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Abstract We deal with a perturbed version of a Hummel-Seebeck type method to approximate
a solution of variational inclusions of the form : 0 ∈ Φ(z) + F (z) where Φ is a single-valued
function twice continuously Fréchet differentiable and F is a set-valued map from Rn to the closed
subsets of Rn. This framework is convenient to treat in a unified way standard sequential quadratic
programming, its stabilized version, sequential quadratically constrained quadratic programming,
and linearly constrained Lagrangian methods (see [1]). We obtain, thanks to some semistability and
another property (which is close to the hemistability) of the solution z̄ of the previous inclusion,
the local existence of a sequence that is superquadratically or cubically convergent.

Keywords: Set-valued mapping, generalized equations, semistability, superquadratic convergence,
cubic convergence.

1 Introduction

In this paper, we study Hummel-Seebeck type and inexact Hummel-Seebeck type methods for approxi-
mating a solution of the variational inclusion

0 ∈ Φ(z) + F (z), (1)

where Φ is a single-valued function and F is a set-valued map from Rn to the closed subsets of Rn.
Variational inclusions are an abstract model of a wide variety of variational problems including

linear and non-linear complementarity problems, systems of non-linear equations, variational inequalities
(for example, first-order necessary conditions for nonlinear programming), etc. In particular, they may
characterize optimality or equilibrium and then have several applications in engineering (analysis of
elastoplastic structures, traffic equilibrium problems, etc.) and economics (Walrasian equilibrium, Nash
equilibrium). For further details on such applications one can refer to [2].

In the last decade, several iterative methods to solve the inclusion (1) have been introduced. These
methods consist in generating an iterative sequence (zk) obtained by subsequently solving implicit
subproblems of the form 0 ∈ A(zk, zk+1) +F (zk+1), where A denotes some approximation of the mapping
Φ. When the Fréchet derivative Φ′ of the function Φ is locally Lipschitz, Dontchev [3,4] associates to (1) a
Newton-type method based on a partial linearization, which is locally quadratically convergent. Following
his work, Piétrus [5] obtains a Newton-type sequence which converges whenever Φ′ satisfies a Hölder-type
condition and in [6] he proves the stability. Using a second-degree Taylor polynomial expansion of Φ at zk,
Geoffroy, Hilout and Piétrus [7] introduced a method involving the second order Fréchet derivative and,
when Φ′′ is Lipschitz, they obtained a cubic convergence. In [8], they proved the stability of the method
and in [9] Geoffroy and Piétrus showed that the previous method is superquadratic when Φ′′ satisfies a
Hölder condition. Jean-Alexis presented in [10] a method without second order Fréchet derivative, which
is also cubically convergent and Geoffroy, Jean-Alexis and Piétrus showed the stability of this method in
[11]. Lately, Cabuzel and Piétrus [12] proposed a generalization of these methods by taking more iterates.
They actually associated to (1) the relation

0 ∈ Φ(zk) +
N∑

i=1
aiΦ
′(zk + βi(zk+1 − zk)

)
(zk+1 − zk) + F (zk+1), (2)
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where N ≥ 1, (ai)1≤i≤N and (βi)1≤i≤N are sequences satisfying

N∑
i=1

ai = 1,
N∑

i=1
aiβi = 1

2

and they proved the cubic convergence of this method inspired by a multipoint iteration formula given in
[13] for approximating Φ. Note that if N = 2, a1 = a2 = 1

2 , β1 = 0, β2 = 1, (2) is the Hummel-Seebeck
type method introduced in [10]. Recently, an extension of this last method has been introduced in [14] by
Rashid.

Let us point out that all these methods have been studied when a pseudo-Lipschitz property is satisfied
for the set-valued map (Φ + F )−1 or one of its approximation. For more details on this property, the
reader can refer to [15,16,17,18,19,20,21,22,23,24]. In addition, we can underline that it has been shown
in [25] that this property has some importance for the design of electrical circuits involving nonsmooth
and non-monotone electronic devices like DIAC (DIode Alternating Currents).

In [26,27,28,29], the authors study inclusion (1) by using an assumption which is directly connected
to a solution: the semistability concept. This concept has been introduced by Bonnans [26] for variational
inequalities. A solution z̄ of a variational inclusion is said to be semistable if, given a small perturbation
on the left-hand side, a solution z of the perturbed variational inclusion that is sufficiently close to z̄ is
such that the distance of z to z̄ is of the order of the magnitude of the perturbation. Under this condition,
in [27,28,29] they proved superquadratic and cubic convergence for sequences defined respectively by the
following methods

0 ∈ Φ(zk) + Φ′(zk)(zk+1 − zk) +Mk(zk+1 − zk)2 + F (zk+1),

0 ∈ Φ(zk) + 1
2
(
Mk +Mk+1

)
(zk+1 − zk) + F (zk+1),

0 ∈ Φ(zk) +
N∑

i=1
aiM

i
k(zk+1 − zk) + F (zk+1),

where Mk, Mk+1 and M i
k are q × q matrices.

Let us note that the concept of semistability has also been used by Izmailov and Solodov in [1] in
order to study the convergence of the following inexact Josephy-Newton method for solving generalized
equations

0 ∈ Φ(zk) + Φ′(zk)(zk+1 − zk) + ωk + F (zk+1),

where ωk is a perturbation term and they obtained under some assumptions superlinear and quadratic
convergence for the sequence (zk).

Recently, in [30] this concept has also been used to study the exact and the inexact Newton-type
methods in the subanalytic context.

Following these works, we first consider an (exact) Hummel-Seebeck (noted (HS)) type method

0 ∈ Φ(zk) + 1
2

(
Φ′(zk) + Φ′(zk+1)

)
(zk+1 − zk) + F (zk+1), (3)

and then, an inexact Hummel-Seebeck (noted (iHS)) type method

0 ∈ Φ(zk) + 1
2

(
Φ′(zk) + Φ′(zk+1)

)
(zk+1 − zk) + ωk + F (zk+1), (4)

where ωk ∈ Rn is a perturbation term which has different forms and may play various roles. We obtain
cubically and superquadratically convergent sequences using in addition the concept of semistability and
another property which is close of the hemistability property (the assumption (H1)). It is important to
underline that the concept of hemistability as it has been introduced in [26] by Bonnans is very close to
Newton’s sequence. Thus, this concept is not adapted when we want to treat a problem with another
sequence and it is the reason why in the context of Hummel-Seebeck, we have to introduce another
property of the solution (assumption (H1)), so we obtain existence and convergence for our sequence.
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Furthermore, we observe that the order of convergence of inexact Hummel-Seebeck type method is better
than the one of inexact Josephy-Newton method proposed in [1].

The rest of this paper is organized as follows: in section 2, we define the concept of semistability of
solutions, show the relations with another concepts and give a preliminary result. In section 3, we study
the convergence of Hummel-Seebeck method (3); in section 4, we consider the inexact Hummel-Seebeck
method (4) with one of its extension and we give an example of problem where the methods presented
can be applied.

Throughout this paper, the norms are denoted by ‖.‖ and a set-valued map F from Rn to Rn is
indicated by F : Rn ⇒ Rn.

2 Definitions and Background Material

We recall the following definitions about rate of convergence.

Definition 1 Let (zn) be a sequence which converges towards z̄ in a normed space.

If Kp := lim
n→+∞

‖zn+1 − z̄‖
‖zn − z̄‖p exists and Kp > 0, then (zn) is said to be convergent of order p towards z̄.

– When p = 1, (zn) is said to be linearly convergent.
– When p = 2, (zn) is said to be quadratically convergent.
– When p = 3, (zn) is said to be cubically convergent.

If K1 = 0, then (zn) is said to be superlinearly convergent and if K2 = 0, then (zn) is said to be
superquadratically convergent.

Let us define the notions of semistability on which this study relies on.

Definition 2 A solution z̄ of (1) is said to be semistable if c1 > 0 and c2 > 0 exist such that, for all
(z, δ) ∈ Rn × Rn, solution of

δ ∈ Φ(z) + F (z),

with ‖z − z̄‖ ≤ c1, then one has ‖z − z̄‖ ≤ c2 ‖δ‖.

The following proposition gives the rate of convergence of the Hummel-Seebeck type method in the case
of semistable solutions. For the proof, the reader could refer to [28].

Proposition 1 Let Φ : Rn → Rn be twice continuously Fréchet differentiable and z̄ be a semistable
solution of (1). Let (zk) be a sequence computed by (3) which converges toward z̄. If Φ′′ is locally Lipschitz
then (zk) converges cubically.

It is obvious that semistability doesn’t assure the existence of sequences (zk) but gives only the order
of convergence of sequences (zk) and we can remark that the semistability for (1) is in fact equivalent to
the strong metric subregularity for Φ+ F (see [20]). But for simplicity, we prefer use the terminology of
semistability in the rest of the paper. Let us also add that the semistability property is evidently implied
by Robinson’s strong regularity of the solution z̄, see [23]. For more details on this concept and another
one which is the hemistability, the reader can refer to [26].

3 Convergence Analysis for the HS Method

In this section, we consider the (exact) Hummel-Seebeck type method given by (3).
In [28], the authors proved the convergence of this sequence in assuming its existence. The next

theorem gives the existence and the rate of convergence of the Hummel-Seebeck type method when we
add another property.

Let us underline that existence of sequences has also been proved using the stability property in some
recent papers in the context of Newton’s method, proximal methods and methods using the Tikhonov
regularizations. For more details on these works, the reader could refer to [31,32,33,34].
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Theorem 1 Let Φ : Rn → Rn be twice Fréchet differentiable near a point z̄ ∈ Rn such that the second
order derivative Φ′′ is continuous at z̄. Let z̄ be a semistable solution of (1) and consider the following
assumption:

(H1) For each z ∈ Rn close enough to z̄, the inclusion

0 ∈ Φ(z) + 1
2

(
Φ′(z) + Φ′(z + ζ)

)
ζ + F (z + ζ) (5)

has a solution ζ(z) such that ζ(z)→ 0 as z → z̄.
There exists ε > 0 such that if ‖z0 − z̄‖ ≤ ε, then :

(i) At each step k, a solution zk+1 of (3) satisfying ‖zk+1 − zk‖ ≤
3
2ε exists.

(ii) If Φ′′ is locally Lipschitz, the sequence (zk) defined in this way converges cubically toward z̄.

Proof : We just have to prove (i) and the convergence of (zk) toward z̄, then (ii) will follow from
Proposition 1.Assume Φ′′ is continuous at z̄. Take ε0 ≤ min

(
c1,

1
9c2

)
, where c1, c2 are given by the

semistability. Note that in the definition of semistability, once we have found a positive number c1, the
property stands for any positive number c ≤ c1. That is to say, without loss of generality, we can take c1
as small as required.From the assumption (H1), we have that, for some ε ∈ [0, c1], ‖zk − z̄‖ ≤ ε implies
the existence of zk+1 such that ‖zk+1 − z̄‖ ≤ ε0 and

0 ∈ Φ(zk) + 1
2

(
Φ′(zk) + Φ′(zk+1)

)
(zk+1 − zk) + F (zk+1).

We write δk ∈ Φ(zk+1) + F (zk+1), where

δk := Φ(zk+1)− Φ(zk)− 1
2

(
Φ′(zk) + Φ′(zk+1)

)
(zk+1 − zk).

One has:

‖δk‖ =
∥∥∥∥Φ(zk+1)− Φ(zk)− Φ′(zk)(zk+1 − zk)− 1

2Φ
′′(zk)(zk+1 − zk)2

−1
2

(
Φ′(zk+1)− Φ′(zk)− Φ′′(zk)(zk+1 − zk)

)
(zk+1 − zk)

∥∥∥
≤ ‖zk+1 − zk‖2

∫ 1

0
(1− t)

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt

+1
2 ‖zk+1 − zk‖2

∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt

≤ ‖zk+1 − zk‖2
∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt

+1
2 ‖zk+1 − zk‖2

∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt.

Since Φ′′ is continuous at z̄, for c1 small enough, one has∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥ ≤ 2
9c2

then, for c1 small enough,

‖δk‖ ≤
1

3c2
‖zk+1 − zk‖2 ≤

1
3c2
‖zk+1 − zk‖ .

Since ε0 ≤ c1, the semistability condition gives

‖zk+1 − z̄‖ ≤
1
3 ‖zk+1 − zk‖ ≤

1
3 ‖zk+1 − z̄‖+ 1

3 ‖zk − z̄‖ ,
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hence
‖zk+1 − z̄‖ ≤

1
2 ‖zk − z̄‖

and
‖zk+1 − zk‖ ≤ ‖zk+1 − z̄‖+ ‖zk − z̄‖ ≤

3
2ε.

These prove (i) (which implies the existence of the sequence (zk)) and the convergence of the sequence
(zk). �

4 Convergence Analysis for the iHS Method

We now consider the inexact Hummel-Seebeck type method given by (4).
Our study will be done in two parts. First of all, we will suppose the convergence of the sequence (zk)

and we give some interesting results on the order of convergence under some property of semistability
of the solution and some estimations on the perturbation terms. Then, we will present our convergence
result.

Proposition 2 Let a mapping Φ : Rn → Rn be twice Fréchet differentiable in a neighborhood of z̄ ∈ Rn,
with its second order derivative Φ′′ being continuous at z̄ and let z̄ be a semistable solution of (1). Let a
sequence (zk) ⊂ Rn be convergent to z̄. Assume that zk+1 satisfies (4) for all k ∈ N, with some ωk ∈ Rn

such that

‖ωk‖ = o(‖zk+1 − zk‖2 + ‖zk+1 − zk‖ ‖zk − z̄‖+ ‖zk − z̄‖2). (6)

Then the rate of convergence of (zk) is superquadratic. Moreover, the rate of convergence is cubic if Φ′′ is
locally L-Lipschitz-continuous with respect to z̄, and provided

‖ωk‖ = O(‖zk+1 − zk‖3 + ‖zk+1 − zk‖2 ‖zk − z̄‖+ ‖zk+1 − zk‖ ‖zk − z̄‖2 + ‖zk − z̄‖3). (7)

Proof : If zk = z̄ for some k, semistability of z̄ implies that zk = z̄ for all subsequent values of k and the
assertions hold trivially. Therefore, we assume that zk 6= z̄ for all k ∈ N. For all k, one has

rk ∈ Φ(zk+1) + F (zk+1),

with
rk = Φ(zk+1)− Φ(zk)− 1

2

(
Φ′(zk) + Φ′(zk+1)

)
(zk+1 − zk)− ωk. (8)

Then we get

‖rk‖ =
∥∥∥∥Φ(zk+1)− Φ(zk)− Φ′(zk)(zk+1 − zk)− 1

2Φ
′′(zk)(zk+1 − zk)2

−1
2

(
Φ′(zk+1)− Φ′(zk)− Φ′′(zk)(zk+1 − zk)

)
(zk+1 − zk)− ωk

∥∥∥
≤ ‖zk+1 − zk‖2

∫ 1

0
(1− t)

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt

+1
2 ‖zk+1 − zk‖2

∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt+ ‖ωk‖

≤ 3
2 ‖zk+1 − zk‖2

∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt+ ‖ωk‖

≤ 3
2 ‖zk+1 − zk‖2 sup

t∈[0,1]

{∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥}+ ‖ωk‖

(9)
= o(‖zk+1 − zk‖2 + ‖zk+1 − zk‖ ‖zk − z̄‖+ ‖zk − z̄‖2).
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Then, by semistability of z̄, it holds that

‖zk+1 − z̄‖ = O(‖rk‖)
= o(‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖ ‖zk − z̄‖+ ‖zk − z̄‖2),

i.e.

0 = lim
k→∞

‖zk+1 − z̄‖
‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖ ‖zk − z̄‖+ ‖zk − z̄‖2

= lim
k→∞

1
‖zk+1 − z̄‖+ ‖zk − z̄‖+ ‖zk−z̄‖2

‖zk+1−z̄‖

.

The latter relation implies that

lim
k→∞

‖zk − z̄‖2

‖zk+1 − z̄‖
=∞,

i.e.
‖zk+1 − z̄‖ = o(‖zk − z̄‖2),

which shows the superquadratic convergence rate of (zk).
Furthermore, if Φ′′ is locally L-Lipschitz-continuous with respect to z̄, we get

‖rk‖ ≤
3
2 ‖zk+1 − zk‖2

∫ 1

0

∥∥Φ′′(zk + t(zk+1 − zk)
)
− Φ′′(zk)

∥∥dt+ ‖ωk‖

≤ 3
4L ‖zk+1 − zk‖3 + ‖ωk‖

= O(‖zk+1 − zk‖3 + ‖zk+1 − zk‖2 ‖zk − z̄‖+ ‖zk+1 − zk‖ ‖zk − z̄‖2

+ ‖zk − z̄‖3).

Then by semistability of z̄, we obtain

‖zk+1 − z̄‖ = O(‖rk‖)
= O(‖zk+1 − z̄‖3 + ‖zk+1 − z̄‖2 ‖zk − z̄‖+ ‖zk+1 − z̄‖ ‖zk − z̄‖2

+ ‖zk − z̄‖3)

which means that the quantities

‖zk+1 − z̄‖
‖zk+1 − z̄‖3 + ‖zk+1 − z̄‖2 ‖zk − z̄‖+ ‖zk+1 − z̄‖ ‖zk − z̄‖2 + ‖zk − z̄‖3

= 1
‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖ ‖zk − z̄‖+ ‖zk − z̄‖2 + ‖zk−z̄‖3

‖zk+1−z̄‖

form a bounded sequence. But the latter is possible only when there exists γ > 0 such that

‖zk − z̄‖3

‖zk+1 − z̄‖
≥ γ for all k ∈ N,

i.e.
‖zk+1 − z̄‖ ≤

1
γ
‖zk − z̄‖3 for all k ∈ N,

which gives the cubic convergence rate of (zk). �
Now, we study iteration subproblem of the form

0 ∈ Φ(zk) + 1
2

(
Φ′(zk) + Φ′(z)

)
(z − zk) +Ω(zk, z − zk) + F (z), (10)

262 Advances in Analysis, Vol. 2, No. 4, October 2017

AAN Copyright © 2017 Isaac Scientific Publishing



where Ω : Rn × Rn ⇒ Rn is a given multifunction. In other words, the perturbation term appearing in
(4) must satisfy the inclusion ωk ∈ Ω(zk, zk+1 − zk). As we saw in Proposition 2, semistability gives us an
interesting rate of convergence assuming that the sequences (zk) and (wk) are given but it seems not to
be sufficient to guarantee the existence of a sequence which converges toward a solution z̄ of (1). However,
considering some property ((H2) which is close to the hemistability property) in addition to semistability
of z̄, we obtain the following result which is the main result of this part.

Theorem 2 Let Φ : Rn → Rn be twice Fréchet differentiable near a point z̄ ∈ Rn, and suppose that
its second order derivative Φ′′ is continuous at z̄. Assume that z̄ is a semistable solution of (1). Let
Ω : Rn × Rn ⇒ Rn be a multifunction satisfying the following assumptions:
(H2) For each z ∈ Rn close enough to z̄, the inclusion

0 ∈ Φ(z) + 1
2

(
Φ′(z) + Φ′(z + ζ)

)
ζ +Ω(z, ζ) + F (z + ζ) (11)

has a solution ζ(z) such that ζ(z)→ 0 as z → z̄.
(H3) The estimate

‖ω‖ = o(‖ζ‖2 + ‖ζ‖ ‖z − z̄‖+ ‖z − z̄‖2) (12)
holds uniformly for ω ∈ Ω(z, ζ), z ∈ Rn and ζ ∈ Rn close enough to zero and satisfying

0 ∈ Φ(z) + 1
2

(
Φ′(z) + Φ′(z + ζ)

)
ζ + ω + F (z + ζ). (13)

Then there exists δ > 0 such that for any starting point z0 ∈ Rn close enough to z̄, there exists a
trajectory (zk) ⊂ Rn such that zk+1 is a solution of (10) for all k ∈ N satisfying

‖zk+1 − zk‖ ≤ δ; (14)

any such trajectory converges to z̄ and the rate of convergence is superquadratic. Moreover, the rate of
convergence is cubic if Φ′′ is locally Lipschitz-continuous at z̄, and provided (12) can be replaced by the
estimate

‖ω‖ = O(‖ζ‖3 + ‖ζ‖2 ‖z − z̄‖+ ‖ζ‖ ‖z − z̄‖2 + ‖z − z̄‖3). (15)

Proof : For the proof, we follow the different steps of the one given in [1]. Semistability of z̄ implies the
existence of δ1 > 0 and M > 0 such that for any r ∈ Rn and any z(r) such that

r ∈ Φ
(
z(r)

)
+ F

(
z(r)

)
,

and satisfying ‖z(r)− z̄‖ ≤ δ1, it holds that

‖z(r)− z̄‖ ≤M ‖r‖ . (16)

Fix any δ2 ∈]0, δ1]. According to assumption (H2), there exists δ ∈]0, 3δ2
5 ] such that ‖zk − z̄‖ ≤

2δ
3 ⇒

‖ζ(zk)‖ ≤ 3δ2
5 . Putting zk+1 = zk + ζ(zk), we obtain the existence of a solution zk+1 of (10) such that

‖zk+1 − z̄‖ ≤ δ2. Then one has
rk ∈ Φ(zk+1) + F (zk+1),

with rk defined in (8) with some ωk ∈ Ω(zk, zk+1 − zk). The inequality (9) and condition (12) imply that

‖rk‖ = o(‖zk+1 − zk‖2 + ‖zk+1 − zk‖ ‖zk − z̄‖+ ‖zk − z̄‖2),

then for sufficiently small value of δ2 (and also of δ), we have

‖rk‖ ≤
2

15M (‖zk+1 − zk‖2 + ‖zk+1 − zk‖ ‖zk − z̄‖+ ‖zk − z̄‖2)

‖rk‖ ≤
1

5M (‖zk+1 − zk‖2 + ‖zk − z̄‖2)

≤ 1
5M (‖zk+1 − zk‖+ ‖zk − z̄‖). (17)
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Since δ2 ≤ δ1, (16) holds with r = rk for zk+1 = z(rk). Hence, taking into account (17), we obtain

‖zk+1 − z̄‖ ≤
1
5 ‖zk+1 − zk‖+ 1

5 ‖zk − z̄‖

≤ 1
5 ‖zk+1 − z̄‖+ 2

5 ‖zk − z̄‖

or equivalently
‖zk+1 − z̄‖ ≤

1
2 ‖zk − z̄‖ , (18)

which, in turn, implies that
‖zk+1 − z̄‖ ≤

1
3δ. (19)

Hence,

‖zk+1 − zk‖ ≤ ‖zk+1 − z̄‖+ ‖zk − z̄‖
≤ δ.

We thus prove that if ‖zk − z̄‖ ≤
2δ
3 then (10) has a solution zk+1 satisfying (14). Suppose now that

‖zk − z̄‖ ≤
2δ
3 , and zk+1 is any solution of (10) satisfying (14) then

‖zk+1 − z̄‖ ≤ ‖zk+1 − zk‖+ ‖zk − z̄‖

≤ 5
3δ

≤ δ2 ≤ δ1.

Thus, zk+1 = z(rk) satisfies (16) with r = rk, and by the same argument as above, the latter implies
(18) and (19). Therefore, if ‖z0 − z̄‖ ≤

2δ
3 then the next iterate z1 can be chosen in such a way that (14)

would hold with k = 0 and any such choice will give (18) and (19) with k = 0. The latter implies that
‖z1 − z̄‖ ≤

2δ
3 . Hence, the next iterate z2 can be chosen in such a way that (14) would hold with k = 1

and any such choice will give (18) and (19) with k = 1. Continuing this argument, we obtain that there
exists a trajectory (zk) such that for each k, zk+1 is a solution of (10) satisfying (14) and for any such
trajectory (18) is valid for all k. But the latter implies that (zk) converges to z̄. To complete the proof
(with respect to the rate of convergence), it suffices to use Proposition 2. �

One can note that for exact method (i.e., when Ω(·) = {0}), Theorem 2 reduces to Theorem 1.
It is worth noting that the concept of semistability and hemistability occurs in many nonlinear

programming problems. For instance, consider the standard following mathematical programming problem
coming from [1]:

Minimize h(x) subject to f(x) = 0, g(x) ≤ 0, (20)

where h : Rn → R is a smooth function, f : Rn → Rl and g : Rn → Rm are smooth mappings.
Stationary points of problem (20) and the associated Lagrange multipliers are characterized by the
Karush-Kuhn-Tucker (KKT) optimality system

∂L

∂x
(x, λ, µ) = 0, f(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0, (21)

where L : Rn × Rl × Rm → R defined by L(x, λ, µ) = h(x) + 〈λ, f(x)〉 + 〈µ, g(x)〉 is the Lagrangian
function of problem (20). More details on these notions are developed in [35]. KKT system (21) can be
written in the form (1) with z = (x, λ, µ) ∈ Rs = Rn × Rl × Rm,

Φ(z) =
(∂L
∂x

(x, λ, µ), f(x), g(x)
)
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and
F (z) =

{
{0} × {0} × {y ∈ Rm

+ | 〈µ, y〉 = 0}, if µ ≥ 0 ; ∅ otherwise.

Then, for a given zk = (xk, λk, µk) ∈ Rs, the KKT system can be studied using the methods presented
in this paper. Let z̄ ∈ Rn be a stationary point of problem (20) and let (λ̄, µ̄) ∈ Rn×Rm such that (x̄, λ̄, µ̄)
satisfies (21). In assuming that h, f and g are three times Fréchet differentiable at x̄, the Mangarasarian-
Fromovitz constraint qualification at x̄ consists of saying that rank f ′(x̄) = l and there exists ξ̄ ∈ ker g′(x̄)
such that g′A(x̄)(x̄)ξ̄ < 0, where A(x̄) = {i = 1, . . . ,m | gi(x̄) = 0} is the set of constraints active at x̄.

In [26,1], the following properties have been established: - if the solution z̄ of (1) is semistable then x̄
satisfies the strict Mangasarian-Fromovitz constraint qualification for (λ̄, µ̄), - if the strict Mangasarian-
Fromovitz constraint qualifies at x̄ for (λ̄, µ̄) and if the second order sufficient optimality condition holds
then z̄ is semistable, - if x̄ is a local solution of problem (20) then the second order sufficient optimality
condition is also necessary for semistability of z̄. In this case, the second order sufficient optimality
condition is:

∂L

∂x
(x̄, λ̄, µ̄)[ξ, ξ] > 0 ∀ξ ∈ C(x̄) \ {0}, (22)

where
C(x̄) = {ξ ∈ Rn | f ′(x̄)ξ = 0, g′A(x̄)(x̄)ξ ≤ 0, 〈f ′(x̄), ξ〉 ≤ 0}

is the critical cone of the problem (20) at x̄.
Thus, it follows from Theorems 1 and 2 that cubic and superquadratic convergence of methods for

problem (20) are guaranteed under the strict Mangasarian-Fromovitz constraint qualification and the
second order sufficient optimality condition. For more details, the reader can refer to [1].
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