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Abstract In [1] we defined a notion of a generalized derivative for functions defined on a general
topological space with values in a linear topological space. Here we develop a theory of Taylor series
for this generalized setting.
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1 Introduction

When working with mathematical objects and notions, we often use more structural properties than it
is needed (see [2-7]). During last years notions similar to the classical notions of uniform convergence,
periodicity, Lipschitz condition and others have been defined in a purely topological way. (See e. g. [8],[9],
[10] or [11]).

Let us note that the generalized differentiation is currently developing by several mathematicians in
the frame of the theory of arbitrary metric spaces. See, for example,[12],[13],[14],[15]. The differentiation
theory in linear topological spaces is a well-known part of analysis. Nonetheless, it seems that there were
not any attempts to introduce a differentiation in topological spaces without linear or metric structures
before [1] was published.

2 Generalized Derivative

In this paper, when we say "a field", we mean the spaces R or C equipped with their natural topologies.
But very often we could work with a general "topological field", a field on which the operations of addition,
subtraction, multiplication and division would be continuous. In what follows we will suppose that X is a
topological space, A ⊂ X and Y is a linear topological space defined over a field F . A function g defined
on X is discrete on A at a point a ∈ X, if there is an open neighborhood V of a such that the statement

g(a) /∈ g((V
⋂

A)\{a})
holds. It is clear that g is a discrete function (i. e. the set g−1(g(a)) is discrete for every a ∈ X ), if and
only if g is discrete on X at all points. Now we define the notion of generalized derivative.

Definition 2.1. ([1]) Let p be a limit point of A and g : X → F be discrete at p on A. A function
f : X → Y has a g-derivative l ∈ Y at p on A if for every net {xγ}γ∈Γ of points xγ ∈ A\{p} converging
to p, the net { f(xγ)−f(p)

g(xγ)−g(p) }γ∈Γ converges to l. If l is a g-derivative of f at p on A, then we write
l =g/A f

′(p) = limx→p,x∈A
f(x)−f(p)
g(x)−g(p)

and gf
′(p) =g/X f

′(a) for A = X.
It is easy to see that, for Hausdorff spaces Y , a g-derivative gf

′(p) if it exists, is unique (see [1]).

Remark 2.2. In what follows if we say "let g/Af
′(a) exist" we automatically suppose that a is a limit

point of A. Moreover, we see, that if g/Af
′(a) exists, then g is discrete on A at the point a. It is easy to

see that our generalized derivative is a linear operator. If we put X = A = Y = F = R and g(x) ≡ x
we obtain the well-known definition of the derivative of a real valued function. Functions, differentiable
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in this generalized sense need not be continuous. For example if g : R→ R is an injective noncontinous
function and f = g then for every a from R gf

′(a) = 1 so gf
′(a) exists. But f is not continuous. It can

be proved, though, that if g is continuous, f arbitrary and gf
′ exists, then f is continuous.

The following example illustrates the notion of the generalized derivative.

Example 2.3. Let X be the space of all functions that are Riemann integrable on < 0, 1 >, let X be
equipped with the topology of pointwise convergence. Be k a positive integer. We define two mappings, i
and j from X to R by
∀f ∈ X i(f) =

∫ 1
0fk(x)dx

∀f ∈ X j(f) =
∫ 1

0f(x)dx

For each n = 1, 2, . . . define fn :< 0, 1 >→ R by ∀x ∈< 0, 1 > fn(x) = xn. Define h :< 0, 1 >→ R
by h(x) = 0 on < 0, 1) and h(1) = 1. Define A ⊂ X by A = {fn : n = 1, 2, . . . } ∪ {h}.

We can see that h is a limit point of A. Let us count ji
′(h).

ji
′(h) = limf∈A,f→h

i(f)−i(h)
j(f)−j(h) = limn→∞

i(fn)−i(h)
j(fn)−j(h) = limn→∞

1
kn+1−0

1
n+1−0 = 1

k .

Now what is the "meaning" of the fact that ji
′(h) = 1

k? One interpretation of this fact is that as n
approaches the infinity (and the functions fn approach h), the quotient of i(fn) and j(fn) aproaches 1

k so
for sufficiently high indexes n we obtain

i(fn) ≈ 1
k j(fn) or more concretely

∫ 1
0xkn(x)dx ≈ 1

k

∫ 1
0xn(x)dx .

The following technical lemma will be needed for our theory of generalized Taylor series in linear
topological spaces. It can also serve as another example illustrating generalized derivative.

Lemma 2.4. Let (X, T ) be a topological space. Let A ⊂ X and let a be a limit point of A. Let
g : X → R be a function continuous at a with respect to A. Let g be discrete on A at a. Be n a positive
integer and c ∈ R. Put h(x) := (g(x) − c)n. Then there exists g/Ah′(a) = g/A((g(x) − c)n)′(a) and
g/Ah′(a) = n(g(a)− c)n−1.

Proof. g/A((g(x)− c)n)′(a) = limx∈A,x→a
(g(x)−c)n−(g(a)−c)n

(g(x)−g(a)) =

limx∈A,x→a
((g(x)−c)−(g(a)−c))((g(x)−c)n−1+(g(x)−c)n−2(g(a)−c)+···+(g(a)−c)n−1)

(g(x)−g(a)) =

limx∈A,x→a
(g(x)−g(a))((g(x)−c)n−1+(g(x)−c)n−2(g(a)−c)+···+(g(a)−c)n−1)

(g(x)−g(a)) =
limx∈A,x→a(g(x)− c)n−1 + (g(x)− c)n−2(g(a)− c) + · · ·+ (g(a)− c)n−1) = n(g(a)− c)n−1.

3 Generalized Mean Value Theorems

A function g : X → R will be called feebly monotone at p ∈ X on A, if for every open O 3 p there exist
s, t ∈ O

⋂
A, such that the inequalities

g(s) < g(p) < g(t)
hold.

The following lemma ([1]) is a generalization of the fact, that if a differentiable function f has an
extremum at s then f

′(s) = 0.
Lemma 3.1.([1]) Let s be a limit point of A and let g : X → R be feebly monotone and discrete at s

on A. If a function f : X → R has at s a g/A-derivative and a local extremum on A, then
(i) g/Af

′(s) = 0
is true.
Now we give a generalization of the Rolle‘s Theorem.
Theorem 3.2. Let (X, T ) be a topological space, K ⊂ X be a compact. Let S be a subset of Kand let

A = K−S be nonempty and such, that each t from A is a limit point of A. Let f : X → R and g : X → R
be functions. Let f be continuous on K, let f be constant on S. Let g be discrete on K (on A) and let it
have no local extrema on K (on A) with respect to K (with respect to A). Let for all x from A there exist
g/Kf

′(x) (g/Af
′(x)). Then there exists a point c from A such that g/Kf

′(c) = 0 (g/Af
′(c) = 0).
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Proof. If f is constant on K our theorem is true. If it is not constant, the set f(K) is compact in R
and it has more than one point. So there exists a point c from A in which f has a local maximum or a
local minimum with respect to K. Therefore g/Kf

′(c) = 0.
The "(g/Af

′(c) = 0)" part of the theorem can be proved similarly. If f is constant on A our theorem is
true. If it is not constant, the set f(K) is compact in R and has more than one point. So there exists a
point c from A in which f has a local maximum or a local minimum with respect to K and with respect
to A. Therefore g/Af

′(c) = 0.
Observe that if S is the boundary of K then A is the interior of K and local extrema in A with respect

to A are in fact local extrema with respect to X. So if gf
′ exists on A, there exists a point c from A such

that gf
′(c) = 0. A classic example of this situation is K =< a, b >, S = {a, b}, A = (a, b), g(x) being the

idendity function on R.

The following theorem is a generalization of the Mean Value Theorem.

Theorem 3.3. Let (X, T ) be a topological space. Let K ⊂ X be a compact. Let S = {a, b} be a subset
of Kand let A = K − S be nonempty and such, that each t from A is a limit point of A. Let f : K → R,
h : K → R and g : K → R be functions. Let f and h be continuous on K. Let g be discrete on A (on K)
and let it have no local extrema on A (on K) with respect to A (with respect to K). Let for all x from A
there exist g/Af

′(x) and g/Ah
′(x) (g/Kf

′(x) and g/Kh
′(x)). Then there exists a point c from A such that

g/Ah
′(c)(f(b)− f(a)) = g/Af

′(c)(h(b)− h(a))
(or g/Kh

′(c)(f(b)− f(a)) = g/Kf
′(c)(h(b)− h(a)) ).

If c is from the interior of K − {a, b} we obtain
gh
′(c)(f(b)− f(a)) = gf

′(c)(h(b)− h(a))
Proof. Define a function p(x) such that for all x from K
p(x) = (h(x)− h(a))(f(b)− f(a))− (f(x)− f(a))(h(b)− h(a)).
The function p is continuous on K and p(a) = p(b) = 0. This means there exists a point c from

K − {a, b} such that p has a local maximum (or minimum) at c. So g/Ap
′(c) = 0 (or g/Kp

′(c) = 0 ).
Moreover for all x from K − {a, b} we have g/Ap

′(x) = g/Ah
′(x)(f(b) − f(a)) − g/Af

′(x)(h(b) − h(a)).
Concretely, this means g/Ah

′(c)(f(b)− f(a)) = g/Af
′(c)(h(b)− h(a)) is true.

Of course, if c is from the interior of K − {a, b} then we obtain
g/Ap

′ = g/Kp
′ = gp

′ so
gh
′(c)(f(b)− f(a)) = gf

′(c)(h(b)− h(a))

Let us remark that since we work on a general set, maybe some other, more interesting type of function
could be used for p(x). In that case S could have more than two points that would be involved in our
formula. The function we use is the traditional type of function, used for intervals.

The preceding theorem is a generalization of the so called Cauchy Mean Value Theorem. (Another
kind of this theorem was proved in [1]. The result obtained here is different and we need it in order
to develop our generalized theory of Taylor series.) Very often we need a simpler version of the proved
formula. The following theorem is the consequence of the preceding one.

Theorem 3.4. Let (X, T ) be a topological space. Let K ⊂ X be a compact. Let S = {a, b} be a subset
of Kand let A = K − S be nonempty and such, that each t from A is a limit point of A. Let f : K → R,
and g : K → R be functions. Let f and g be continuous on K, let f be constant on S. Let g be discrete
on A and let it have no local extrema on A with respect to A. Let for all x from A there existg/Af

′(x).
Then there exists a point c from A such that

(f(b)− f(a)) = g/Af
′(c)(g(b)− g(a)).

If c is from the interior of K − {a, b} we obtain
(f(b)− f(a)) = gf

′(c)(g(b)− g(a))
Proof. Define a function h : K → R such that for all x from K h(x) = g(x). The assumptions of the

preceding g theorem are met so there exists a point c from A = K − {a, b} such that
g/Ah

′(c)(f(b)− f(a)) = g/Af
′(c)(h(b)− h(a)).

Since g = h the function g/Ah
′ equals 1 on its whole range. Realizing this and replacing h by g on the

right side we obtain
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(f(b)− f(a)) = g/Af
′(c)(g(b)− g(a)).

Example 3.5. Our new mean value theorem is more general than the classical one. This example
shows that on one hand, we should not be overenthusiastic about it, on the other hand, we really can
obtain better estimates than in the classical case.

(1)
Put f(x) = x2 on K =< 0, 1

3 > ∪ < 2
3 , 1 > and g(x) = x = h(x) on K. Since f(1)− f(0) = 1 there

should exist a point c from A = (0, 1
3 > ∪ < 2

3 , 1) such that
g/Ah

′(c)(f(1)− f(0)) = g/Af
′(c)(h(1)− h(0)).

Since in our case g/Af
′(c) = xf

′(c) = f
′(c) = 2c and g/Ah

′(c) = hh
′(c) = 1 we should obtain

(*) there exists c from A such that 1 = 2c
if our generalized Mean Value Theorem worked. But obviously c cannot be an element of

(0, 1
3 > ∪ < 2

3 , 1). At the first sight all the conditions of our theorem are met. But examining the case
better we can see, that g does not satisfy the condition "let g have no local extrema on A".

Indeed g has local extrema at the points 1
3 and 2

3 .
(2)
Define f(x) = x8 on K =< 1

4 , 1
2 >.

Without using any kind of Mean Value Theorem we can see that |f( 1
2 )− f( 1

4 )| = ( 1
2 )8 − ( 1

4 )8 ≤ ( 1
2 )8

Let us use the classical Mean Value Theorem to estimate this difference.
There exists c from ( 1

4 , 1
2 ) such that |f( 1

2 )− f( 1
4 )| = f

′(c)( 1
2 −

1
4 ) = 8c7· 1

4 . Since c could be very near
to the point 1

2 we obtain only
|f( 1

2 )− f( 1
4 )| < 8· ( 1

2 )7· 1
4 = 1

26

Now use the preceding theorem on < 1
4 , 1

2 > for functions f(x) = x8 and g(x) = x4. First count
gf
′(x) in general.
gf
′(x) = limt→x

f(t)−f(x)
g(t)−g(x) = limt→x

t8−x8

t4−x4 = 2x4. According our theorem there exists c from ( 1
4 , 1

2 )
such that

(f( 1
2 )− f( 1

4 )) = gf
′(c)(g( 1

2 )− g( 1
4 )) = 2c4· (( 1

2 )4)− ( 1
4 )4). Since c could be very near to the point 1

2
we obtain |f( 1

2 )− f( 1
4 )| < 2· ( 1

2 )4· ( 1
24 − 1

44 ) < 1
23 · 1

24 = 1
27 . This estimate is better than the classical one.

4 Generalized Taylor Series

Theorem 4.1. Let (X, T ) be a topological space, Y a linear topological space over F (where F = R or F =
C). Let f : X → Y and g : X → F be functions. Let a be a limit point in X. Let g be continuous and
discrete on an open neighborhood of a. Let n be a positive integer and let for every k = 1, 2, . . . n there
exist gf (k)(a) (this implies there exists an open neighborhood Uof a such that for each x from U and for
every k = 1, 2, . . . n− 1 gf

(k)(x) exists).
Then there exists exactly one n-tuple of vectors A0, A1, . . . An from Y such that the function Tn : X →

Y defined by
∀x ∈ X Tn(x) = A0 + A1(g(x)− g(a)) + · · ·+ An(g(x)− g(a))n

fulfills
Tn(a) = f(a)
gT
′

n(a) = gf
′(a)

. . .
gT

(n)
n (a) = gf

(n)(a)
Moreover the following holds:
for every k = 1, 2, . . . n Ak = gf

(k)(a)
k!

Proof. If we put Ak = gf
(k)(a)
k! for each k = 1, 2, . . . n, the function Tn(x) has the demanded properties.

On the other hand let ∀x ∈ X Tn(x) = A0 + A1(g(x) − g(a)) + · · · + An(g(x) − g(a))n and let
Tn(a) = f(a). We can see immediately that Tn(a) = A0 so we have A0 = f(a).

In what follows we use the fact that if A is a vector from Y and h : X → R is a function and
if gh

′(a) exists then the function H : X → Y defined by H(x) = Ah(x) has a g-derivative at a and
g(Ah)′(a) = Agh

′(a).
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Using Lemma 2.4. we obtain gT
′

n(x) =
∑n
k=0 g(Ak(g(x)− g(a))k)′ =

∑n
k=0(Akg((g(x)− g(a))k)′ =∑n

k=1(Akk(g(x) − g(a))k−1) for each x at which these derivatives exist. This implies gT
′

n(a) = A1 so
A1 = gf

′(a).
In general if 1 ≤ j ≤ n then
gT

(j)
n (x) =

∑n
k=j(Akk(k − 1) . . . (k − j + 1)(g(x) − g(a))k−j). This means gT

(j)
n (a) = j!Aj . Since

gT
(j)
n (a) = gf

(j)(a) we have Aj = gf
(j)(a)
j! . This ends the proof.

Now we show how to estimate the difference between the generalized Taylor polynomial of degree n
and the original function f . We provide here a generalized Cauchy form of the reminder term.

Theorem 4.2. Let (X, T ) be a topological space. Let K be a compact subset of X that has no isolated
points with respect to the relative topology on K. Let S = {a, x} be a subset of Kand let A = K − S be
nonempty. Let X be T1 (this assures each t from A is a limit point of A).

Let f : X → R, and g : X → R be functions. Let f and g be continuous on K. Let g be discrete on A
and let it have no local extrema on A with respect to A. Be n a positive integer. Let for all t from A there
exist g/Afn+1(t) and let g/Kf j exist and be continuous on K for all j = 1, 2, . . . n. Denote

Tn(f, g, a, x) = f(a) + (g(x)− g(a))g/Kf
′(a) + · · ·+ (g(x)−g(a))n

n! g/Kf (n)(a)
Then there exists an element c from K − {a, x} such that
f(x)− Tn(f, g, a, x) = (g(x)− g(a)) (g(x)−g(c))n

n! g/Af (n+1)(c)
and if A is open

f(x)− Tn(f, g, a, x) = (g(x)− g(a)) (g(x)−g(c))n
n! gf

(n+1)(c)
Proof. Put
F (t) = f(t) + (g(x)− g(t))g/Kf

′(t) + · · ·+ (g(x)−g(t))n
n! g/Kf (n)(t)

F is continuous on K
We can see that F (x)− F (a) = f(x)− Tn(f, g, a, x)
By the generalized Mean Value Theorem there exists an element c from K − {a, x} such that
F (x)− F (a) = (g(x)− g(a))g/AF

′(c)
So if we show
g/AF

′(c) = (g(x)−g(c))n
n! g/Af (n+1)(c)

we are done.
But this is true since for each t from K − {a, b} and for j = 1, 2, . . . n obviously g/Af j(t) =g/K f j(t)

and we have
g/AF

′(t) = g/A{f(t) + (g(x)− g(t))g/Af
′(t) + (g(x)−g(t))2

2! g/Af (2)(t) + · · ·+ (g(x)−g(t))n
n! g/Af (n)(t))} =

g/Af
′(t)+(−1)g/Af

′(t)+(g(x)−g(t))g/Af (2)(t)+(−1)2 (g(x)−g(t))
2! g/Af (2)(t)+ (g(x)−g(t))2

2! g/Af (3)(t))+ . . .

+(−1)n (g(x)−g(t))n−1

n! g/Af (n)(t)) + (g(x)−g(t))n
n! g/Af (n+1)(t) =

(g(x)−g(t))n
n! g/Af (n+1)(t).

This ends the proof.
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