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Abstract In this paper we consider and analyse NURBS based on bivariate quadratic B-splines
on criss-cross triangulations of the parametric domain Ω0 = [0, 1] × [0, 1], presenting their main
properties, showing their performances to exactly construct quadric surfaces and reporting some
applications related to the modeling of objects. Moreover, we propose applications to the numerical
solution of partial differential equations, with mixed boundary conditions on a given physical domain
Ω, by using three different spline methods to set the prescribed Dirichlet boundary conditions.
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1 Introduction

In this paper, we consider and analyse NURBS, based on bivariate quadratic B-splines on criss-cross
triangulations of the parametric domain Ω0 = [0, 1]× [0, 1], introduced in [1]. Since the above B-splines
are of total degree, the bivariate spline functions based on them avoid possible unwanted oscillations and
inflection points, as noted in [1]. Moreover, they are those of the lowest degree having continuous first
partial derivatives and they allow the control of smoothness across directions not only parallel to the
coordinate axes.

We underline that the space of quadratic splines on criss-cross triangulations (see e.g. [2,3,4,5,6,7,8,9])
has been considered in the solution of several kinds of problems, like construction of approximation
operators with special properties (see e.g. [10,11,12,13,14,15,16]), solution of integral equations (see e.g.
[17]), numerical integration (see e.g. [18]), surface reconstruction (see e.g. [1,19,20,21,22]). Here we want
to give a further contribution to the researches on this topic.

After presenting the main performances of the above NURBS, we propose applications to the solution
of partial differential equations with mixed boundary conditions on a given physical domain Ω. Since
many domains of interest in applications are often described by conic sections, then we represent them
by such NURBS. Furthermore, in order to avoid the heavy computations related to their derivatives
and integrals, since the computation with B-splines is strictly related to the corresponding NURBS, we
use the same above B-splines to get the basis for the solution space of the differential problem. In this
way, we keep a unique description of the geometry, while avoiding the use of rational functions in the
discretization of the solution.

Here is an outline of the paper. In Section 2, we report definitions and present properties of bivariate
quadratic spline spaces on criss-cross triangulations of the parametric domain, introducing B-spline
basis. In Section 3 we construct NURBS based on such B-splines, present their main properties, show
their performances to exactly represent quadric surfaces and report some applications related to the
modeling of objects. In Section 4, we propose applications to the solution of diffusion problems with
mixed boundary conditions on the physical domain Ω. In particular, by the above NURBS we generate
surfaces reproducing Ω and we use the same B-splines to get a basis for the solution space, considering
several spline approximation schemes to impose non-homogeneous Dirichlet boundary conditions. Finally,
some numerical examples are provided, with comparisons with other classical methods based on finite
elements and/or biquadratic B-splines.

2 Bivariate Quadratic Spline Spaces on Criss-cross Triangulations

In this section we present bivariate quadratic spline spaces on criss-cross triangulations and their properties.
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2.1 The Spline Space S1
2 (Tmn)

Given two positive integers m and n, let Ω0 :=
{

(ξ, η) ∈ R2 : 0 ≤ ξ, η ≤ 1
}
be the unit square decomposed

into mn subrectangles by the two non uniform partitions ξ̄ := {ξi, 0 ≤ i ≤ m}, η̄ := {ηj , 0 ≤ j ≤ n} of
the segments [ξ0, ξm] = [0, 1] and [η0, ηn] = [0, 1], respectively.

We denote by Rmn the rectangular partition of Ω0 given by ξ̄ × η̄ and by S1,1
2,2 (Rmn) the space of C1

biquadratic tensor product splines.
Now, let Tmn be the criss-cross triangulation of Ω0, defined by drawing the two diagonals in each

subrectangle. We consider the space

S1
2 (Tmn) := {s ∈ C1(Ω0) : s|T ∈ P2, for each triangular cell T of Tmn},

whose dimension is
Nh = (m+ 2)(n+ 2)− 1 (1)

where P` is the space of bivariate polynomials of total degree less than or equal to ` [4, Sect. 2.5].

2.2 Spanning Set, Basis and Properties of S1
2 (Tmn)

Setting Kmn := {(i, j) : 0 ≤ i ≤ m+ 1, 0 ≤ j ≤ n+ 1}, let

Bmn := {Bij , (i, j) ∈ Kmn} (2)

be the collection of (m+ 2)(n+ 2) B-splines spanning the space S1
2 (Tmn) [7], with knots

ξ−2 = ξ−1 = 0 = ξ0 < ξ1 < . . . < ξm = 1 = ξm+1 = ξm+2, (3)
η−2 = η−1 = 0 = η0 < η1 < . . . < ηn = 1 = ηn+1 = ηn+2.

In Bmn, we can distinguish three kinds of B-splines. There are:

- a first-boundary-layer of 2m+ 2n+ 4 B-splines, with triple knots on their support, whose restrictions
to the boundary ∂Ω0 of Ω0 are univariate quadratic B-splines, i.e. Bij , (i, j) ∈ K̃mn, with K̃mn :=
{(i, 0), (i, n+ 1), 0 ≤ i ≤ m+ 1; (0, j), (m+ 1, j), 1 ≤ j ≤ n};

- a second-boundary-layer of 2m+ 2n− 4 B-splines, with double knots on their support, i.e. Bi1, Bin,
1 ≤ i ≤ m, B1j , Bmj , 2 ≤ j ≤ n− 1;

- (m− 2)(n− 2) inner B-splines, with simple knots, i.e. Bij , 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1.

We remark that the first-boundary-layer and the second-boundary-layer B-splines can be expressed as
linear combination of classical B-splines with octagonal support and simple knots [3,23].

Therefore, an element s ∈ S1
2 (Tmn) can be written in the form

s(ξ, η) =
m+1∑
i=0

n+1∑
j=0

αijBij(ξ, η), αij ∈ R, (ξ, η) ∈ Ω0. (4)

Since the knot multiplicity affects the B-spline smoothness, i.e. Bij is 2− r differentiable, if r is the
knot multiplicity, the first-boundary-layer B-splines have a jump on ∂Ω0, the second-boundary-layer ones
are C0 on ∂Ω0 and the inner ones are C1 everywhere.

We recall [2,3,24] that the second-boundary-layer B-splines and the inner ones coincide with the so
called “interior”, “side” and “corner” B-splines, spanning the space of C1 quadratic piecewise polynomials
with boundary conditions. In Fig. 1 we show some B-splines of Bmn. Moreover, in the case of uniform
knot partition, i.e ξi − ξi−1 = ηj − ηj−1 = h, i = 1, . . . ,m+ 1, j = 1, . . . , n+ 1, the inner B-splines are
the classical box splines (see e.g. [4, Sect. 2.4], [5], [25, pag. 5], [26, Sect. 12.2] and the references therein).

In order to evaluate the B-splines in (2) (or their derivatives), it is convenient to consider their B-form,
i.e. their expression by means of the Bernstein-Bézier coefficients (BB-coefficients) and then apply the de
Casteljau algorithm for triangular surfaces [26, Sect. 2.5]. Since each B-spline is a polynomial of total
degree two in each triangle of Tmn, it is described by six BB-coefficients, ensuring the C1 smoothness.
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(a) (b) (c)

Figure 1. The graph of (a) the first-boundary-layer B-spline B10; (b) the second-boundary-layer B-spline B11; (c)
the inner B-spline B22, in S1

2 (T54), with ξ̄ = {0, 0.3, 0.5, 0.6, 0.85, 1} and η̄ = {0, 0.2, 0.4, 0.75, 1}.

Consequently, its first partial derivatives are polynomials of total degree one in such triangles, where they
are described by three BB-coefficients, ensuring the C0 smoothness.

The BB-coefficients of the inner B-splines {Bij , 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1} are given in [27] and
are reported in Fig. 2, the other ones can be found in [5,6]. In particular we recall that the BB-coefficients
of any Bij are obtained by those reported in Fig. 2, conveniently setting hp = ξp − ξp−1, p = i− 1, i, i+ 1,
and/or kq = ηq − ηq−1, q = j − 1, j, j + 1, equal to zero, in the case of double or triple knots. When 0

0
occurs, we set the corresponding value equal to zero.

Concerning the properties of the B-splines belonging to Bmn, we recall that they are positive and
form a partition of unity. Moreover, the first-boundary-layer B-splines are linearly independent as the
univariate ones, while the second-boundary-layer and the inner B-splines are linearly dependent. In order
to obtain a B-spline basis for S1

2 (Tmn) we have to neglect one B-spline from the spanning set Bmn, getting
the set

B := {Bij , (i, j) ∈ K̄mn} ⊂ Bmn, (5)

where K̄mn := {(i, j) ∈ Kmn, (i, j) 6= (i0, j0)}, for any pair of indices (i0, j0) ∈ K̂mn [4, Sect. 2.7], [7],
with K̂mn := {(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We remark that the cardinality of B is equal to Nh, with Nh
defined in (1).

Moreover, we underline that in [8] the refinement equation for quadratic B-splines is proposed. In
particular, considering the subtriangulation T2m,2n of Tmn, obtained by subdividing each rectangle
[ξi, ξi+1] × [ηj , ηj+1] into four equal subrectangles and then by drawing the two diagonals in each
subrectangle, since S1

2 (Tmn) ⊂ S1
2 (T2m,2n), each coarse B-spline (i.e. belonging to S1

2 (Tmn)) is expressed
as linear combination of fine B-splines (i.e. belonging to S1

2 (T2m,2n)).

Furthermore, given a function ρ ∈ C(Ω0), we can establish how well a spline in S1
2 (Tmn) is able to

approximate such a function. Indeed, concerning the approximation properties of bivariate C1 quadratic
spline spaces on criss-cross triangulations, we can refer to [9], where the authors give error bounds for
functions and partial derivatives in terms of the smoothness of functions that are approximated and
the characteristics of the triangulation. In particular, since we know that there exist quasi-interpolating
operators exact on the space P2 (see e.g [4, Sect. 2.4], [7,9,19]), then the optimal approximation order is
achieved for sufficiently smooth functions, i.e. if ρ ∈ C3(Ω0) there exists a constant C > 0 such that

inf
s∈S1

2 (Tmn)
‖ρ− s‖∞ ≤ C∆

3 max {‖Dα1,α2ρ‖∞ : α1 + α2 = 3} ,

where ∆ := max{diam(T ) | T is a triangle of Tmn}.

An interesting property of the spline functions in S1
2 (Tmn) is the control of C1 smoothness across

directions not only parallel to the coordinate axes.
We highlight it by the following example, where we consider the function ρ(ξ, η) = (3η − 2ξ + 1)|3η −

2ξ + 1|, (ξ, η) ∈ Ω0, that is C1 across the line 3η − 2ξ + 1 = 0, but it has a discontinuity of the second

directional derivative in the direction
[

2
√

13
13 ,− 3

√
13

13

]T
is across the same above line.
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(a)

1. σ
′
i

4 , 2. σ
′
i

2 , 3. σ
′
i

2 , 4. σ′iτ ′j , 5. σ′i,

6. σ′iτj+1, 7.
τ ′j
2 , 8.

σ′i + τ ′j
2 , 9. σ

′
i + τj+1

2 , 10. τj+1

2 ,

11.
τ ′j
4 , 12. τ ′j , 13.

σ′i + σi+1 + τ ′j + τj+1

4 , 14. τj+1, 15. τj+1

4 ,

16.
τ ′j
2 , 17.

σi+1 + τ ′j
2 , 18. σi+1 + τj+1

2 , 19. τj+1

2 , 20. σi+1τ
′
j ,

21. σi+1, 22. σi+1τj+1, 23. σi+1

2 , 24. σi+1

2 , 25. σi+1

4 ,

(b)

Figure 2. (a) Support and (b) BB-coefficients of the C1 B-splines Bij , 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1, where “O”
denotes a zero B-coefficient and σi+1 = hi+1

hi+hi+1
, σ′i = hi−1

hi−1+hi
, τj+1 = kj+1

kj+kj+1
, τ ′j = kj−1

kj−1+kj
, with hi = ξi− ξi−1,

kj = ηj − ηj−1.

We assume ξ̄ = {0, 1/2, 1}, η̄ = {0, 1/3, 1} as knot vectors and we set αij = ρ(si, tj), i, j = 0, . . . , 3,
with

si := ξi−1 + ξi
2 , tj := ηj−1 + ηj

2 . (6)

Then, we approximate the function ρ by the bivariate spline s belonging to S1
2 (T22) and of the form (4).

By using the above knot vectors and coefficients αij , we also construct the approximation of ρ in the space
S1,1

2,2 (R22). In this case the blending functions are the biquadratic B-splines on ξ̄ × η̄. We remark that the
spline s is defined by the well known bivariate variation diminishing operator (see e.g. [4, Sect. 2.4], [7])
and the spline belonging to S1,1

2,2 (R22) is the tensor product of two univariate spline quasi-interpolating
variation diminishing schemes [28, Chaps. XII, XVII].

Then we construct their first directional derivatives across the line 3η − 2ξ + 1 = 0.
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In Figs. 3(a) and 3(b) we report the graphs of the approximate first directional derivatives of ρ in the

direction
[

2
√

13
13 ,− 3

√
13

13

]T
, computed in the two above spline spaces, respectively. In (a) we can notice the

exact reconstruction of the C0 continuity of first directional derivative of ρ, by using the spline belonging
to S1

2 (T22), while in (b) the first directional derivative of the spline belonging to S1,1
2,2 (R22) does not

reproduce the requested C0 smoothness across the line 3η − 2ξ + 1 = 0.

(a) (b)

Figure 3. The graphs of the approximate first directional derivatives of ρ(ξ, η) = (3η − 2ξ + 1)|3η − 2ξ + 1| in the

direction
[

2
√

13
13 ,− 3

√
13

13

]T

(a) in S1
2 (T22) and (b) in S1,1

2,2 (R22).

2.3 Splines on the Boundary of Ω0

We consider the boundary ∂Ω0 of Ω0 and we remark that the restrictions of first-boundary-layer B-splines
to ∂Ω0 are univariate B-splines. If we focus, without loss of generality, on the edge [ξ, 0] of Ω0, the
B-splines belonging to Bmn, different from zero on [ξ, 0] are the Bi0’s, i = 0, . . . ,m+1 and their restrictions
to [ξ, 0] coincide with the univariate C1 quadratic B-splines on the knot partition (3). Thus the spline s
in (4), restricted to ∂Ω0, can be expressed in the form

s(ξ, 0) =
m+1∑
i=0

αi0Bi0(ξ, 0). (7)

Being interested in the approximation of ρ|[ξ,0] = ρ(ξ, 0) =: ω(ξ), the coefficients αi0’s in (7) can be
obtained by using different univariate spline schemes. Next we show three possible choices.

(i) If we set αi0 = ω(si), i = 0, . . . ,m+ 1, where the points si, i = 0, . . . ,m+ 1, are the Greville abscissas
defined in (6), we get the simplest choice and it yields the well-known univariate Schoenberg-Marsden
operator S1, exact on the space of linear polynomials (see e.g. [28, pag. 141]). Therefore, from results
known in the literature, we know that the univariate operator S1 is near optimal, i.e. for a function
ω ∈ C2(0, 1), there exists a constant C1 > 0 such that

‖ω − S1ω‖∞ ≤ C1h
2
∥∥∥ω′′∥∥∥

∞
,

where S1ω(ξ) =
m+1∑
i=0

ω(si)Bi0(ξ, 0) and

h = max
i=1,...m

(ξi − ξi−1). (8)
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(ii) We can set the αi0’s in (7) as the coefficients of the univariate quadratic spline quasi-interpolant S2,
defined and studied in [7], i.e. αi0 = µi(ω), where

µ0(ω) = ω(s0),
µi(ω) = aiω(si−1) + biω(si) + ciω(si+1), i = 1, . . . ,m,
µm+1(ω) = ω(sm+1),

with si defined in (6) and

ai = −
σ2
i σ
′
i+1

σi + σ′i+1
, bi = 1 + σiσ

′
i+1, ci = −

σi
(
σ′i+1

)2
σi + σ′i+1

,

σi = hi
hi−1+hi σ′i = hi−1

hi−1+hi = 1− σi,

hi = ξi − ξi−1, i = 0, . . . ,m+ 1.
In this case we have a univariate operator exact on the space of quadratic polynomials. Therefore, from
results known in the literature, such a univariate quasi-interpolant achieves the optimal approximation
order for sufficiently smooth functions, i.e. for ω ∈ C3(0, 1), there exists a constant C2 > 0 such that

‖ω − S2ω‖∞ ≤ C2h
3
∥∥∥ω(3)

∥∥∥
∞

with h defined in (8).
(iii) Finally, we can choose the αi0’s in (7) as the solution of the following interpolation problem

s(si, 0) = ω(si), i = 0, . . . ,m+ 1,

with si, i = 0, . . . ,m+ 1, defined in (6). It is well-known that the linear system

m+1∑
i=0

αi0Bi0(si, 0) = ω(si), i = 0, . . . ,m+ 1

has a unique solution and we have the optimal approximation order three for sufficiently smooth
functions (see [28, Chap. XIII]).

2.4 Generalization to Unequally Smooth Bivariate Quadratic Spline Spaces on
Criss-cross Triangulations

A generalization of the space S1
2 (Tmn) is the space S(µ̄ξ,µ̄η)

2 (Tmn) of unequally smooth bivariate quadratic
piecewise polynomials on Tmn (see e.g. [1,29]), where µ̄ξ = (µξi )

m−1
i=1 , µ̄η = (µηj )n−1

j=1 are vectors whose
elements can be 1, 0, -1 and denote the C1, C0, C−1 spline smoothness, respectively, across the inner
grid lines ξ − ξi = 0, i = 1, . . . ,m− 1 and η− ηj = 0, j = 1, . . . , n− 1, while the spline smoothness across
all oblique mesh segments1 is C1.

In the case of jumps at ξ = ξi and/or η = ηj , in order to uniquely define s ∈ S(µ̄ξ,µ̄η)
2 (Tmn), we set

s(ξi, η) =
{
s(ξ+

i , η), i = 0, . . . ,m− 1,
s(ξ−i , η), i = m,

, s(ξ, ηj) =
{
s(ξ, η+

j ), j = 0, . . . , n− 1,
s(ξ, η−j ), j = n.

The properties of such spline spaces are studied in [29]. In particular, we recall that the dimension of
S(µ̄ξ,µ̄η)

2 (Tmn) is expressed by a formula depending on m, n and the required smoothness.
Moreover, the problem of the construction of a basis for the space S(µ̄ξ,µ̄η)

2 (Tmn) is faced up by
generating a spanning set and then extracting a basis. First of all, we observe that we can associate a
knot multiplicity with the required smoothness, i.e. for i = 1, . . . ,m− 1, the number ξi occurs exactly
1 According to [4], we call mesh segments the line segments that form the boundary of each triangular cell of Tmn.
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2 − µξi times and for j = 1, . . . , n − 1, the number ηj occurs exactly 2 − µηj times. Then, the system
of generators is created in the same way explained in Section 2.2, i.e. considering the BB-coefficients
of the inner B-spline reported in Fig. 2, conveniently setting the steplengths equal to zero, in case of
double or triple knots [30]. Once constructed the spanning set, then we can obtain the B-spline basis,
by conveniently deleting a certain number of generators, depending on the number of spline unequally
smooth conditions.

3 Construction of Bivariate Quadratic NURBS with Applications to the
Modeling of Objects.

In this section we construct bivariate quadratic NURBS surfaces based on the B-splines of Section 2.
Quadratic NURBS functions on Tmn can be obtained from the previous B-spline functions. Let

{wij}(i,j)∈Kmn be a set of positive weights, from (2) we can define the set of quadratic NURBS functions
on Tmn

Nmn :=
{
Rij(ξ, η) = wij Bij(ξ, η)∑

(α,β)∈Kmn wαβ Bαβ(ξ, η) , (i, j) ∈ Kmn

}
, (9)

spanning the space of quadratic rational splines on Tmn [1].
Therefore, a quadratic NURBS surface has the form

S(ξ, η) =
∑

(i,j)∈Kmn

PijRij(ξ, η), (ξ, η) ∈ Ω0, (10)

where (Pij)(i,j)∈Kmn is a given net of control points in R3. In order to generate the surface S(ξ, η), we
have constructed a procedure based on the homogeneous coordinate representation of a NURBS surface in
the three-dimensional space as a B-spline surface in the four-dimensional space. The use of homogeneous
coordinate representations to handle NURBS surfaces is usual in literature (see e.g. [31, Chap. 4]).

We assume pij = (si, tj) ∈ Ω0 as the pre-image of Pij , with si and tj defined in (6).
We remark that, in the case wij = w, for all (i, j), then Rij = Bij ∈ Bmn and therefore S(ξ, η) is a

bivariate quadratic B-spline surface. If, in addition, we consider a functional parametrization, S(ξ, η) is
the spline function defined by the well known bivariate “variation diminishing” operator, reproducing
bilinear functions.

The surface (10) has both the convex hull property and the affine transformation invariance one.
Moreover, from the B-spline locality property, the surface interpolates the control points whose pre-images
are the corner points of Ω0.

The introduction of rational blending functions allows us to exactly model a larger number of shapes.
For example if we consider the knot vectors ξ̄ = η̄ = {0, 1}, the control points and weights given in Table
1, we obtain the quadratic NURBS surface shown in Fig. 4(a). According to the properties of rational
quadratic Bézier curves, the four boundary curves are quarter circles.

Moreover, in Fig. 4(b), we show the NURBS surface based on C1 biquadratic B-splines and constructed
by using the same knot vectors ξ̄ = η̄ = {0, 1}, control points and weights given in Table 1. We can notice
the different behaviour of the two surfaces in Fig. 4(a) and (b), that is, as noted in [1], tensor product
splines (see Fig. 4(b)) may have some inflection points due to their higher coordinate degree four with
respect to bivariate spline functions having total degree two (see Fig. 4(a)).

Table 1. Control points and weights.

i Pi0 Pi1 Pi2 wi0 wi1 wi2

0 (−1, 1, 0) (0, 1, 1) (1, 1, 0) 1
√

2
2 1

1 (−1, 0, 1) (0, 0,−1) (1, 0, 1)
√

2
2 1

√
2

2
2 (−1,−1, 0) (0,−1, 1) (1,−1, 0) 1

√
2

2 1
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(a) (b)

Figure 4. The graphs of (a) the quadratic NURBS surface and (b) the biquadratic NURBS one.

Finally, we show the performances of quadratic NURBS to exactly construct quadric surfaces and
model objects. For this purpose we need to consider the spline spaces with unequally smoothness defined
in Section 2.4.

In Fig. 5(a) we present the circular cylinder obtained by the control points and weights given in Table
2 and knot vectors ξ̄ = {0, 1

4 ,
1
2 ,

3
4 , 1} (considering the knot 1

2 with multiplicity two), η̄ = {0, 1}. In Fig.
5(b) we present a goblet obtained by the control points and weights given in Table 3 and knot vectors
ξ̄ = {0, 1

4 ,
1
2 ,

3
4 , 1} (considering all the interior knots with multiplicity two), η̄ = {0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1}. In such

examples, we can observe two different ways of reproducing circles (see also [31, Chap. 7]).

(a)
(b)

Figure 5. The quadratic NURBS surfaces reproducing (a) the circular cylinder and (b) the goblet.
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Table 2. Control points and weights of the circular cylinder.

i Pi0 Pi1 Pi2 wi0 wi1 wi2

0 (0, 0, 1) (0, 1, 1) (0, 2, 1) 1 1 1
1 (1, 0, 1) (1, 1, 1) (1, 2, 1) 1

2
1
2

1
2

2 (1, 0,−1) (1, 1,−1) (1, 2,−1) 1
2

1
2

1
2

3 (0, 0,−1) (0, 1,−1) (0, 2,−1) 1 1 1
4 (−1, 0,−1) (−1, 1,−1) (−1, 2,−1) 1

2
1
2

1
2

5 (−1, 0, 1) (−1, 1, 1) (−1, 2, 1) 1
2

1
2

1
2

6 (0, 0, 1) (0, 1, 1) (0, 2, 1) 1 1 1

Table 3. Control points of the goblet. The weights are w0,j = w2,j = w4,j = w6,j = w8,j = 1, w1,j = w3,j =
w5,j = w7,j =

√
2

2 , j = 0, . . . 6.

i Pi0 Pi1 Pi2 Pi3

0 (1.5, 0, 0) (0.1, 0, 1) (0.1, 0, 2.2) (2, 0, 2)
1 (1.5,−1.5, 0) (0.1,−0.1, 1) (0.1,−0.1, 2.2) (2,−2, 2)
2 (0,−1.5, 0) (0,−0.1, 1) (0,−0.1, 2.2) (0,−2, 2)
3 (−1.5,−1.5, 0) (−0.1,−0.1, 1) (−0.1,−0.1, 2.2) (−2,−2, 2)
4 (−1.5, 0, 0) (−0.1, 0, 1) (−0.1, 0, 2.2) (−2, 0, 2)
5 (−1.5, 1.5, 0) (−0.1, 0.1, 1) (−0.1, 0.1, 2.2) (−2, 2, 2)
6 (0, 1.5, 0) (0, 0.1, 1) (0, 0.1, 2.2) (0, 2, 2)
7 (1.5, 1.5, 0) (0.1, 0.1, 1) (0.1, 0.1, 2.2) (2, 2, 2)
8 (1.5, 0, 0) (0.1, 0, 1) (0.1, 0, 2.2) (2, 0, 2)
i Pi4 Pi5 Pi6

0 (2.1, 0, 3.7) (1.2, 0, 5) (1.5, 0, 5)
1 (2.1,−2.1, 3.7) (1.2,−1.5, 5) (1.5,−1.5, 5)
2 (0,−2.1, 3.7) (0,−1.2, 5) (0,−1.5, 5)
3 (−2.1,−2.1, 3.7) (−1.2,−1.2, 5) (−1.5,−1.5, 5)
4 (−2.1, 0, 3.7) (−1.2, 0, 5) (−1.5, 0, 5)
5 (−2.1, 2.1, 3.7) (−1.2, 1.2, 5) (−1.5, 1.5, 5)
6 (0, 2.1, 3.7) (0, 1.2, 5) (0, 1.5, 5)
7 (2.1, 2.1, 3.7) (1.2, 1.2, 5) (1.5, 1.5, 5)
8 (2.1, 0, 3.7) (1.2, 0, 5) (1.5, 0, 5)
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4 Applications to the Numerical Solution of Diffusion Problems

In this section, we propose applications of the NURBS presented in Section 3 to the numerical solution
of diffusion problems with mixed boundary conditions. We remark that the proposed method can be
extended to more general second order elliptic problems.

Let Ω ⊂ R2 be an open, bounded and Lipschitz domain, whose boundary ∂Ω is partitioned into two
relatively open subsets, ΓD and ΓN , i.e. ∅ ⊆ ΓD, ΓN ⊆ ∂Ω, ΓD 6= ∅, ΓD ∩ ΓN = ∅ and ∂Ω = Γ̄D ∪ Γ̄N .
We consider the problem 

−∇ · (K∇u) = f, in Ω,
u = g, on ΓD, (Dirichlet condition)
∂u

∂nK
= gN , on ΓN , (Neumann condition)

(11)

where K ∈ R2×2 is a symmetric positive-definite matrix, nK = Kn is the outward conormal vector on
ΓN , f ∈ L2(Ω), gN ∈ L2(ΓN ) and g ∈ H1/2(ΓD), having denoted by H1/2(ΓD) the space of functions of
L2(ΓD) that are traces of functions of H1(Ω), with H1(Ω) := {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ 1}.

In our approach, the problem (11) is solved using the Galerkin procedure.
First of all, assuming as reference parametric domain Ω0 = [0, 1]× [0, 1], the physical domain Ω is

described by a global geometry function G : Ω0 → Ω̄. Since many domains of interest in engineering
problems are often described by conic sections, we consider as geometry function G a quadratic NURBS
surface on a criss-cross triangulation, presented in Section 3, in order to exactly reproduce them. More
precisely, we consider a criss-cross triangulation Tmn of Ω0, the space S1

2 (Tmn), its spanning set Bmn and,
given opportune weights {wij}(i,j)∈Kmn , from Bmn we get Nmn defined in (9). Then, we define the global
geometry function

G : Ω0 → Ω̄, G(ξ, η) =
(
x

y

)
(12)

with
G(ξ, η) =

∑
(i,j)∈Kmn

QijRij(ξ, η), Qij ∈ R2. (13)

We remark that to construct the surface G in (13), we use all the functions in the spanning set Nmn.
In this case, the surface (13) has both the convex hull property and the affine transformation invariance
one.

In order to explain our approach in details, we first assume homogeneous Dirichlet boundary conditions,
i.e. g ≡ 0 in (11). The classical weak formulation of (11) is to find u ∈ H1

ΓD
:=
{
v ∈ H1(Ω) : v = 0 onΓD

}
,

such that
a(u, v) = F (v), ∀v ∈ H1

ΓD , (14)

where a(·, ·) is of the continuous bilinear form a(u, v) :=
∫
Ω

(K∇u) · ∇v dΩ defined in H1
ΓD
×H1

ΓD
and F

is of the linear continuous form F (v) :=
∫
Ω
fv dΩ +

∫
ΓN

gNv dΓN defined in H1
ΓD

.
The well known Galerkin method to approximate the solution of (14) consists in selecting a family

of finite dimensional subspaces Vh ⊂ H1(Ω) depending on a positive parameter h > 0, and finding uh
∈ VDh , such that

a(uh, vh) = F (vh), ∀vh ∈ VDh , (15)

where VDh := {vh ∈ Vh : vh = 0 on ΓD}.
The choice of the space Vh is crucial and the main difference between the existing methods consists in

the selection of such a space. In this paper, we assume

Vh =
{
vh ∈ H1(Ω) : vh = v0,h ◦G−1, v0,h ∈ S1

2 (Tmn)
}
,

and the basis functions of Vh are the compositions of the basis functions of S1
2 (Tmn) with the inverse of

G.
We recall that, in practical applications, the geometry of Ω is frequently described on a mesh of

relatively few elements, while the computation of an approximate solution to the problem is performed
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on a refined mesh (fine enough to achieve the desired accuracy). Therefore, we assume that there is a
coarsest mesh, of which all the other meshes are a refinement, and that the description of the geometry is
fixed at the level of the coarsest mesh and it remains unchanged, independent of the refinement required
by the accuracy of the approximation. Then, we introduce refined discrete spaces in order to get accurate
numerical solutions, performing the h-refinement. This kind of refinement can be done without affecting
the geometry, and can be implemented by knot insertion [8].

Furthermore, as explained in Section 1, we treat independently the geometry and the discrete space,
since the computation with B-spline spaces is easily implemented and strictly related to NURBS. Indeed,
we consider suitable NURBS surfaces based on bivariate quadratic B-splines on criss-cross triangulations,
in order to reproduce the physical domain and we use the same above B-splines as the basis for the
solution space. In this way, we keep a unique description of the geometry, while avoiding the use of
rational functions in the discretization of the solution.

We consider the B-spline basis B of S1
2 (Tmn), given in (5). For the sake of simplicity, we arrange

the functions in B by using only one index and we denote them by Φl, l = 1, . . . Nh, where Nh is the
dimension of S1

2 (Tmn), given in (1).
Then, we can define a basis for Vh as{

ϕl(x, y) = Φl ◦G−1(x, y), l = 1, . . . Nh
}
.

Moreover, let {ϕl, l = 1, . . . nh}, nh ≤ Nh, be the set of the basis functions of Vh which vanish at ΓD,
then the approximate solution uh of the problem (15) is given by

uh =
nh∑
l=1

qlϕl, ql ∈ R. (16)

So, the weak formulation (15) gives rise to the linear system Aq = f where

– A ∈ Rnh×nh is a symmetric, positive definite matrix, called stiffness matrix, with elements

Akl = a(ϕl, ϕk) =
∫
Ω

(K∇ϕl) · ∇ϕk dΩ, k, l = 1, . . . , nh; (17)

– f ∈ Rnh is the vector with components

fk = F (ϕk) =
∫
Ω

fϕk dΩ +
∫
ΓN

gNϕk dΓN = f (1)
k + f (2)

k , k = 1, . . . , nh; (18)

– q ∈ Rnh is the vector of the unknown coefficients ql of (16), l = 1, . . . , nh.

The integrals Akl in (17) and f (1)
k in (18), can be transformed as follows

Akl =
∫
Ω0

(
K
[
J−T∇Φl

])
·
[
J−T∇Φk

]
|detJ | dΩ0, k, l = 1, . . . , nh, (19)

f (1)
k =

∫
Ω0

(f ◦G)Φk |detJ | dΩ0, k = 1, . . . , nh, (20)

with J the Jacobian matrix of the parametrization G given in (12) and (13).
To evaluate the boundary term f (2)

k in (18), we first define the map Gb : I := (0, 1) → ΓN as the
restriction of G to the subset of ∂Ω0 mapped into ΓN , assuming that each side of Ω0 is completely
mapped into ΓN or ΓD. Then,

f (2)
k =

∫
I

(gN ◦Gb)Φk |G′b| dI. (21)

For the evaluation of the integrals in (19), (20), we use a composite Gaussian cubature on triangular
domains (see [32]), implemented by the Matlab function triquad2. Given in input an integer p and the
2 von Winckel, G., Matlab procedure triquad,
http://www.mathworks.com/matlabcentral/fileexchange/9230-gaussian-quadrature-for-triangles.
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vertices of a triangle of Tmn, this procedure computes the p2 nodes and the corresponding weights of the
rule, whose precision degree is 2p− 1. In the numerical tests proposed in the sequel, we use p = 2. When
G is the identity map (i.e. Ω̄ ≡ Ω0), then the integral in (19) is exactly computed, since in each triangle
of Tmn the integrand function is a bivariate quadratic polynomial.

In order to evaluate ∇Φk and J at the cubature nodes in (19), (20), we compute the values of the
B-spline derivatives by means of their BB-coefficients [6,30] and we apply the de Casteljau algorithm for
triangular surfaces.

To evaluate the integral in (21), we use a classical composite Gaussian rule with precision degree three,
inherited from the one defined in the whole domain.

In the non homogeneous case, i.e. g 6= 0 in (11), it is necessary to assume g ∈ H1/2(ΓD), so there
exists a function Rg ∈ H1(Ω) with Rg|ΓD = g. We suppose Rg is known. Now we set ◦u= u − Rg and
we notice that it belongs to H1

ΓD
. Then, the weak formulation of (11) may be transformed into finding

◦
u∈ H1

ΓD
, such that

a(◦u, v) = F (v), ∀v ∈ H1
ΓD , (22)

where a(·, ·) is of the bilinear form appearing in (14) and the linear functional F now takes the form

F (v) :=
∫
Ω

fv dΩ +
∫
ΓN

gNv dΓN −
∫
Ω

(K∇Rg) · ∇v dΩ. (23)

In order to use the Galerkin method for (22), we need to construct an approximation of Rg in Vh.
The first step is to obtain an approximation gh of the boundary function g. A possible approach is to
consider the space Vh\VDh =

〈
ϕnh+1, . . . , ϕnh+nb

h

〉
, with nh + nbh = Nh and gh as a combination of the

nbh basis functions of Vh which do not vanish on ΓD, restricted to ΓD, i.e.

gh(x, y) =
nh+nbh∑
l=nh+1

ql ϕl|ΓD (x, y), ∀(x, y) ∈ ΓD, ql ∈ R. (24)

The control variables ql have to be computed in order to satisfy the prescribed Dirichlet boundary
conditions. Here we apply one of the univariate schemes proposed in Section 2.3 to the function g ◦G.

Then, the approximation of Rg in Vh is the function Rgh(x, y) =
nh+nbh∑
l=nh+1

qlϕl(x, y), (x, y) ∈ Ω.

Now, we compute ◦uh∈ VDh such that

a( ◦uh, vh) = F (vh) ∀vh ∈ VDh . (25)

The weak formulation (25) leads to a linear system of the form Aq = f , where, in this case, the vector f
is defined according to (23). The approximate solution of (11) will then be provided by uh =◦uh +Rgh.

4.1 Numerical Tests

Now, we propose some numerical tests to show the performance of our method, with comparisons with
other classical methods based on finite elements and/or tensor product C1 biquadratic B-splines. Such
results have been obtained by procedures implemented in the Matlab environment.

We first exactly reproduce the physical domain by the global geometry function (13), constructed
specifying the knot partitions ξ̄, η̄, the control points and the weights. This initial exact representation is
retained during the refinement process. Then, we perform h-refinement by adding at every step a middle
knot in each interval of the partitions ξ̄ and η̄.

For each refinement, we construct the approximation gh, defined in (24), by the three spline schemes
proposed in Section 2.3. Finally, we consider the Galerkin discretization, we solve the corresponding linear
system and we obtain the approximate solution uh.
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We compute the discrete L∞-norm of the error (u − uh) on a 100 × 100 grid of evaluation points,
uniform in Ω0. Following the notations of Section 2.3, we denote by E (i), E (ii) and E (iii) the error
norms obtained in computing the control variables in (24) by the three corresponding schemes (i), (ii)
and (iii). We also compute the H1-norm of the error (u− uh), by the composite Gaussian cubature on
triangular domains (see [32]) already used in Section 4. We denote by E1 (i), E1 (ii) and E1 (iii) the
error norms obtained in computing the control variables in (24) by the three corresponding schemes (i),
(ii) and (iii).

With reference to the condition number κ2(A) = ‖A‖2
∥∥A−1

∥∥
2, we remark that its growth is controlled

with respect to the order of the matrix A, since we have verified that its behaviour is linear with respect
to the size of A.

Example 1 We consider a Poisson problem in a quarter of an annulus, shown in Fig. 6(b), with mixed
non homogeneous boundary conditions 

−∆u = f, in Ω,
u = g, on ΓD,
∂u

∂n = gN , on ΓN ,

where
Ω =

{
(x, y) : x = r cos (θ), y = r sin (θ), r ∈ (1, 4), θ ∈

(
π
2 , π

)}
,

ΓD = {(0, y) : y ∈ [1, 4]} ∪ {(x, 0) : x ∈ [−4,−1]} ,
ΓN =

{
(cos (θ), sin (θ)) : θ ∈

[
π
2 , π

]}
∪
{

(4 cos (θ), 4 sin (θ)) : θ ∈
[
π
2 , π

]}
and g, gN are obtained from the exact solution

u(x, y) = sin
(
x2 + y2 − 1

5

)
. (26)

In order to exactly reproduce the domain, we consider the knot partitions ξ̄ = η̄ = {0, 1} (see Fig. 6(a)).
Therefore, we have K11 = {(i, j) : 0 ≤ i, j ≤ 2} and

G(ξ, η) =
∑

(i,j)∈K11

PijRij(ξ, η), (ξ, η) ∈ Ω0,

with control points and weights given in Table 4 [31, Chap. 7].

Table 4. Control points and weights of the geometry function in Example 1.

i Pi0 Pi1 Pi2 wi0 wi1 wi2

0 (−1, 0) (−1, 1) (0, 1) 1
√

2
2 1

1 (−2.5, 0) (−2.5, 2.5) (0, 2.5) 1 1 1
2 (−4, 0) (−4, 4) (0, 4) 1

√
2

2 1

Then, we perform h-refinement, considering m,n = 2, 4, 8, 16, 32 and, in Figs. 7 and 8, we report
the graphs of the error L∞-norms and of the error H1-norms, respectively, versus the interval number
per side m, n. We can notice that the numerical convergence order computed by E (i) is near-optimal,
instead with the schemes (ii) and (iii) we achieve the optimal convergence order for the L∞-norm. In the
case of H1-norm we have the optimal convergence order 2 for all the three schemes (i), (ii) and (iii).

Moreover, in Fig. 7 we also present the graph of the L∞-norm of the errors computed with the same
h-refinement by classical linear FEM, denoted by E P1, by quadratic FEM, denoted by E P2 and by
classical C1 biquadratic B-splines, denoted by E S1,1

2,2 .
We can notice that our results outperform those obtained by classical linear and quadratic FEM and

are comparable with those obtained by classical C1 biquadratic B-splines. Moreover, quadratic FEM loses
one order of convergence, due to the geometry approximation influence.

In Fig. 9(a) we give the graph of the exact solution (26) and in Fig. 9(b) the graph of the approximate
solution, computed by our method, with m = n = 8 and the scheme (iii), presented in Section 2.3.
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(a) (b)

Figure 6. (a) Parameter domain Ω0 and (b) physical domain Ω of Example 1.

Figure 7. Comparisons of the L∞-norm of the errors versus interval number per side in Example 1.

Example 2 Now, we consider the Poisson problem with Dirichlet conditions in the unit square{
−∆u = f, in Ω = (0, 1)2,
u = g, on ∂Ω,

where f and g are obtained from the exact solution u(x, y) = 1
6 (x3 + y3) + (x+ y − 1)|x+ y − 1|. We can

notice that the function u is a function with a discontinuity of the second directional derivative in the
direction

[√
2

2 ,
√

2
2

]T
across the line x+ y − 1 = 0. We present this example in order to show the different

behaviour of the approximated solutions in the spaces S1
2 (Tmn) and S1,1

2,2 (Rmn).
In order to exactly reproduce the domain, we consider the knot partitions ξ̄ = η̄ = {0, 1}. Therefore,

we have K11 = {(i, j) : 0 ≤ i, j ≤ 2} and

G(ξ, η) =
∑

(i,j)∈K11

PijBij(ξ, η), (ξ, η) ∈ Ω0.

Since G is the identity map, the control points are the nine points Pij = {(si, tj), 0 ≤ i, j ≤ 2}, where
si and tj are defined in (6). Obviously, in the case of S1,1

2,2 (Rmn) the map G is described by the same
control points and knot partitions, but the blending functions are the biquadratic B-splines on ξ̄ × η̄.

Then, we perform h-refinement, considering m,n = 2, 4, 8, 16, 32 and, in Tables 5 and 6, we report
the error L∞-norms and the error H1-norms, versus the interval number per side m, n, for the two
above spline spaces S1

2 (Tmn) and S1,1
2,2 (Rmn), respectively. For the space S1,1

2,2 (Rmn), we denote the error
L∞-norms by Etp (i), Etp (ii), Etp (iii), and the error H1-norms by E1

tp (i), E1
tp (ii), E1

tp (iii).
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Figure 8. Comparisons of the H1-norm of the errors versus interval number per side in Example 1.

(a) (b)

Figure 9. The graphs of (a) the exact solution and (b) the approximate solution of Example 1.

Table 5. Comparisons of the L∞-norm and the H1-norm of the errors versus interval number per side in Example
2 for the space S1

2 (Tmn).

m = n E (i) E (ii) E (iii) E1 (i) E1 (ii) E1 (iii)
2 7.8(-02) 3.6(-03) 2.0(-03) 1.8(-01) 1.4(-02) 1.2(-02)
4 2.1(-02) 4.6(-04) 2.5(-04) 5.3(-02) 3.2(-03) 3.1(-03)
8 5.6(-03) 5.7(-05) 3.1(-05) 1.5(-02) 7.7(-04) 7.6(-04)
16 1.4(-03) 6.8(-06) 3.9(-06) 3.9(-03) 1.9(-04) 1.9(-04)
32 3.6(-04) 8.5(-07) 4.9(-07) 1.0(-03) 4.8(-05) 4.8(-05)

Table 6. Comparisons of the L∞-norm and the H1-norm of the errors versus interval number per side in Example
2 for the space S1,1

2,2 (Rmn).

m = n Etp (i) Etp (ii) Etp (iii) E1
tp (i) E1

tp (ii) E1
tp (iii)

2 1.1(-01) 1.1(-01) 1.1(-01) 3.6(-01) 3.0(-01) 3.0(-01)
4 2.3(-02) 2.4(-02) 2.4(-02) 1.1(-01) 9.3(-02) 9.3(-02)
8 1.9(-02) 1.7(-02) 1.7(-02) 5.1(-02) 4.8(-02) 4.8(-02)
16 1.1(-02) 1.1(-02) 1.1(-02) 2.8(-02) 2.7(-02) 2.7(-02)
32 3.5(-03) 3.5(-03) 3.5(-03) 1.0(-02) 9.6(-03) 9.6(-03)

We can remark that the numerical results obtained by C1 quadratic splines on criss-cross triangulations
outperform those obtained by C1 biquadratic splines. Indeed the first ones reproduce the discontinuity of
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the second directional derivative across x+ y − 1 = 0 of the exact solution u, unlike the approximated
solutions in S1,1

2,2 (Rmn).
Finally, in Fig. 10(a) we give the graph of the exact solution and in Fig. 10(b) the graph of its

first directional derivative in the direction
[√

2
2 ,
√

2
2

]T
. Moreover, in Figs. 11(a), 12(a) and 11(b), 12(b)

we report the graphs of the approximate solutions and the corresponding first directional derivatives,
computed with m = n = 8 and the scheme (iii) of Section 2.3, in the space S1

2 (T88) and in the space
S1,1

2,2 (R88), respectively.

(a) (b)

Figure 10. The graphs of (a) the exact solution and (b) its first directional derivative in the direction
[√

2
2 ,
√

2
2

]T

of Example 2.

(a) (b)

Figure 11. The graphs of (a) the approximate solution in the space S1
2 (T88) and (b) the corresponding first

directional derivative in the direction
[√

2
2 ,
√

2
2

]T

.

We can note that the first directional derivative of the approximate solution in the space S1
2 (Tmn) is

C0 across the line x+ y − 1 = 0 (see Fig. 11(b)), confirming the properties of such a spline space. Indeed,
as already remarked, spline functions of total degree defined on criss-cross triangulations allow the control
of smoothness across directions not only parallel to the coordinate axes, as it occurs in the case of tensor
product splines (see Fig. 12(b)). Moreover, we can notice unwanted oscillations in the first directional
derivative of the approximate solution belonging to S1,1

2,2 (T88) (see Fig. 12(b)).

Example 3 Finally, we present a very simple example to show how the different schemes in the choice
of the control variables in (24), influence the approximation of the solution. We consider the Poisson
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(a) (b)

Figure 12. The graphs of (a) the approximate solution in the space S1,1
2,2 (R88) and (b) the corresponding first

directional derivative in the direction
[√

2
2 ,
√

2
2

]T

.

problem in the unit square 
−∆u = f, in Ω = (0, 1)2,
u = g, on x = 0, y = 0
∂u

∂n = gN , on x = 1, y = 1,

where f , g and gN are obtained from the exact solution u(x, y) = x2 + y2. In order to exactly reproduce
the domain, we consider the same map G of Example 2.

Then, we perform h-refinement, considering m,n = 2, 4, 8, 16, 32 and, in Table 7, we report the error
L∞-norms and the error H1-norms, versus the interval number per side m, n.

Table 7. Comparisons of the L∞-norm and the H1-norm of the errors versus interval number per side in Example
3.

m = n E (i) E (ii) E (iii) E1 (i) E1 (ii) E1 (iii)
2 6.2(-02) 4.7(-15) 4.0(-15) 9.0(-02) 3.5(-15) 3.5(-15)
4 1.6(-02) 3.3(-15) 3.3(-15) 2.5(-02) 3.0(-15) 3.0(-15)
8 3.9(-03) 4.4(-15) 4.4(-15) 6.3(-03) 4.4(-15) 4.3(-15)
16 9.8(-04) 4.2(-15) 4.4(-15) 1.6(-03) 8.9(-15) 8.5(-15)
32 2.4(-04) 1.6(-14) 1.6(-14) 4.0(-04) 2.3(-14) 2.3(-14)

We can notice the solution, which is a quadratic polynomial, is reproduced by the schemes (ii) and (iii)
proposed in Section 2.3, thanks to their optimal approximation properties. Moreover, the computation of
derivatives and integrals is stable, because there is not deterioration of the approximation error with the
increase of the refinement.

5 Final Remarks

In this paper we have considered and analysed NURBS based on bivariate quadratic B-splines on criss-cross
triangulations of the parametric domain Ω0 = [0, 1]× [0, 1], presenting their main properties and showing
their performances to exactly construct quadric surfaces and model objects. Moreover, we have proposed
applications to the numerical solution of partial differential equations, with mixed boundary conditions
on a given physical domain Ω, by using three different spline methods to set the prescribed Dirichlet
boundary conditions. Finally, we have provided numerical tests.

We remark that the proposed method can be extended to more general second order elliptic problems.
Moreover, an interesting open problem can be the definition and the study of hierarchical bivariate
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quadratic spline functions on criss-cross triangulations, enabling to local refinement and their application
to the solution of differential problems, also in the context of Isogeometric Analysis. Finally, we recall that
the extension of the proposed scheme to the trivariate setting by using spline spaces of total degree is an
interesting open problem. Such spaces are defined on complex 3D partitions, as for example tetrahedral
or prismatic ones (see e.g. [7,26,33,34,35,36]).
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