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1 Introduction

We consider boundary value problem L for the equation:

l(y) := −y′′ + q(x)y = λy, λ = k2, 0 < x < π (1.1)

on the interval 0 < x < π with the boundary conditions

U(y) := y′(0) = 0, V (y) := y(π) = 0 (1.2)

and with the jump conditions

y(d+ 0) = ay(d− 0), y′(d+ 0) = a−1y′(d− 0), (1.3)

where λ is the spectral parameter, q(x) is a real valued function with q(x) ∈ L2(0, π) and a (a > 0, a 6= 1)
is a real constant, d ∈

(
0, π2

)
.

Inverse spectral analysis has been an important research topic in mathematical physics. Inverse problems
of spectral analysis involve the reconstruction of a linear operator from its spectral characteristics e.g.,
see [2, 8,14, 20]. Later, inverse problems for a regular and singular Sturm- Liouville operator appeared in
various versions [ 4, 10, 12, 14, 16, 17, 19, 21, 22 ].

Assuming that heat flows only into the liquid which has an uninform density ρ(x) and is convected
only from the liquid into the surrounding medium, the initial boundary value problem for a bar of length
one takes the form

ut = ρ(x)uxx (1*)

ux(0, t) = 0 (2*)

− kAux(π, t) = QM(dv/dt) + k1Bv(t) for all t, (3*)

u(x, 0) = u0(x) for x ∈ [0, π], (4*)

v(0) = v0

after factoring out the steady-state solution, where

ρ(x) =
{

1, 0 < x < d,
α2, d < x < π.

Assuming that the rate of heat transfer across the liquid solid interface is proportional to the difference
in temperature between the end of the bar and the liquid with which it is in contact (Newton’s law of
cooling) and applying Fourier’s law of heat conduction at x = π, we get
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v(t) = u(π, t) + kc−1ux(π−1, t) for t > 0, where c > 0 is the coefficient of heat transfer for the liquid.
If we put u(x, t) = y(x)exp(−λt), then problems (1.1)–(1.3) will appear to be the result of the above
problem. Indeed, condition (1.2) is obtained from (3*), easily. Here

H = c

k
, H1 = cA+ k1B

QM
and H2 = k1Bc

QMk
.

Finally, if we put

t =
{
x, 0 < x < d,
αx, d < x < π,

then the discontinuity conditions (1.3) and a particular case of equation (1.1) will appear. This corresponds
to the case of nonperfect thermal contact. Since the density is changed at one point in the interval, both
the intensity and the instant velocity of heat change at this point. Hence, equation (1.1)-(1.3) will appear
to be the result of the above problem.

Boundary value problems with discontinuity conditions inside the interval often appear in applications.
Such problems are connected with discontinuous material properties. Inverse problems with a discontinuity
condition inside the interval frequently arise in mathematics, mechanics, radio electronics, geophysics, and
other fields of science and technology. For example, discontinuous inverse problems appear in electronics
for constructing parameters of heterogeneous electronic lines with desirable technical characteristics [15,
18]. As a rule, such problems are related to discontinuous and nonsmooth properties of a medium (e.g.,
see [10, 13]). Discontinuous inverse problems (in various formulations) have been considered in [10, 13]
and other works. Generally, for recovering the potential function on the whole interval it is necessary to
specify two spectra of boundary value problems with different boundary conditions. The inverse problem
for interior spectral data of the differential operator consists in reconstruction of this operator from the
known eigenvalues and some information on eigenfunctions at some internal point.

A complete solution of the inverse spectral problem for a class of Sturm-Liouville operators must consist
of two parts: (1) an explicit description of the set of spectral data for the operators in Sturm-Liouville
and (2) development and justification of the method of recovering the operator in Sturm-Liouville that
corresponds to arbitrary given spectral data in spectral data. The algorithm of recovering the potential q
from the spectral data of a regular Sturm-Liouville operator based on the transformation operators and
the so-called Gelfand-Levitan-Marchenko equation was developed by Gelfand-Levitan [8] and Marchenko
[16] in early 1950-ies.

The first complete solution of the inverse problem that is based on an exact integral approach was
obtained by Gelfand and Levitan [1, 8] for the potential problem in the Schrodinger wave equation. In
electro magnetics, the above approach is directly applicable to the case of inversion with a transient plane
wave, normally incident on a planar stratified lossless medium [9], provided that the wave equation is
converted to the Schrodinger equation. Generalizations of the Gelfand-Levitan approach to the case of
oblique incidence [5], dissipative media [12], etc, were all based on deriving a Schrodinger-type equation
from the basic wave equation through a series of transformations, and reconstructing the unknown
potential, which is related to the medium parameters, via the Gelfand-Levitan procedure. Other inverse
methods which are based on an integral equation and are in the same spirit as the Gelfand-Levitan
approach are the ones due to [9]. A review of some of these integral inverse methods and others can be
found in the review paper by Newton [28].

Faydaoglu and Guseinov [7] had considered the following eigenvalue problems of differential equations
with impulsive perturbation

− [p(t)x′]′ + q(t)x = νρ(t)x, t ∈ [0, a) ∪ (a, b] (5∗)

x(a−) = αx(a+), x′(a−) = βx′(a+) (6∗)

x(0) = x(b) = 0. (7∗)

They proved that the eigenvalue problem (5∗)–(7∗) has a countably infinite set of eigenvalues ν0, ν2, ...tending
to +∞ and eigenfunctions was proved and a uniformly convergent expansion formula in the eigenfunctions
was established.
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In this aspect, the studies of Gelfand, Levitan [8], [14] and Marchenko [25] include basic investigations
related to the integral representations of solutions to various direct and inverse problems for the Sturm-
Liouville differential operators.

Inverse spectral problems were studied for the second-order differential operators on a finite interval
with discontinuity conditions inside the interval.

As different from [21], in this study, solution of inverse problem is reduced to the solution of the
Gelfand-Levitan-Marchenko (GLM) type main integral equation which is used for solution of inverse
problem in classical case. Item 3 deals with the solution of the inverse problem. We prove existence
and uniqueness of the solution of the Gelfand-Levitan-Marchenko (GLM) differential equation and give
a procedure for the solvability of classical inverse problem for impulsive differential operators. Also,
necessary and sufficient conditions for existence of solution of inverse problem are mentioned in terms of
given sequences. Moreover, an example which contains an algorithm for solution of inverse problem is
given in the end of this paper.

2 Preliminaries

Let the function ϕ(x, λ) be the solution of equation (1.1) that satisfies the initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = 0, (2.1)

and the jump condition (1.3). Let λ0, λ1, ...be the eigenvalues of the boundary value problem (1.1)-(1.3).
Then ϕ(x, λn) (n ≥ 0) are the eigenfunctions of this boundary value problem. Let ϕ0(x, λ0

n) (n ≥ 0) be
a solution of the equation (1.1) in the case q(x) = 0 satisfying the conditions (1.2)-(1.3). λ0

0, λ
0
1, ... are

eigenvalues of the boundary value problem (1.1)-(1.3) when q(x) = 0. The numbers αn which

αn =
π∫
0
ϕ2(x, λn)dx, n = 0, 1, . . . (2.2)

are called the normalizing constant of the boundary value problem (1.1)-(1.3) .
Then, the numbers α0

n, (n = 0, 1, . . .) are called the normalizing constant of the boundary value
problem (1.1)-(1.3) when q(x) = 0.

It is easy that the functions e0(x, λ) is the solution of equation (1.1) in the case q(x) ≡ 0 satisfying
the initial conditions e0(0, λ) = 1, e′0(0, λ) = ik and the jump conditions (1.3) can be written as

e0(x, λ) =
{
eikx, 0 < x < d,

a+eikx + a−eik(2d−x), d < x < π

where a± = 1
2

(
a± 1

a

)
.

The following theorem related to the integral representation (transformation operator) for the solution
e(x, λ) can be found in [4].

Theorem 1. [4, Theorem 1.] Let
π∫
0
|q(t)| dt < +∞. Then each solution satisfying the initial conditions

e0(0, λ) = 1, e′0(0, λ) = ik and the jump conditions (1.3) has the form

e(x, λ) = e0(x, λ) +
x∫
−x

K(x, t)eiktdt

with
x∫
−x
|K(x, t)| dt ≤ ecσ1(x) − 1 where σ1(x) =

x∫
0

(x− t) |q(t)| dt, c = a+ + |a−|+ 1.

If the function q(x) is differentiable then the kernel K(x, t) satisfies the following properties:
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K̃xx(x, t)− q(x)K̃(x, t) = K̃tt(x, t), K̃(x, x) = a+

2
x∫
0
q(t)dt,

K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0) = a−

2

x∫
0
q(t)dt,

K̃(x,−x) = 0 where K̃ = K(x, t) +K(x,−t).

Remark 1. [4, Remark] It is easily shown that if q(x) ∈ L2 [0, π] then

Kx(x, ·) ∈ L2 [0, π] and Kt(x, ·) ∈ L2 [0, π] .

Let us denote problem L as L0 in the case of q(x) ≡ 0. It is easily shown that the solution ϕ0(x, k)

satisfying the initial conditions ϕ0(0, k) = 1, ϕ′0(0, k) = 0 and the jump conditions (1.3) can be written as

ϕ0(x, λ) =
{

cos kx, 0 < x < d,
a+ cos kx+ a− cos k(2d− x), d < x < π,

(2.3)

Let ∆0(k) be a characteristic function of problem L0. Then characteristic equation of the problem L0
is written as

∆0(k) ≡ a+ cos kπ + a− cos k(2d− π) = 0.

The roots k0
n of this equation are eigenvalues of the problem L0.Under these conditions boundary value

problem (1.1)-(1.5)possesses the following spectral properties:
a) inf

n6=m

∣∣k0
n − k0

m

∣∣ = β > 0, i.e., roots of characteristic equation ∆0(k) = 0 are separated.

b) Eigenvalues of the problem L are simple, that is
.

∆(kn) 6= 0.
c) Eigenvalues of the problem L have the following asymptotic behavior

kn = k0
n + dn

k0
n

+ δn
k0
n

, (2.4)

where δn = 1
k0

n

π∫
0
Ḱt(π, t) sin k0

ntdt ∈ `2, k0
n = n+ hn, sup |hn| < +∞ and

dn = a+ sin k0
nπ−a

− sin k0
n(2d−π)

2
.

∆0(k0
n)k0

n

π∫
0
q(t)dt is a bounded sequence.

d) Normalizing numbers of the problem L have the asymptotic behavior

αn = α0
n + δn

n
(2.5)

where
α0
n = ((a+)2 + (a−)2)π − d2 + d

2 + 2a+a−(π − d) cos 2k0
nd+ δ1n (2.6)

and
δ1n = sin 2k0

nd

4k0
n

+ (a+)2 sin 2k0
nπ

4k0
n

− (a+)2 sin 2k0
nd

4k0
n

+ a+a−

k0
n

sin 2k0
n(π − d)

− (a−)2

4k0
n

sin 2k0
n(2d− π) + (a−)2

4k0
n

sin 2k0
nd, δn ∈ `2 .

Lemma 1. The specification of the spectrum {λn}n≥0 uniquely determines the characteristic function

∆ (λ) by the formula

∆ (λ) =
∞∏
n=0

λn − λ
λ0
n

. (2.7)
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Proof. It follows from

∆(λ) ≡ a+ cos kπ + a− cos k(2d− π) +
π∫

0

K̃(π, t) cos ktdt (2.8)

that ∆(k) is entire in λ of order 1/2, and consequently by Hadamard’s factorization theorem [6, p.289].

∆(λ) is uniquely determined up to a multiplicative constant by its zero:

∆(λ) = C
∞∏
n=0

(
1− λ

λn

)
(2.9)

consider the function. For λ→ 0 we obtain

∆0(λ) ≡ a+ cos kπ + a− cos k(2d− π) = C0

∞∏
n=0

(
1− λ

λ0
n

)
,

where C0 = a+ + a− = a. Then ∆(λ)
∆0(λ) = C

a

∏∞
n=0

λ0
n

λn

∏∞
n=0

(
1 + λn − λ0

n

λ0
n − λ

)
.

Taking (2.4) and (2.8) into account we calculate

lim
λ→+i∞

∆(λ)
∆0(λ) = 1, lim

λ→+i∞

∏∞
n=0

(
1 + λn − λ0

n

λ0
n − λ

)
= 1 and hence C = a

∏∞
n=0

λn
λ0
n

. Substituting this

into (2.9) we arrive at (2.7).

When q(x) = 0 formula of ϕ0(x, λ0
n) is as follows;

ϕ0(x, k0
n) =

{
cos k0

nx, 0 < x < d,

a+ cos k0
nx+ a− cos k0

n(2d− x), d < x < π.
(2.10)

One can consider the relation (2.3) with respect to cos kx. Solving this equation we obtain

cos kx =

ϕ0(x, k), 0 < x < d,

a+ϕ0(x, k)− a−ϕ0(2d− x, k), d < x < π.
(2.11)

3 Results

The Wronskian of any two solutions y1(x, λ) and y2(x, λ) of (1.1)-(1.3) is constant on [0, d) and (d, π]
and using the impulse conditions (1.3) we get

W (y1, y2)|x=d+0 = W (y1, y2)|x=d−0 .

Theorem 2. (i) The system of eigenfunctions {ϕ(x, kn)}n≥0 of the boundary value problem L is complete
in L2(0, π).

(ii) Let f(x), x ∈ [0, d) ∪ (d, π] be an absolutely continuous function and

f(d+ 0) = af(d− 0), f ′(d+ 0) = a−1f ′(d− 0). Then

f(x) =
∞∑
n=0

anϕ(x, kn), an = 1
αn

π∫
0

f(t)ϕ(t, kn)dt (3.1)

and the series converges uniformly on [0, π] .
(iii) For f(x) ∈ L2(0, π) the series (3.1) converges in L2(0, π) and

π∫
0

|f(x)|2 dx =
∞∑
n=0

αn |an|2 , (Parseval’s equality) (3.2)
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Proof of this Theorem 2 can be done by using proof of Theorem in reference [2].
In addition , we obtain the theorem that the statement above, since the eigenfunctions {ϕ(x, kn)}n≥0

are complete and orthogonal in L2(0, π), they form an orthogonal basis in L2(0, π) and Parseval’s equality

(3.2) is valid.

We will refer to the sequences {λn}n≥0 and {αn}n≥0 as the spectral characteristics of the boundary
value problem (1.1)-(1.3). Consider the function

F0(x, t) =
∞∑
n=0

(
ϕ0(t, kn) cos knx

αn
− ϕ0(t, k0

n) cos k0
nx

α0
n

)
(3.3)

F (x, t) = a+F0(x, t) + a−F0(2d− x, t)

=
∞∑
n=0

(
ϕ0(t, kn)ϕ0(x, kn)

αn
− ϕ0(t, k0

n)ϕ0(x, k0
n)

α0
n

) (3.4)

with the help {λn}n≥0 and {αn}n≥0 sequences.

Theorem 3. [15, Theorem 3] For each fixed x ∈ (0, π], the kernel K̃ (x, t) appearing in representation

ϕ(x, λ) = ϕ0(x, λ) +
∫ x

0
K̃(x, t) cos ktdt (3.5)

satisfies the linear integral equation

F (x, t) + a+K̃(x, t)− a−K̃(x, 2d− t) +
∫ x

0
K̃(x, ξ)F0(ξ, t)dξ = 0, 0 < t < x. (3.6)

Theorem 4. For each fixed x ∈ (0, π] equation (3.6) has a unique solution K̃(x, ·) ∈ L2(0, x).

Proof. Firstly, we show that (3.6) can be written such as (I +B) f = g for x > d where B : L2 (0, π)→

L2 (0, π) is linear bounded operator, and I is identity operator. It is obvious that (I +B) f = g for x ≤ d.

For x > d, we write (3.6) such asLxK̃(x, ·) +KxK̃(x, ·) = −F (x, ·) where

(Lxf) (t) =
{
f(t) , t ≤ d < x
a+f(t)− a−f(2d− t) , d < t < x

(Kxf) (t) =
∫ x

0 f(ξ)F0(ξ, t)dξ, 0 < t < x.

Now, we show that Lx has a boundary inverse in L2 (0, π) . We have

(Lxf) (t) = a+f(t)− a−f(2d− t) = ϕ(t), ϕ(t) ∈ L2 (0, π) . (3.7)
Substituting 2d− t by t in (3.7), we obtain that

ϕ(2d− t) = a+f(2d− t)− a−f(t). (3.8)
Subtract (3.8) from (3.7), we get

f(t) =
(
L−1
x ϕ

)
(t) =

{
ϕ(t) , t ≤ d < x
a+ϕ(t)− a−ϕ(2d− t) , d < t < x.

∫ π
0 |f(t)|2 dt =

∫ d−0
0 |f(t)|2 dt+

∫ π
d+0 |f(t)|2 dt

=
∫ d−0

0 |ϕ(t)|2 dt+
∫ π
d+0 |a

+ϕ(t)− a−ϕ(2d− t)|2 dt
≤
∫ d−0

0 |ϕ(t)|2 dt+ a+ ∫ π
d+0 |ϕ(t)|2 dt+ a−

∫ d−0
2d−π |ϕ(t)|2 dt.
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Since ϕ(t) = 0 for t > π, we have

‖f(t)‖L2(0,π) =
∫ π

0 |f(t)|2 dt ≤ C
∫ π

0 |ϕ(t)|2 dt = C ‖ϕ(t)‖L2(0,π) . Hence, Lx has boundary inverse in

L2 (0, π) . Thus, we can write the main integral equation (3.6) as

K̃(x, ·) +
(
L−1
x K

)
K̃(x, ·) = −L−1

x F (x, ·)

where L−1
x K is completely continuous operator in L2 (0, π) . Since (3.6) is a Fredholm equation, it is

sufficient to prove that the homogeneous equation

a+K̃(t)− a−K̃(2d− t) +
∫ x

0
K̃(ξ)F0(ξ, t)dξ = 0 (3.9)

has only the trivial solution K̃(t) = 0 by [17, Theorem 3 ]. Let K̃(t) be a solution of (3.9). Then∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)2
dt

+
∫ x

0
(
a+K̃(t)− a−K̃(2d− t)

) ∫ x
0 K̃(ξ)F0(ξ, t)dξdt = 0.

By using (2.11) and (3.3), also we consider that K̃(ξ) = 0 for ξ < 2d− x, to get∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)2
dt+ (a+)2 ∫ x

0 K̃(t)
∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, kn)ϕ0(ξ, kn)
αn

dξdt

−a+a−
∫ x

0 K̃(t)
∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, kn)ϕ0(2d− ξ, kn)
αn

dξdt

−a+a−
∫ x

0 K̃(2d− t)
∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, kn)ϕ0(ξ, kn)
αn

dξdt

− (a−)2 ∫ x
0 K̃(2d− t)

∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, kn)ϕ0(2d− ξ, kn)
αn

dξdt

+a+a−
∫ x

0 K̃(t)
∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, k0
n)ϕ0(2d− ξ, k0

n)
α0
n

dξdt

+a+a−
∫ x

0 K̃(2d− t)
∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, k0
n)ϕ0(ξ, k0

n)
α0
n

dξdt

− (a−)2 ∫ x
0 K̃(2d− t)

∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, k0
n)ϕ0(2d− ξ, k0

n)
α0
n

dξdt

− (a+)2 ∫ x
0 K̃(t)

∫ x
d
K̃(ξ)

∑∞
n=0

ϕ0(t, k0
n)ϕ0(ξ, k0

n)
α0
n

dξdt = 0.

Replacing 2d− ξ by ξ in this equation, we get∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)2
dt+

∑∞
n=0

1
αn

[∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)
ϕ0(t, kn)dt

]2
=
∑∞
n=0

1
α0
n

[∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)
ϕ0(t, k0

n)dt
]2
.

Using Parseval’s equality∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)2
dt =

∑∞
n=0

1
α0
n

[∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)
ϕ0(t, k0

n)dt
]2 for the function

a+K̃(t)− a−K̃(2d− t) ∈ L2(0, π), extended by zero for t > x we obtain that∑∞
n=0

1
αn

[∫ x
0
(
a+K̃(t)− a−K̃(2d− t)

)
ϕ0(t, kn)dt

]2 = 0.

Since αn > 0 then
∫ x

0
(
a+K̃(t)− a−K̃(2d− t)

)
ϕ0(t, kn)dt = 0, n = 0, 1, . . . . The system of functions
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{ϕ0(t, kn)}n≥0 is complete in L2(0, π) [11], we obtain a+K̃(t)− a−K̃(2d− t) = 0.

That is,
(
LxK̃

)
(t) = 0, where Lx is the operator which defined above . Since Lx has a bounded

inverse, we have K̃(x, ·) = 0. Which means that the main integral equation has a solution and it is unique.

Lemma 2. Assume that numbers {λn, αn}n≥0 satisfying the conditions of the form(2.4) and (2.5) are

given and denote

b(x) :=
∞∑
n=0

(
cos knx
αn

− cos k0
nx

α0
n

)
(3.10)

where α0
n =

{ π

2 , n > 0
π, n = 0

. Then b(x) ∈W 1
2 (0, d) ∪ (d, 2π) .

Proof. Denote εn = kn − k0
n.

Since cos knx
αn

− cos k0
nx

α0
n

= 1
α0
n

(
cos knx− cos k0

nx
)

+
(

1
αn
− 1
α0
n

)
cos knx,

cos knx− cos k0
nx = −εn sin k0

nx− sin k0
nx (sin εnx− εnx)− 2 sin2 εnx

2 cos k0
nx

we have b(x) = B1(x) +B2(x) where

B1(x) = −
∞∑
n=1

dnx sin k0
nx

α0
nk

0
n

(3.11)

B2(x) =
∑∞
n=0

(
1
αn
− 1
α0
n

)
cos knx−

∞∑
n=1

δnx sin k0
nx

α0
nk

0
n

−
∑∞
n=1 (sin εnx− εnx) sin k0

nx

α0
n

−
∑∞
n=1 2 sin2 εnx

2
cos k0

nx

α0
n

.

(3.12)

Since εn = O

(
1
n

)
,

1
αn
− 1
α0
n

= − δn
k0
n

+ O

(
1
n

)
where δn = 1

k0
n

∫ π
0 Ḱt(π, t) sin k0

ntdt the series

in (3.11) and (3.12) converge absolutely and uniformly on [0, 2π] and B2(x) ∈ W 1
2 (0, d) ∪ (d, 2π) ,

B1(x) ∈W 1
2 (0, d) ∪ (d, 2π) .

Consequently b(x) ∈W 1
2 (0, d) ∪ (d, 2π) .

Since F0(x, t) = a+

2 [b(x+ t) + b(x− t)] + a−

2 [b(x− 2d+ t) + b(x+ 2d− t)] , then Lemma 6 implies

that F0(x, t) is continuous and

F (x, t) = a+F0(x, t) + a−F0(2d− x, t) ∈W 1
2 (0, π) .

According to (3.3) and (3.4)

F ′′0tt
(x, t) = F ′′0xx

(x, t), F ′′tt(x, t) = F ′′xx(x, t) (3.13)

F0(x, t)|x=0 = a+b(t) + a−b(2d− t),

F0(x, t)|t=0 = a+b(x) + a−
b(2d+ x) + b(2d− x)

2
(3.14)
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∂F0(x, t)
∂x

= ∂F0(ξ, t)
∂ξ

∣∣∣∣
ξ=x

,
∂F0(2d− x, t)

∂x
= − ∂F0(ξ, t)

∂ξ

∣∣∣∣
ξ=2d−x

(3.15)

a−

a+
dK̃(x, x)

dx
= d

dx

[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
. (3.16)

∂K̃(x, t)
∂t

∣∣∣∣
t=0

= 0 (3.17)

q(x) = 2
a+

dK̃(x, x)
dx

. (3.18)

Lemma 3. The following relations hold

− ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ), λ = k2 (3.19)

ϕ(0, λ) = 1, ϕ′(0, λ) = 0. (3.20)

Proof. 1) First we assume that b(x) ∈ W 2
2 (0, 2π) where b(x) is defined by (3.10). Differentiating the

identity

J(x, t) := F (x, t) + a+K̃(x, t)− a−K̃(x, 2d− t) +
∫ x

0
K̃(x, ξ)F0(ξ, t)dξ = 0, (3.21)

we calculate

J ′t(x, t) = F ′t (x, t) + a+K̃ ′t(x, t)− a−K̃ ′t(x, 2d− t) +
∫ x

0
K̃(x, ξ)F ′0t

(ξ, t)dξ = 0, (3.22)

J ′′tt(x, t) = F ′′tt(x, t) + a+K̃ ′′tt(x, t)− a−K̃ ′′tt(x, 2d− t)

−
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

] ∂F0(ξ, t)
∂ξ

∣∣∣∣
ξ=2d−x

+K̃(x, x) ∂F0(ξ, t)
∂ξ

∣∣∣∣
ξ=x
− K̃(x, 0) ∂F0(ξ, t)

∂ξ

∣∣∣∣
ξ=x

+ ∂K̃(x, ξ)
∂ξ

∣∣∣∣
ξ=0

F0(0, t)

− ∂K̃(x, ξ)
∂ξ

∣∣∣∣
ξ=x

F0(x, t) + ∂K̃(x, ξ)
∂ξ

∣∣∣∣
ξ=2d−x+0

F0(2d− x+ 0, t)

− ∂K̃(x, ξ)
∂ξ

∣∣∣∣
ξ=2d−x−0

F0(2d− x− 0, t) +
∫ x

0 K̃
′′
ξξ(x, ξ)F0(ξ, t)dξ = 0

(3.23)

J ′x(x, t) = F ′x(x, t) + a+K̃ ′x(x, t)− a−K̃ ′x(x, 2d− t) +
∫ x

0 K̃(x, ξ)F ′0x
(ξ, t)dξ

K̃(x, x)F0(x, t) +
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
F0(2d− x, t) = 0

J ′′xx(x, t) = F ′′xx(x, t) + a+K̃ ′′xx(x, t)− a−K̃ ′′xx(x, 2d− t)

+
∫ x

0 K̃
′′
xx(x, ξ)F0(ξ, t)dξ + ∂K̃(x, ξ)

∂x

∣∣∣∣
ξ=2d−x+0

F0(2d− x+ 0, t)

− ∂K̃(x, ξ)
∂x

∣∣∣∣
ξ=2d−x−0

F0(2d− x− 0, t) + ∂K̃(x, ξ)
∂x

∣∣∣∣
ξ=x

F0(x, t)

+dK̃(x, x)
dx

F0(x, t) + K̃(x, x)∂F0(x, t)
∂x

+
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

] ∂F0(2d− x, t)
∂x

+ d

dx

[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
F0(2d− x, t) = 0.

(3.24)
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It follows from (3.21), (3.23) and (3.24) and the equality

J ′′xx(x, t)− J ′′tt(x, t)− q(x)J(x, t) ≡ 0
that

a+K̃ ′′xx(x, t)− a−K̃ ′′xx(x, 2d− t)−
[
a+K̃ ′′tt(x, t)− a−K̃ ′′tt(x, 2d− t)

]
−q(x)

[
K̃(x, t)− a−K̃(x, 2d− t)

]
+
∫ x

0
[
K̃ ′′xx(x, ξ)− K̃ ′′tt(x, ξ)− q(x)K̃(x, ξ)

]
F0(ξ, t)dξ = 0.

(3.25)

According to Theorem 4 , this homogeneous equation has only the trivial solution, i.e.

K̃ ′′xx(x, t)− K̃ ′′tt(x, t)− q(x)K̃(x, t) = 0, 0 < t < x. (3.26)
Differentiating (3.5) twice, we get

ϕ′(x, λ) = ϕ′0(x, λ) +
∫ x

0 K̃
′
x(x, t) cos ktdt+ K̃(x, x) cos kx

+
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
cos k(2d− x) (3.27)

ϕ′′(x, λ) = ϕ′′0(x, λ) +
∫ x

0 K̃
′′
xx(x, t) cos ktdt

+ ∂K̃(x, t)
∂x

∣∣∣∣
t=x

cos kx+ dK̃(x, x)
dx

cos kx− K̃(x, x)k sin kx

+
[
∂K̃(x, t)
∂x

∣∣∣∣
t=2d−x+0

− ∂K̃(x, t)
∂x

∣∣∣∣
t=2d−x−0

]
cos k(2d− x)

+ d

dx

[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
cos k(2d− x)

+
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
k sin k(2d− x).

(3.28)

On the other hand, integrating by parts twice, we obtain

λϕ(x, λ) = k2ϕ0(x, λ)
−
[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
k sin k(2d− x)

+ K̃(x, x)k sin kx− ∂K̃(x, t)
∂t

∣∣∣∣
t=0

+ ∂K̃(x, t)
∂t

∣∣∣∣
t=x

cos kx

−

[
∂K̃(x, t)

∂t

∣∣∣∣
t=2d−x+0

− ∂K̃(x, t)
∂t

∣∣∣∣
t=2d−x−0

]
cos k(2d− x)

−
∫ x

0
∂2K̃(x, t)

∂t2
cos ktdt.

(3.29)

Together with (3.5) and (3.28) this gives

ϕ′′(x, λ) + λϕ(x, λ)− q(x)ϕ(x, λ) =
[
∂K̃(x, t)
∂x

∣∣∣∣
t=x

+ ∂K̃(x, t)
∂t

∣∣∣∣
t=x

]
cos kx

+dK̃(x, x)
dx

cos kx+
[
∂K̃(x, t)
∂x

∣∣∣∣
t=2d−x+0

− ∂K̃(x, t)
∂t

∣∣∣∣
t=2d−x+0

]
cos k(2d− x)

−

[
∂K̃(x, t)
∂x

∣∣∣∣
t=2d−x−0

− ∂K̃(x, t)
∂t

∣∣∣∣
t=2d−x−0

]
cos k(2d− x)− ∂K̃(x, t)

∂t

∣∣∣∣
t=0

+ d

dx

[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
cos k(2d− x)− 2dK̃(x, x)

dx
cos kx

−2 d

dx

[
K̃(x, 2d− x+ 0)− K̃(x, 2d− x− 0)

]
cos k(2d− x)

+
∫ x

0
[
K̃ ′′xx(x, t)− K̃ ′′tt(x, t)− q(x)K̃(x, t)

]
cos ktdt.

Taking (3.16), (3.18) and (3.26) into account, we arrive at (3.19). The relations (3.20) follow from
(3.5) and (3.27) for x = 0.
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Lemma 4. For each function g(x) ∈ L2 (0, π)∫ π

0
g2(x)dx =

∞∑
n=1

1
αn

(∫ π

0
g(t)ϕ(t, kn)dt

)2
. (3.30)

Proof of this Lemma can be done by using proof of Lemma in reference [2].

Corollary 1. For arbitrary functions f(x), g(x) ∈ L2 (0, π)∫ π

0
f(x)g(x)dx =

∞∑
n=0

1
αn

∫ π

0
f(t)ϕ(t, kn)dt

∫ π

0
g(t)ϕ(t, kn)dt (3.31)

Lemma 5. The following relation holds(∫ d−0

0
+
∫ π

d+0

)
ϕ(t, km)ϕ(t, kn)dt =

{
0, n 6= m
αn, n = m.

(3.32)

Proof. 1) Let f(x) ∈W 2
2 [0, π] . Consider the series

f∗(x) =
∞∑
n=0

cnϕ(x, kn) (3.33)

where
cn := 1

αn

∫ π

0
f(x)ϕ(x, kn)dx. (3.34)

By using Lemma 5 and integration by parts we obtain

cn = 1
αnkn

∫ π
0 f(x) [−ϕ′′(x, kn) + q(x)ϕ(x, kn)] dx

= − 1
αnkn

f(π)ϕ′(π, kn) + 1
αnkn

f(0)ϕ′(0, kn)

+ 1
αnkn

f ′(π)ϕ(π, kn)− 1
αnkn

f ′(0)ϕ(0, kn)

+ 1
αnkn

∫ π
0 ϕ(x, kn) [−f ′′(x) + q(x)f(x)] dx.

Applying the asymptotic formulae, (2.4) and (2.5) one can check that for n→∞

cn = O

(
1
n2

)
, ϕ(x, kn) = O(1)

uniformly for x ∈ [0, π] . Therefore the series (3.33) converge absolutely and uniformly on [0, π] .
According to (3.31) and (3.34)

∫ π
0 f(x)g(x)dx =

∞∑
n=0

cn
∫ π

0 g(t)ϕ(t, kn)dt =
∫ π

0 g(t)
∞∑
n=0

cnϕ(t, kn)dt =
∫ π

0 g(t)f∗(t)dt.

Since g(x) is arbitrary, we obtain f∗(x) = f(x), i.e.

f(x) =
∞∑
n=0

cnϕ(x, kn). (3.35)

2) Fix m ≥ 0 and take f(x) = ϕ(x, km). Then, by virtue of (3.35)
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ϕ(x, km) =
∞∑
n=0

cnmϕ(x, kn), cnm = 1
αn

∫ π

0
ϕ(x, km)ϕ(x, kn)dx.

Further, the system {ϕ(x, kn)}n≥0 is minimal in L2(0, π) and consequently, in view of (3.5), the system
{ϕ(x, kn)}n≥0 is also minimal in L2(0, π). Hence cnm = δnm (δnm is the Kronecker delta), and we arrive
at (3.32).

Lemma 6. The constants a and d in the eigenvalue problem (1.1)-(1.3) are uniquely determined by the
eigenvalues provided 0 < d <

π

2 and |a− 1| > 0.

Proof. The proof is similar with Lemma 5 [10, Lemma 6].

Lemma 7. For all n ≥ 0,
ϕ(π, kn) = 0 (3.36)

ϕ(d+ 0, kn) = aϕ(d− 0, kn), ϕ′(d+ 0, kn) = a−1ϕ′(d− 0, kn) (3.37)

Proof. It follows, from Lemma 2 in [3]

(kn − km)
π∫

0

ϕ(x, km)ϕ(x, kn)dx = (ϕ′(x, km)ϕ(x, kn)− ϕ(x, km)ϕ′(x, kn))
(∣∣d−0

0 +
∣∣π
d+0

)
.

Taking (3.32) into account, we get

ϕ′(π, km)ϕ(π, kn)− ϕ(π, km)ϕ′(π, kn) = 0. (3.38)

Clearly, ϕ′(π, kn) 6= 0 for all n ≥ 0. Indeed, if we suppose that ϕ′(π, km) = 0 for a certain m, then
ϕ′(π, kn) = 0 and in view of (3.37) for n 6= m. From (3.5)

ϕ′(π, kn) = ϕ′0(π, kn) +
π∫

0

K̃x(π, t) cos kntdt+ K̃(π, π) cos knπ

i.e. ϕ′(π, kn) ∼ ϕ′0(π, kn) 6= 0 for n→∞, it contradicts with ϕ′(π, kn) = 0 for n 6= m.
Thus ϕ′(π, kn) 6= 0 for all n ≥ 0. Since ϕ′(π, kn) 6= 0 for all n ≥ 0, from (3.38) we obtain

ϕ(π, kn)
ϕ′(π, kn) = ϕ(π, km)

ϕ′(π, km) = H.

That is, ϕ′(π, kn)H = ϕ(π, kn) for all n ≥ 0. Since ϕ(π, kn) = o(1) for n→∞, we obtain H = 0. Hence
ϕ(π, kn) = 0 for all n ≥ 0.

From (3.5) for x→ d+ 0, ϕ(d+ 0, kn)− aϕ(d− 0, kn) = 0.

Since ϕ′(x, λ) = ϕ′0(x, λ) + K̃(x, x) cos kx+
x∫
0
K̃x(x, t) cos ktdt,

ϕ′(d+ 0, kn)− a−1ϕ′(d− 0, kn) = 0.

Together with Lemma 4, Lemma 6 and Lemma 7 this gives that the numbers {λn, αn}n≥0 are the
spectral data for the constructed boundary value problem L(q(x)). Thus, the following Theorem is proved.

Theorem 5. For real numbers {λn, αn}n≥0 to be spectral data for a certain boundary value problem
L(q(x)) with q(x) ∈ L2(0, π) , it is necessary and sufficient that kn 6= km (n 6= m), αn > 0, and that
(2.4)-(2.5) hold.

The boundary value problem L(q(x)) can be constructed by the following algorithm:
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Algorithm 1. (i) From the given numbers {λn, αn}n≥0 construct the function F (x, t) by (3.4).
(ii) Find the function K(x, t) by solving equation (3.6).
(iii) Calculate q(x) by the formulae (3.18).

Example 1. Assume that the spectral data of some eigenvalue problem of the form (1.1)-(1.3) is the
following:

kn = k0
n, αn = α0

n + δn, k0
n = n+ hn, hn ∈ `2.

Since hn ∈ (0, 1) for all n ∈ N, hn = 1
2 . Let k

0
n = n+ 1

2 , d = π

2 .

Then from (3.3) and (3.4), we have

F0(x, t) =
(

1
α0
− 1
α0

0

)(
a+ cos x2 cos t2 + a− cos x2 sin t

2

)

F (x, t) =
(

1
α0
− 1
α0

0

)[
(a+)2

2 cos
(
x− t

2

)
+ a.a− sin x+ t

2 − sin x2 sin t

2

]
.

Solving equation (3.6) and by using relation (3.18) we obtain

K̃(x, t) = −
(

1
α0
− 1
α0

0

) (a+ cos x2 + a− sin x
2
) ([

(a+)2 + (a−)2
]

cos t2 + 2a+a− sin t
2

)
1 +

(
1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

]

and

q(x) = − 1
a+

(
1
α0
− 1

α0
0

) −a+

2

(
1
α0
− 1

α0
0

) [
(a+)2 + 3 (a−)2

] [
1 + (a+)2 + 3 (a−)2

]
(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])2

+
(
−a+ − a+

2

(
1
α0
− 1

α0
0

)(
(a+)2 + (a−)2

) [
x−

(
3 (a+)2 + (a−)2

)])
sin x(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])2

+
(

1
α0
− 1

α0
0

)(
(a+)2 + (a−)2

) [
a−

2

(
3 (a+)2 + (a−)2

)
x− a+

2

(
1 + 3 (a+)2 + (a−)2

)]
cosx(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])2

+a−
(

3 (a+)2 + (a−)2
)

cosx+ 2a+a−
(

1
α0
− 1

α0
0

) [
−a+ sin x+ a−

(
3 (a+)2 + (a−)2

)
cosx

]
sin x

2(
1 +

(
1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])2

+a+a−
(

1
α0
− 1

α0
0

) [
−a+

(
1 + (a+)2 + 3 (a−)2

)
− a−

(
3 (a+)2 + (a−)2

)
sin x

]
cos x2(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])2 .
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In order to reconstruct the second boundary, we construct the solution ϕ(x, λ) by using (3.15)

ϕ(x, λ) = ϕ0(x, λ)

−
(

1
α0
− 1

α0
0

) 4k sin kx
[(

(a+)2 + (a−)2
)

(a+ cosx+ a− sin x)
]

(4k2 − 1)
(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])
+4k sin kx

[
a+
(

(a+)2 + 3 (a−)2
)

+ 2a+a− (a+ sin x− a− cosx)
]

(4k2 − 1)
(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])
+2 cos kx

[(
(a+)2 + (a−)2

)
(a− cosx− a+ sin x) + a−

(
(a+)2 − (a−)2

)]
(4k2 − 1)

(
1 +

(
1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

])
+4a+a− cos kx (a+ cosx+ a− sin x)

(4k2 − 1)
(

1 +
(

1
α0
− 1

α0
0

) [
(a+)2+(a−)2

2 (x+ sin x) + 2a+a− sin x
2

]) .
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