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Abstract Let An denote the class of functions of the form f(z) = z +
∑∞

k=n+1 akz
k, which are

analytic in the open unit disk U = {z : |z| < 1}. In this note we shall find max|z|=r<1 Re{f ′(z) +
αzf ′′(z)} under the condition f ′(z) ≺ 1+Az

1+Bz
for f ∈ An.
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1 Introduction

Throughout our present investigation, we assume that

n ∈ N, −1 ≤ B < 1, B < A, α > 0 and β < 1. (1.1)

Let An denote the class of functions of the form:

f(z) = z +
∞∑

k=n+1
akz

k, (1.2)

which are analytic in the open unit disk U = {z : |z| < 1}.
For functions f and g analytic in U , we say that f is subordinate to g and write f(z) ≺ g(z) (z ∈ U),

if there exists an analytic function w(z) in U such that

|w(z)| ≤ |z| and f(z) = g(w(z)) (z ∈ U).

Furthermore, if the function g is univalent in U , then

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

In a recent paper [3], Gao and Zhou considered the following subclass of A1:

R(β, α) = {f ∈ A1 : Re{f ′(z) + αzf ′′(z)} > β (z ∈ U)} .

Some interesting properties of the class R(β, α) have been given in [1]. For further information of the
class R(β, α) one can see the related papers (see, e.g., [2,3,4,5,6,7,8,9]). Inspired by the above works, in
this note we shall find

max
|z|=r<1

Re{f ′(z) + αzf ′′(z)},

under the condition f ′(z) ≺ 1+Az
1+Bz .

2 Main Results

Theorem 2.1. Let f belong to the class An and satisfy

f ′(z) ≺ 1 +Az

1 +Bz
(z ∈ U). (2.1)
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Then

Re {f ′(z) + αzf ′′(z)} ≤ 1 + (A+B + nα(A−B))rn +ABr2n

(1 +Brn)2 if Mn(A,B, α, r) ≤ 0, (2.2)

or
Re {f ′(z) + αzf ′′(z)} ≤ L2

n − 4α2KAKB

4α(A−B)rn−1(1− r2)KB
if Mn(A,B, α, r) ≥ 0, (2.3)

where 
KA = 1−A2r2n + nArn−1(1− r2),
KB = 1−B2r2n + nBrn−1(1− r2),
Ln = 2α(1−ABr2n) + nα(A+B)rn−1(1− r2) + (A−B)rn−1(1− r2),
Mn(A,B, α, r) = 2αKB(1 +Arn)− Ln(1 +Brn).

(2.4)

The result is sharp.

Proof. Equality in (2.2) occurs for z = 0. Thus we assume that 0 < |z| = r < 1. From (2.1) we can write

f ′(z) = 1 +Aznϕ(z)
1 +Bznϕ(z) (z ∈ U), (2.5)

where ϕ(z) is analytic and |ϕ(z)| ≤ 1 in U . It follows from (2.5) that

f ′(z) + αzf ′′(z) = f ′(z) + α(A−B)zn(nϕ(z) + zϕ′(z))
(1 +Bznϕ(z))2

= f ′(z) + nα

A−B
(A−Bf ′(z))(f ′(z)− 1) + α(A−B)zn+1ϕ′(z)

(1 +Bznϕ(z))2 . (2.6)

With the help of the Carathéodory inequality:

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− r2 ,

we obtain

Re
{

zn+1ϕ′(z)
(1 +Bznϕ(z))2

}
≤ rn+1(1− |ϕ(z)|2)

(1− r2)|1 +Bznϕ(z)|2

= r2n|A−Bf ′(z)|2 − |f ′(z)− 1|2

(A−B)2rn−1(1− r2) . (2.7)

Put f ′(z) = u+ iv (u, v ∈ R). Then (2.6) and (2.7) provide

Re {f ′(z) + αzf ′′(z)} ≤
(

1 + nα
A+B

A−B

)
u− nαA

A−B
− nαB

A−B
(u2 − v2)

+ α
r2n((A−Bu)2 + (Bv)2)− ((u− 1)2 + v2)

(A−B)rn−1(1− r2)

=
(

1 + nα
A+B

A−B

)
u− nα

A−B
(A+Bu2) + α

r2n(A−Bu)2 − (u− 1)2

(A−B)rn−1(1− r2)

+ α

A−B

(
nB − 1−B2r2n

rn−1(1− r2)

)
v2. (2.8)

Note that

1−B2r2n

rn−1(1− r2) ≥
1− r2n

rn−1(1− r2) = 1
rn−1 (1 + r2 + r4 + · · ·+ r2(n−2) + r2(n−1))

= 1
2rn−1 [(1 + r2(n−1)) + (r2 + r2(n−2)) + · · ·+ (r2(n−1) + 1)]

≥ n ≥ nB. (2.9)
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Combining (2.8) and (2.9) we get

Re{f ′(z) + αzf ′′(z)} ≤
(

1 + nα
A+B

A−B

)
u− nα

A−B
(A+Bu2) + α

r2n(A−Bu)2 − (u− 1)2

(A−B)rn−1(1− r2)
= ψn(u) (say). (2.10)

It is well known that for |ξ| ≤ σ (σ < 1),∣∣∣∣1 +Aξ

1 +Bξ
− 1−ABσ2

1−B2σ2

∣∣∣∣ ≤ (A−B)σ
1−B2σ2 (2.11)

and
1−Aσ
1−Bσ ≤ Re

{
1 +Aξ

1 +Bξ

}
≤ 1 +Aσ

1 +Bσ
. (2.12)

Also (2.5) and (2.12) imply that

1−Arn

1−Brn ≤ Re{f ′(z)} ≤ 1 +Arn

1 +Brn
.

Let us now calculate the maximum value of ψn(u) on the segment
[

1−Arn

1−Brn ,
1+Arn

1+Brn

]
. Obviously,

ψ′n(u) = 1 + nα
A+B

A−B
− 2nαB
A−B

u+ 2α (1−ABr2n)− (1−B2r2n)u
(A−B)rn−1(1− r2) ,

ψ′′n(u) = − 2α
A−B

(
nB + 1−B2r2n

rn−1(1− r2)

)
< 0 (see (2.9)) (2.13)

and ψ′n(u) = 0 if and only if

u = un =2α(1−ABr2n) + nα(A+B)rn−1(1− r2) + (A−B)rn−1(1− r2)
2α[1−B2r2n + nBrn−1(1− r2)]

= Ln
2αKB

(see (2.4)). (2.14)

Since

2αKB(1−Arn)− Ln(1−Brn)
= 2α[(1−Arn)(1−B2r2n)− (1−Brn)(1−ABr2n)]
− nαrn−1(1− r2)[(A+B)(1−Brn)− 2B(1−Arn)]− (A−B)rn−1(1− r2)(1−Brn)

= −2α(A−B)rn(1−Brn)− nα(A−B)rn−1(1− r2)(1 +Brn)− (A−B)rn−1(1− r2)(1−Brn)
< 0,

we see that

un >
1−Arn

1−Brn . (2.15)

But un is not always less than 1+Arn

1+Brn . The following two cases arise.
Case (i). un ≥ 1+Arn

1+Brn , that is, Mn(A,B, α, r) (given by (2.4))≤ 0. In view of ψ′n(un) = 0 and (2.13),
the function ψn(u) is increasing on the segment

[
1−Arn

1−Brn ,
1+Arn

1+Brn

]
. Therefore we deduce from (2.10) that,
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if Mn(A,B, α, r) ≤ 0, then

Re {f ′(z) + αzf ′′(z)} ≤ ψn
(

1 +Arn

1 +Brn

)
=
(

1 + nα
A+B

A−B

)(
1 +Arn

1 +Brn

)
− nα

A−B

(
A+B

(
1 +Arn

1 +Brn

)2
)

= 1 +Arn

1 +Brn
− nα

A−B

(
1− 1 +Arn

1 +Brn

)(
A−B 1 +Arn

1 +Brn

)
= 1 + (A+B + nα(A−B))rn +ABr2n

(1 +Brn)2 .

This proves (2.2).
Next we consider the function f defined by

f(z) =
∫ z

0

1 +Atn

1 +Btn
dt

which satisfies the condition (2.1). It is easy to check that

f ′(r) + αrf ′′(r) = 1 + (A+B + nα(A−B))rn +ABr2n

(1 +Brn)2 ,

which shows that the inequality (2.2) is sharp.
Case (ii). un ≤ 1+Arn

1+Brn , that is, Mn(A,B, α, r) ≥ 0. In this case we easily have

Re {f ′(z) + αzf ′′(z)} ≤ ψn(un). (2.16)

In view of (2.4), ψn(u) in (2.10) can be written as

ψn(u) = −αKBu
2 + Lnu− αKA

(A−B)rn−1(1− r2) . (2.17)

Therefore, if Mn(A,B, α, r) ≥ 0, then it follows from (2.14), (2.16) and (2.17) that

Re {f ′(z) + αzf ′′(z)} ≤ −αKBu
2
n + Lnun − αKA

(A−B)rn−1(1− r2)

= L2
n − 4α2KAKB

4α(A−B)rn−1(1− r2)KB
.

To show that the inequality (2.3) is sharp, we take

f(z) =
∫ z

0

1 +Atnϕ(t)
1 +Btnϕ(t)dt and ϕ(z) = z − cn

1− cnz

where cn ∈ R is determined by

f ′(r) = 1 +Arnϕ(r)
1 +Brnϕ(r) = un ∈

(
1−Arn

1−Brn ,
1 +Arn

1 +Brn

]
.

Clearly, −1 < ϕ(r) ≤ 1,−1 ≤ cn < 1, |ϕ(z)| ≤ 1 (z ∈ U), and so f satisfies the condition (2.1). Since

ϕ′(r) = 1− c2
n

(1− cnr)2 = 1− |ϕ(r)|2

1− r2 ,

from the above argument we find that

f ′(r) + αrf ′′(r) = ψn(un).

Now the proof of the theorem is completed.
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Corollary 2.2. Let f belong to the class A1 and satisfy Re{f ′(z)} > β (β < 1; z ∈ U). Then for |z| = r < 1,

Re {f ′(z) + αzf ′′(z)} ≤ β + (1− β)1 + 2αr − r2

(1− r)2 .

The result is sharp.

Proof. By considering f ′(z)−β
1−β instead of f ′(z), we only need to prove the corollary for β = 0. Setting

n = A = 1 and B = −1 in (2.4), we get

K1 = 2(1− r2), K−1 = 0, L1 = 2α(1 + r2) + 2(1− r2)

and
M1(1,−1, α, r) = −2(1− r)[1 + α− (1− α)r2] ≤ 0.

Consequently, an application of (2.2) in Theorem 2.1 yields

Re {f ′(z) + αzf ′′(z)} ≤ 1 + 2αr − r2

(1− r)2 .

Furthermore the sharpness follows immediately from that of Theorem 2.1.
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