ∫
t1

exp
{
−

τ∫
s

Q(ξ)
P (ξ)dξ

}
R(s)I+

P,Q(t1; s)ds+ 1
φ∗(t1) (K2φ∗)(t)

}
, (3.8)

where K - is the integral operator

(Kφ∗)(t) ≡
t∫

t1

dτ
P (τ)

τ∫
t1

exp
{
−

τ∫
s

Q(ξ)
P (ξ)dξ

}
R(s)φ∗(s)ds, , t ∈ [t1; t2).

Indeed, since y∗(t) ≡ P (t)φ
′
∗(t)
φ∗(t) is a solution of eq. (2.8) on the interval [t1; t2), by the Cauchy’s formula

y∗(t) = y∗(t1) exp
{
−

t∫
t1

Q(τ)
P (τ)dτ −

t∫
t1

y∗(τ)
P (τ) dτ

}
−
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−
t∫

t1

exp
{
−

t∫
τ

Q(s)
P (s)ds−

t∫
τ

y∗(s)
P (s) ds

}
R(τ)dτ, t ∈ [t1; t2)

Multiplying both sides of this equality on 1
P (t) exp

{
t∫
t1

y∗(τ)
P (τ) dτ

}
and integrating from t1 to t taking into

account the equality φ∗(t) = φ∗(t1) exp
{
t∫
t1

y∗(τ)
P (τ) dτ

}
, t ∈ [t1; t2), we obtain:

φ∗(t)
φ∗(t1) = 1 + P (t1)φ

′
∗(t1)
φ∗(t1)I

+
P,Q(t1; t)− 1

φ∗(t1) (Kφ∗)(t), t ∈ [t1; t2).

After making the first iteration in this equality, taking its exponential and multiplying by |φ∗(t1)| we
come to (3.8). The question of an application of the equality (3.8) for establishing effective criteria of
global solvability of eq (1.1) is an issue of separate study.

Using the lemma 2.4 in place of the lemma 2.3 by analogy it can be proved
Theorem 3.2. Let φ(0) 6= 0, φ(1)

φ(0)
≥ 0, and let for some ε > 0 the following inequalities hold:

p0(t;w) ≥ P (t), q0(t;w) ≥ Q(t) ≥ 0, r0(t;w) ≤ 0,
∣∣∣∣p0(t;w)r0(t;w)

q0(t;w)

∣∣∣∣ ≤ Q̃(t)

for |w| ≤ GM
(
t0; t;φ(0); p0(t0;φ(0))

φ(1)
φ(0)

)
+ ε, t ≥ t0. Then the solution φ0(t) of eq. (1.1), satisfying the

initial value conditions φ0(t0) = φ(0), φ
′(t0) = φ(1), exists on the interval [t0; +∞). The function |φ0(t)|

is positive, nondecreasing and satisfies the inequality

|φ0(t)| ≤ GM
(
t0; t;φ(0); p0(t0;φ(0))

φ(1)

φ(0)

)
, t ≥ t0.

And if φ(1) 6= 0, then φ′0(t) 6= 0, t ≥ t0.
Theorem 3.3. Let φ1(t) be a solution of eq. (2.8) on the interval [t0; +∞), and φ0(t) be a solution of eq.
(1.1) such, that
A1) φ1(t0) ≥ φ0(t0) > 0, φ′1(t0) > φ0(t0) ≥ 0 or

φ1(t0) ≤ φ0(t0) < 0, φ′1(t0) < φ0(t0) ≤ 0;
B1) p0(t0;φ0(t0))φ

′
0(t0)
φ0(t0) < p1(t0;φ1(t0))φ

′
1(t0)
φ1(t0) .

Let in addition the following conditions hold:
C1) p0(t;w) ≡ p1(t;w) is a non increasing by w on the interval (−∞; 0] and non decreasing by w on the
interval [0; +∞) function;
D1) r1(t;w1) ≤ r0(t;w) ≤ 0 for t ≥ t0, |w| ≤ |w1|, w, w1 ∈ (−∞; +∞);
E1) q0(t;w)

p0(t;w) ≤
q1(t;w1)
p1(t;w1) for t ≥ t0, |w| ≤ |w1|, w, w1 ∈ (−∞; +∞).

Then φ0(t) exists on the interval [t0; +∞), and the function |φ0(t)| is positive and non decreasing.
Proof. Let [t0;T ) be the maximum interval of existence for φ0(t). Let us show, that

φ0(t) 6= 0, t ∈ [t0;T ). (3.9)

Suppose, that this relation is false. Then it follows from A1), that for some T1 ∈ (t0;T )

φ0(t) 6= 0, t ∈ [t0;T1); (3.10)

φ0(T1) = 0. (3.11)

It follows from (3.10), that y0(t) ≡ p0(t;φ0(t))φ
′
0(t)
φ0(t) exists at least on the interval [t0;T1). It follows from

A1), that y0(t) ≥ 0, t ∈ [t0;T1). By (2.2) from here and A1) it follows: φ0(T1) 6= 0, which contradicts
(3.11). The obtained contradiction proves (3.9). It follows from (3.9), that y0(t) exists on the interval
[t0;T ). Then since y0(t0) ≥ 0, by virtue of (2.5) it follows from D1), that

y0(t) ≥ 0, t ∈ [t0;T ). (3.12)
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Since by condition of the theorem φ1(t) 6= 0, t ≥ t0, y1(t) ≡ p1(t;φ1(t))φ
′
1(t)
φ1(t) exists on the interval

[t0; +∞). It follows from B1), that y1(t0) > y0(t0). On the strength of lemma 2.5 it follows from here, A1)
and C1) - E1), that

y0(t) < y1(t), t ∈ [t0;T ). (3.13)

Let us show, that T = +∞. Suppose T < +∞.Then from B1) and (3.13) it follows:

T∫
t0

y0(τ)
p0(τ ;φ0(τ))dτ ≤

T∫
t0

y1(τ)
p0(τ ; 0)dτ < +∞.

Using lemma 2.2 from here we conclude, that [t0;T ) is not maximum interval of existence for y0(t). But
in the other hand since [t0;T ) is the maximum interval of existence for φ0(t), then [t0;T ) is the maximum
interval of existence for y0(t). We came to the contradiction. The obtained contradiction shows, that
T = +∞. Thus, φ0(t) exists on the interval [t0; +∞). Due to (2.2) it follows from A1) and (3.12), that
the function |φ0(t)| is positive and nondecreasing. The proof of the theorem is complete.
Definition 3.1. We call a solution φ0(t) of eq. (1.1) singular oscillatory of second kind, if the existence
domain of the φ0(t) is a bounded set, and if φ0(t) infinitely many times changes its sign.
Theorem 3.4. Let the following conditions hold:
A2) p0(t;w) ≥ P (t), q0(t;w)

p0(t;w) ≥ Q(t), t ≥ t0, w ∈ (−∞; +∞);
B2) r0(t;w) ≥ 0, t ≥ t0, w ∈ (−∞; +∞),
Then for each φ(0) and φ(1) a non-extendable on the interval [t0; +∞) solution φ0(t) of eq. (1.1), satisfying
the initial value conditions φ0(t0) = φ(0), φ

′
0(t0) = φ(1), is singular oscillatory of second kind.

Proof. Let [t0;T ) (T < +∞) be the maximum interval of existence for φ0(t). Then, it is evident, that

sup
ξ∈[T1;T )

|φ0(ξ)| > 0, T1 ∈ [t0;T ). (3.14)

(otherwise φ0(t) will be extended by zero, i. e. φ0(t) ≡ 0) Let us show, that for each T1 ∈ [t0;T ) the
function φ0(t) has a zero on the interval [T1;T ). Suppose, that for some T0 ∈ [t0;T ) the function φ0(t)
has no zero on the interval [T0;T ). Let then φ0(t) > 0, t ∈
∈ [T0;T ) (the proof in the case φ0(t) < 0, t ∈ [T0;T ), by analogy). By (2.6) it follows from here, from
A2) and B2), that

φ0(t) ≤ p0(T0;φ(T0))
P (t) |φ′(T0)| exp

{
−

t∫
T0

Q(τ)dτ
}
, t ∈ [T0;T ).

Therefore, φ0(t) is bounded. Then due to (2.6) and (2.7) there exists finite limits lim
t→T−0

φ0(t), lim
t→T−0

φ′0(t).
It follows from here, that [t0;T ) is not maximum interval of existence for φ0(t). The obtained contradiction
shows, that for every T1 ∈ [t0;T ) the function φ0(t) has a zero on the interval [T1;T ). On the basis of
lemma 2.7 we conclude that from here, from B2) and (3.14) it follows, that φ0(t) is a singular oscillatory
solution of second kind. The proof of the theorem is complete.
Definition 3.2. We call a solution of eq. (1.1) oscillatory, if it exists on the interval [t0; +∞) and in every
neighborhood of +∞ changes its sign.
Definition 3.3. We call a solution φ(t) of eq. (1.1) singular oscillatory of first kind, if it exists on the
interval [t0; +∞), supp φ(t) is bounded and φ(t) infinitely many times changes its sign.

Let for every ε > 0 the functions pε(t), qε(t) and rε(t) be real valued and continuous on the interval
[t0; +∞), and let pε(t) > 0, t ≥ t0, ε > 0. Consider the family of equations.

(pε(t)φ′(t))′ + qε(t)φ′(t) + rε(t)φ(t) = 0, t ≥ t0, ε > 0. (3.15ε)

Theorem 3.5. Let the following conditions hold:
A3) r(t;w) ≥ 0, t ≥ t0, w ∈ (−∞; +∞);
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B3) there exists ε0 > 0 such, that for every ε ∈ (0; ε0]

p0(t;w) ≤ pε(t),
q0(t;w)
p0(t;w) ≤

qε(t)
pε(t)

, r0(t;w) ≥ rε(t), for |w| ≥ ε, t ≥ t0,

and eq. (3.15ε) is oscillatory;
C3) there exists N > 0 such, that
C1

3) p0(t;w) ≤ P (t), q0(t;w)
p0(t;w) ≤ Q(t) for |w| ≤ N, t ≥ t0 and

+∞∫
t0

exp
{
−

τ∫
t0

Q(s)ds
}

dτ
P (τ) = +∞; (3.16)

C2
3) for every ε ≥ N the following inequalities hold: p0(t;w) ≤ pε(t), q0(t;w)

p0(t;w) ≤ qε(t),
r0(t;w) ≥ rε(t) for N ≤ |w| ≤ ε and

+∞∫
t0

dτ
P (τ)

τ∫
t0

exp
{
−

τ∫
s

qε(ξ)dξ
}
rε(s)ds = +∞. (3.17)

Then each existing on the interval [t0; +∞) nontrivial solution of eq. (1.1) either oscillatory, or singular
oscillatory of first kind.
Proof.Let φ0(t) be a solution of eq. (1.1) such, that supp φ0(t) is unbounded on the interval [t0; +∞). Let
us show, that φ0(t) has arbitrarily large zeros. Suppose, that it is not so, i. e. there exists t1 ≥ t0 such,
that φ0(t) 6= 0, t ≥ t1. Let then φ0(t) > 0, t ≥ t1 (the proof in the case φ0(t) < 0, t ≥ t1 by analogy).
Due to (2.6) it follows from A3), that there can be one of the following three cases.
α) φ′0(t) ≥ 0, t ≥ t1;
β) there exists t2 ≥ t1 such, that φ0(t) ≤ N, t ≥ t2, φ′0(t2) < 0;
γ) there exists t2 ≥ t1 such, that φ0(t) ≥ N, t ≥ t2, φ′0(t2) < 0.
Let the case α) holds, and let 0 < ε < min{φ0(t1); ε0}. Then y0(t) ≡ p0(t;φ0(t))φ

′
0(t)
φ0(t) is a solution of eq.

(2.1) on the interval [t2; +∞), and y0(t) ≥ 0, t ≥ t1. By virtue of lemma 2.6 it follows from here and
from B3), that the Riccati’s equation

y′(t) + y2(t)
pε(t)

+ qε(t)
pε(t)

y(t) + rε(t) = 0, t ≥ t1,

has a solution on the interval [t1; +∞). Consequently, corresponding equation (3.15ε) is not oscillatory,
which contradicts C3). The obtained contradiction shows, that φ0(t) has arbitrary large zeroes. Let the
condition β) holds. Then it follows from C1

3), that

t∫
t2

exp
{
−

τ∫
t2

q0(s;φ0(s))
p0(s;φ0(s))

}
dτ

p0(τ ;φ0(τ)) ≥
t∫

t2

exp
{
−

τ∫
t2

Q(s)ds
}

dτ
P (τ) , t ≥ t2 (3.18)

It is easy to show, that from (3.16) it follows equality
+∞∫
t2

exp
{
−

τ∫
t2

Q(s)ds
}

dτ
P (τ) = +∞. By (2.7) from here,

from A3) and (3.18) it follows: lim
t→+∞

φ0(t) = −∞, which contradicts the suggestion: φ0(t) > 0, t ≥ t1.
The obtained contradiction shows, that φ0(t) has arbitrary large zeroes. Let the case γ) holds. Then from
C2

3) it follows:

t∫
t2

dτ
p0(τ ;φ0(τ))

τ∫
t2

exp
{
−

τ∫
s

q0(ξ;φ0(ξ))
p0(ξ;φ0(ξ))dξ

}
r0(s;φ0(s))φ0(s)ds ≥
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≥
t∫

t2

dτ
pε(τ)

τ∫
t2

exp
{
−

τ∫
s

qε(ξ)
}
rε(τ)dτ

By (2.7) from here and from(3.17) it follows: lim
t→+∞

φ0(t) = −∞, which contradicts the suggestion:
φ0(t) > 0, t ≥ t1. The obtained contradiction shows, that φ0(t) has arbitrary large zeroes. Thus, we
showed, that a solution of eq. (1.1), existing on the interval [t0; +∞) and supp of which is an unbounded
set, has arbitrary large zeroes. Due to lemma 2.7 it follows from here and from A3), that φ0(t) is oscillatory.

Let φ0(t) be a finite solution of eq. (1.1) on the interval [t0; +∞), and let φ0(t) =
= 0, t ≥ T ;

max
ξ∈[t1;T ]

|φ0(ξ)| > 0, t1 ∈ [t0;T ). (3.19)

Let us show, that for each T1 ∈ [t0;T ) the function φ0(t) has a zero on the interval [T1;T ). Suppose,
that it is not so, i .e. there exists T0 ∈ [t0;T ) such, that φ0(t) does not vanish on the interval [T0;T ).
Since φ0(T ) = 0, on the strength of Lagrange’s mean value theorem there exists ξ ∈ [T0;T ) such, that
φ′0(ξ) 6= 0, and sign φ0(T0) = −sign φ′0(ξ). By (2.6) it follows from here and from A3), that φ′0(T ) 6= 0.
But, in the other hand, since φ0(t) = 0 for t ≥ T , we have φ′0(T ) = 0. We came to the contradiction.
Consequently, for every T1 ∈ [t0;T ) the function φ0(t) has a zero on the interval [T1;T ). Due to lemma
2.7 it follows from here, from A3) and (3.19), that φ0(t) is a singular oscillatory solution of first kind for
eq. (1.1). The proof of the theorem is complete.
Remark 3.2. If the solution φ0(t) of eq. (1.1), satisfying the initial value conditions φ0(t0) = φ′0(t0) = 0
is unique, (φ0(t) ≡ 0), in particular, if p0(t;w), q0(t;w) and r0(t;w) satisfy the conditions of the remark
1.1, then eq. (1.1) has no singular oscillatory solutions of first kind.
Theorem 3.6. Let the conditions hold:
A4) r0(t;w) ≥ 0 for t ≥ t0, w ∈ (−∞; +∞);
B4) p0(t;w), q0(t;w)

p0(t;w) , − r0(t;w) are non increasing by w on the interval (−∞; 0] and nondecreasing by w
on the interval [0; +∞) functions.
Then for each φ(0) and φ(1) the solution φ0(t) of eq. (1.1), satisfying the initial value conditions:

φ0(t0) = φ(0), φ
′
0(t0) = φ(1), (3.20)

exists on the interval [t0; +∞).
Proof. Let φ0(t) be a solution of eq. (1.1), satisfying the initial value conditions (3.19),and let [t0;T ) be
the maximum interval of existence for φ0(t). We should show, that T = +∞. Suppose T < +∞. Two
cases are possible:
α) there exists t1 ∈ [t0;T ) such, that φ0(t) 6= 0, t ∈ [t1;T );
β) there exists infinite sequence t0 < t0 < t2 < ... < T such, that lim

k→+∞
tk = T, φ0(tk) = 0, k = 1, 2, ....

Let the case α) holds, and let φ0(t) > 0, t ∈ [t1;T ) (the proof in the case φ0(t) < 0, t ∈ [t1;T ), by
analogy). If φ′0(t) ≤ 0, then by virtue of (2.7) it follows from A4), that φ0(t) has finite (nonnegative)
limit when t → T − 0. Then by virtue of (2.6) the function φ′0(t) also has finite limit when t → T − 0.
Therefore, φ0(t) continues to right at T,, so [t0;T ) is not maximum interval of existence for φ0(t). The
obtained contradiction shows, that T = +∞. Let φ′0(t1) > 0. Two subcases are possible:
α1) φ′0(t) ≥ 0, t ∈ [t1;T );
β1) φ′0(t) ≥ 0, for t ∈ [t1;T1], φ′0(t) < 0, for t ∈ (T1;T ), for some T1 ∈ (t1;T ) (by virtue of (2,2) and
(2.5) it follows from A4), that if φ′0(t̃1) < 0 for some t̃1 ∈ (t1;T ], then φ′0(t) < 0, t ∈ [t̃1;T ]).

In the case α1) the function φ0(t) is nondecreasing on the interval (t1;T ). Then (2.6) it follows from
A4) and B4), that

φ′0(t) ≤ φ′0(t1) exp
{
−

t∫
t1

q0(τ ;φ0(t1))
p0(τ ;φ0(t1))dτ

}
, t ∈ [t1;T ).

Therefore, φ0(t) has a finite limit when t→ T − 0. It is evident, that the same we have in the case β1).
Then by (2.6) φ′0(t) has finite limit when t→ T − 0. So, [t0;T ) is not maximum interval of existence for
φ0(t). The obtained contradiction shows, that T = +∞. Let the case β) takes place. If φ0(t) is bounded,
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then, it is evident, that the functions 1
p0(t,φ0(t)) ,

q0(t,φ0(t))
p0(t,φ0(t)) , r0(t, φ0(t)) are bounded in the interval [t0;T ).

By virtue of (2.7) it follows from here, that φ0(t) has finite limit when t→ T − 0. Then arguing similarly
to the above (when we are dealing with the cases α1) and β1)) we conclude, that T = +∞. Let φ0(t) be
not bounded. Two subcases are possible:
α2) lim

t→T−0 φ0(t) = +∞;
β2) lim

t→T−0 φ0(t) = −∞.
Let the case α2) holds (the proof in the case β2) by analogy). Let φ1(t) be the solution of eq. (1.1) with
φ1(T ) = 1, φ′1(T ) = −1. Then there exists ζ ∈ [t1;T ) such, that φ1(t) exists on the interval [ζ;T ], and

φ1(t) > 0, φ′1(t) < 0, t ∈ [ζ;T ]. (3.21)

It follows from β) and α2), that there exists a point ζ1(∈ [ζ;T )) of local maximum for φ0(t) such,
that φ0(ζ1) > max

ξ∈[ζ;T ]
φ1(ξ) and ζ < tm < ζ1 for some m. Since tm < ζ1 < tn for some n > m and

φ0(tm) = φ0(tn) = 0 < min{φ1(tm), φ1(tn)}, but φ0(ζ1) > max{φ1(tm), φ1(tn)}, there exist ξ1 and ξ2
such, that φ0(ξk) = φ1(ξk), k = 1, 2 and

φ0(t) > φ1(t), t ∈ (ξ1; ξ2). (3.22)

(see pict. 1). Let yj(t) ≡ p0(t;φj(t))
φ′j(t)
φj(t) , j = 0, 1. Then by virtue of (2.121) the following equality holds:

y1(t)− y0(t) = [y1(ζ1)− y0(ζ1)] exp
{
−

t∫
ζ1

y0(τ) + y1(τ) + q0(τ ;φ0(τ))
p0(τ ;φ0(τ)) dτ

}
−

−
t∫

ζ1

exp
{
−

t∫
τ

y0(s) + y1(s) + q0(s;φ0(s))
p0(s;φ0(s)) ds

}[(
1

p1(τ ;φ1(τ)) −
1

p0(τ ;φ0(τ))

)
y2

1(τ)+

+
(
q1(τ ;φ1(τ))
p1(τ ;φ1(τ)) −

q0(τ ;φ0(τ))
p0(τ ;φ0(τ))

)
y1(τ) + r1(τ ;φ1(τ))− r0(τ ;φ0(τ))

]
dτ = 0. (3.23)

-r b
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An illustration to the part of proof of Theorem 3.6, related to the case α2). Here [t0;T )
is the maximum existence interval for φ0(t). The "cap" in this picture is a part of the
graph of φ0(t).The decreasing curve is a part of the graph of φ1(t); ξ1 and ξ2 are
points of intersection of graph of φ0(t) and φ1; ζ1 is a local maximum point of φ0(t).

It is evident, that
y1(ζ1) < y0(ζ1) (= 0). (3.24)

Since φ0(t) ≥ φ1(t) > 0 on the interval [ζ1; ξ2], then it follows from the conditions of the theorem, that

p0(t;φ0(t)) ≥ p0(t;φ1(t)), r0(t;φ0(t)) ≤ r0(t;φ1(t)), q0(t;φ0(t))
p0(t;φ0(t)) ≥

q0(t;φ1(t))
p0(t;φ1(t)) , t ∈ [ζ1; ξ2].
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Then since y1(t) < 0 on the interval [ζ1; ξ2], it follows from (3.23) and (3.24), that y1(ξ2) < y0(ξ2). Then
φ′1(ξ2) < φ′0(ξ2). It follows from here, that φ′1(t) < φ′0(t), t ∈ [ξ3; ξ2], for some ξ3 ∈ (ζ1; ξ2). Therefore,
ξ2∫
ξ3

(φ1(τ) − φ0(τ))′dτ < 0, or, which is the same, φ1(ξ3) > φ0(ξ3) (since φ1(ξ2) = φ0(ξ2), see pict.1),

which contradicts (3.22). The obtained contradiction shows, that T = +∞. The proof of the theorem is
complete.

4 Some Applications

Consider the Emden - Fowler equation (see [2], p. 171):

(tρφ′(t))′ − tσφn(t) = 0, t ≥ t0 > 0, n > 1, ρ, σ ∈ (−∞; +∞). (4.1)

Along with this equation, consider the equation

(tρφ′(t))′ − tσ|φ(t)|n−1φ(t) = 0, t ≥ t0. (4.2)

Here p0(t;w) ≡ tρ, q0(t;w) ≡ 0, r0(t;w) ≡ −tσ|w|n−1. We put: P (t) ≡ tρ, Q(t) ≡
≡ 0, R(t) ≡ −tσ. Let ρ > 1. Then

F (t0; t; c1; c2) ≤ |c1| exp
{

c2

ρ− 1(t1−ρ0 − t1−ρ) + tσ+2−ρ − tσ+2−ρ
0

(σ + 1)(σ + 2− ρ) −
tσ+2−ρ
0

(σ + 1)(ρ− 1)

}
.

It follows from this, that if −1 < σ < ρ− 1, then

F (t0; t; c1; c2) ≤ |c1| exp
{

c2

ρ− 1 t
1−ρ
0 − tσ+2−ρ

0
(σ + 1)(σ + 2− ρ)

}
def= A(t0; c1; c2),

and if σ < −1, then

F (t0; t; c1; c2) ≤ |c1| exp
{

c2

ρ− 1 t
1−ρ
0 − tσ+2−ρ

0
(σ + 1)(ρ− 1)

}
def= B(t0; c1; c2).

It is not difficult to see, that if

−1 < σ < ρ− 2, A

(
t0;φ(0); tρ0

φ(1)

φ(0)

)
< 1, (4.3)

or
σ < −1, B

(
t0;φ(0); tρ0

φ(1)

φ(0)

)
< 1, (4.4)

then for eq. (4.2) the conditions of the theorem 3.1 hold. Therefore, for every φ(0), φ(1), satisfying the
conditions φ(0) 6= 0, φ(1)

φ(0)
≥ 0 and one of the conditions (4.3) or (4.4), the solution φ0(t) of eq. (4.2) with

φ0(t0) = φ(0), φ
′
0(t0) = φ(1), exists on the interval [t0; +∞), and if takes place (4.3), then

|φ0(t)| ≤ A
(
t0;φ(0); tρ0

φ(1)

φ(0)

)
, t ≥ t0, (4.5)

and if takes place (4.4), then

|φ0(t)| ≤ B
(
t0;φ(0); tρ0

φ(1)

φ(0)

)
, t ≥ t0; (4.6)

the function |φ0(t)| is positive and nondecreasing. It is evident, that if φ(0) > 0, then φ0(t) is a solution
of eq. (4.1) too.
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Remark 4.1. If φ(t) is a positive (negative) solution of eq. (4.2) (and n = n1
n2

, where n1 and n2 are odd),
then φ(t) is a solution of eq. (4.1) too. Note that equations (4.1) and (4.2) are not equivalent for all n, e.
g. the equation φ′′(t)− 1

tφ
2(t) = 0 is not equivalent to equation φ′′(t)− 1

t |φ(t)|φ(t) = 0, since the function
φ0(t) ≡ − 2

t is a solution of the last equation on the interval [1; +∞), but not of the first one.

Let ρ = 0, σ + n + 1 < 0. Then (see [2], p. 173) the function φB(t) ≡
[

(σ+2)(σ+n+1)
(n−1)2

] 1
n−1

t−
σ+2
n−1

is a solution of eq. (4.2). It is not difficult to see, that for p(t;w) = p1(t;w) ≡ 1, q(t;w) = q1(t;w) ≡
0, r(t;w) = r1(t;w) = −tσ|w|n−1, t ≥ t0, w ∈ (−∞; +∞), ρ = 0, σ + n+ 1 < 0 for equations (2.8)and
(4.2) the conditions C1) - E1) of the theorem 3.3 hold. Therefore, the solution φ0(t) of eq. (4.2) with
φ0(t0) 6= 0, φ′0(t0)

φ0(t0) ≤
φ′B(t0)
φB(t0) , exists on the interval [t0; +∞), and |φ0(t)| is positive and nondecreasing. It

is evident that if φ0(t0) > 0, then φ0(t) is a solution of eq. (4.1). For φ0(t0) < 0 the function φ0(t) will be
a solution of eq. (4.1) if n = n1

n2
, where n1 and n2 are odd. If ρ 6= 1, then by invertible transformations = (ρ− 1)−1tρ−1, φ = (ρ− 1)(ρ−σ−2)/[(ρ−1)(n−1)] ψ

s forρ > 1;

s = (1− ρ)−1t1−ρ, φ = (1− ρ)−(σ+ρ)/[(n−1)(1−ρ)]ψ, forρ < 1.

eq. (4.2) converts in (see [2], pp. 171, 172)

ψ′′(s)− sσ1 |ψ(s)|n−1ψ(s) = 0, s ≥ s0 > 0, (4.7)

where

σ1 =


σ+ρ
ρ−1 − (n+ 3), ρ > 1;

σ+ρ
1−ρ , ρ < 1.

(4.8)

This transformation establishes a one-to-one correspondence between solutions of equations (4.2) and
(4.7), and existing on the interval [t0; +∞) solutions of eq. (4.2) transform in solutions of eq. (4.7), existing
on the interval [s0; +∞). By already proved above for σ1 + n+ 1 < 0 eq. (4.7) has two - parameter family
of solutions on the interval [s0; +∞). Therefore from (4.8) it follows, that in the cases ρ > max{1, σ + 2}
and σ−1

n + 1 < ρ < 1 eq. (4.2) has two - parameter family of solutions on the interval [t0; +∞).
Definition 4.1. We say, that a solution (φ0(t), ψ0(t)) of eq. (1.2) is conditionally stable for t → +∞,
if there exists one dimensional manifold S 3 (φ0(t0), ψ0(t0)) such, that for every ε > 0 and for every
solution (φ(t), ψ(t)) of the system (1.2) there exists δ > 0 such, that |φ(t)− φ0(t)|+ |ψ(t)−ψ0(t)| < ε for
t ≥ t0, as soon as (φ(t0), ψ(t0)) ∈ S and |φ(t0)− φ0(t0)|+ |ψ(t0)− ψ0(t0)| < δ (see [10], p. 314).
Definition 4.2. We say, that a solution φ0(t) of eq. (1.1) is conditionally stable for t → +∞, if the
corresponding solution (φ0(t), p0(t;φ0(t))φ′0(t)) of the system (1.2) is conditionally stable for t→ +∞.

Let us show, that if ρ > 1, σ < −1, then the solution φ0(t) ≡ 0 of eq. (4.1) is conditionally stable for
t→ +∞. Let S =

{
(φ(0), φ(1)) : 0 ≤ φ(0) ≤ exp

{ tσ+2−ρ
0

(σ+1)(ρ−1)
}
, φ(1) = 0

}
, and let φ(t) be a solution of eq.

(4.1) with (φ(t0), tρ0φ′0(t0)) ∈ S, φ(t0) 6= 0. Then B(t0;φ(t0); 0) < 1. By virtue of theorem 3.1 it follows
from here and from (4.4), that φ(t) exists on the interval [t0; +∞) and satisfies the inequality

|φ(t)| ≤ φ(t0) exp
{
− tσ+2−ρ

0
(σ + 1)(ρ− 1)

}
, t ≥ t0 > 0. (4.9)

By virtue of (4.1) it follows from her, that

|tρφ′(t)| ≤ φ(t0) exp
{
− tσ+2−ρ

0
(σ + 1)(ρ− 1)

}(
−tσ+1

0
σ + 1

)
, t ≥ t0 > 0. (4.10)

Let ε > 0 be fixed. We put:

δ = δ(ε) ≡ ε

2

(
1− tσ+1

0
σ + 1

)−1
exp
{

tσ+2−ρ
0

(σ + 1)(ρ− 1)

}
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Let |φ(t0)|+ |tρ0φ′(t0)| < δ. Then it follows from (4.9) and (4.10), that

|φ(t)|+ |tρ0φ′(t)| < ε for t ≥ t0. (4.11)

If φ(t0) = 0, then by virtue of remark 1.1 φ(t) ≡ 0, and, therefore, in this case the relation (4.11) also
takes place. Consequently, the solution (φ0(t), ψ0(t)) ≡ (0, 0) of the systemφ′(t) = ψ(t)

tρ ;

ψ′(t) = tσφn(t)

is conditionally stable for t → ∞. Then the solution φ0(t) ≡ 0 of eq. (4.1) is conditionally stable for
t→∞. Taking into account remark 4.1 we summarize the obtained result in the following form.
Theorem 4.1. The following assertions hold.
I). Let ρ > 1, and let φ(0) and φ(1) satisfy the conditions: φ(0) 6= 0, φ(1)

φ(0)
≥ 0 and one of the conditions (4.3),

(4.4). Then the solution φ0(t) of eq. (4.2), satisfying the initial value conditions: φ0(t0) = φ(0), φ
′
0(t0) =

φ(1), exists on the interval [t0; +∞). The function |φ0(t)| is positive and nondecreasing, and if (4.3) holds,
then the estimate (4.5) is valid, and if (4.4) holds, then the estimate (4.6) is valid. If φ(0) > 0 or if
φ(0) < 0, n = n1

n2
, where n1 and n2 are odd, then φ0(t) is a solution of (4.1).

II). Let ρ = 0, σ + n+ 1 < 0. Then the solution φ0(t) of eq. (4.2) with φ0(t0) 6= 0, 0 ≤ φ′0(t0)
φ0(t0) <

φ′B(t0)
φB(t0) ,

exists on the interval [t0; +∞), and |φ0(t)| is positive and nondecreasing. If φ0(t0) > 0 or if φ0(t0) <
0, n = n1

n2
, where n1 and n2 are odd, then φ0(t) is a solution of eq. (4.1).

III). In the cases ρ > max{1, σ+ 2} and σ−1
n + 1 < ρ < 1 eq. (4.1) has two - parameter family of solutions

on the interval [t0; +∞).
IV). If ρ > 1 and σ < −1, then φ0(t) ≡ 0 of eq. (4.1) is conditionally stable for t→ +∞.
Remark 4.2. In the case ρ = 0 the existence of global solutions of eq. (4.1), which are different by their
properties from described in assertion II of theorem 4.1 (the Kneser’s solutions) follows from theorem
16.1 of book [1] (see [1], p. 371).

Let us compare theorem 4.1 with the following result (see [11], p. 8).
Theorem*. The following assertions hold:
i). There exists ε > 0 such, that every solution of eq. (4.7) with Cauchy initial conditions |ψ(s)| ≤
ε, |ψ′(s| ≤ ε exists on the interval [s0; +∞) if and only if σ1 < −n− 1.
ii). If σ1 ≥ −n− 1, then every solution ψ(s) of eq. (4.7), satisfying ψ(τ)ψ′(τ) > 0 at some τ ≥ s0 is non
continuable on the interval [s0; +∞).

In the assertions I) and II) of the theorem 4.1 the region of the initial values φ(t0), φ′(t0) (ψ(s0), ψ′(s0))
for which the solution φ(t) (ψ(s)) of eq. (4.2) (of eq. (4.7)) exists on the interval [t0; +∞) ([s0; +∞)) is
describes by well - defined relationships, whereas from the assertion i) of the theorem* we can not see
exactly for which initial conditions ψ(s0), ψ′(s0) (except the trivial case ψ(s0) = ψ′(s0) = 0) the solution
ψ(s) of eq. (4.7) exists on the interval [s0; +∞). From the assertion ii) of the theorem* it follows, that in
the assertion II) of the theorem 4.1 the condition σ + n+ 1 < 0 can not be replaced by weaker condition
σ + n+ 1 ≤ 0. In this sense theorem 3.3 (which implies II)) is sharp. From the assertion ii) of theorem*
and from (4.8) it follows, that in the assertion III) of theorem 4.1 the condition ρ > max{1, σ + 2}
(σ−1
n + 1 < 1) can not be replaced by weaker condition ρ ≥ max{1, σ + 2} (σ−1

n + 1 ≤ 1). In this sense
theorem 3.1 (which is used in proof of III)) is sharp.

Let λ(t), µ(t) and ν(t) be continuous functions on the interval [t0; +∞) and let λ(t) > 0, µ(t) ≥
0, ν(t) ≥ 0, t ≥ t0. Consider the following Van der Pol’s type equation (see [12]).

(λ(t)φ′(t))′ + µ(t)(φ2(t)− 1)φ′(t) + ν(t)φ(t) = 0, t ≥ t0. (4.12)

Here p0(t;w) ≡ λ(t), q0(t;w) ≡ µ(t)(w2 − 1), r0(t;w) ≡ ν(t) satisfy all of the conditions of theorem 3.6.
Therefore, for each φ(0) and φ(1) the solution φ0(t) of eq. (4.12), satisfying the initial value conditions:
φ0(t0) = φ(0), φ

′
0(t0) = φ(1), exists on the interval [t0; +∞). We put:

P (t) = pε(t) ≡ λ(t), Q(t) ≡ 0, qε(t) = µ(t)(ε2 − 1), rε(t) = ν(t), (4.13)
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t ≥ t0, ε > 0, N = 1. It is not difficult to check, that if the following conditions hold:

a◦).
+∞∫
t0

dτ
λ(τ) =

+∞∫
t0

dτ
λ(τ)

τ∫
t0

exp
{
−

τ∫
s

µ(ξ)(ε2 − 1)
λ(ξ)

}
ν(s)ds = +∞ when ε ≥ N ;

b◦). for 0 < ε ≤ ε0 the equations

(λ(t)φ′(t))′ + µ(t)(ε2 − 1)φ′(t) + ν(t)φ(t) = 0, t ≥ t0

are oscillatory, then for eq. (4.12) with (4.13) the conditions A3) - B3) of theorem 3.5 hold. Then due
to theorem 3.5 the solution φ0(t) either is oscillatory or is singular oscillatory of first kind. Since it is
evident that the functions p0(t;w) ≡ λ(t), q0(t;w) ≡ µ(t)(w2 − 1), r0(t;w) ≡ ν(t) satisfy the conditions
of the remark 1.1, the solution φ0(t), satisfying the initial value conditions φ0(t0) = φ(0), φ

′
0(t0) = φ(1), is

exactly one, and consequently, due to remark 3.2 cannot be singular oscillatory of first kind. The obtained
result we summarize in the following form.
Theorem 4.2. Let λ(t) > 0, µ(t) ≥ 0, ν(t) ≥ 0 for t ≥ t0. Then for each φ(0) and φ(1) the solution
φ0(t) of eq. (4.12), satisfying the initial value conditions:
φ0(t0) = φ(0), φ

′
0(t0) = φ(1), exists on the interval [t0; +∞). Moreover if in addition the conditions a◦)

and b◦) hold, then φ0(t) is oscillatory.

5 Conclusion

We have used the Riccati equation method to investigate some classes of second order nonlinear ordinary
differential equations. This method have made possible us to establish four new global existence criteria
for the mentioned classes of equations. We have proved two new oscillatory criteria for them as well.
These criteria were used to the Emden - Fowler equation, having applications in the astrophysics, and to
the Wan der Pole type equation, which is applicable for studying the dynamics of dusty grain charge in
dusty plasmas.
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