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Abstract This work considers the Riemann boundary value problem with the piecewise continuous
coefficient in Morrey-Hardy classes. Under some conditions on the coefficient, the Fredholmness of
this problem is studied and the general solution of homogeneous and non-homogeneous problems
in Morrey-Hardy classes is constructed. The obtained results are applied to the study of basis
properties of the system of exponents with a piecewise linear phase in Morrey-Lebesgue space.
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1 Introduction

The concept of Morrey space was introduced by C. Morrey in 1938. Since then, various problems related
to this space have been intensively studied. Playing an important role in the qualitative theory of elliptic
differential equations (see, for example, [1–3]), this space also provides a large class of examples of mild
solutions to the Navier-Stokes system [4]. In the context of fluid dynamics, Morrey spaces have been
used to model fluid flow when vorticity is a singular measure supported on certain sets in Rn [5]. There
appeared lately a large number of research works which considered fundamental problems of the theory
of differential equations, potential theory, maximal and singular operator theory, approximation theory,
etc in these spaces (see, for example, [6] and the references above). More details about Morrey spaces can
be found in [7–11].

In view of the aforesaid, there has recently been a growing interest in the study of various problems in
Morrey-type spaces. For example, some problems of harmonic analysis and approximation theory have
been considered in [12–19].

It should be noted that when solving many problems of mathematical physics by the Fourier method
[20–23], there often arise perturbed systems of sines and cosines of the following form

{sin (nt+ α (t))}n∈N , (1)

{cos (nt+ α (t))}n∈N , (2)

where α (t) = 1
2 (β t+ γ) , β, γ ∈ R− are real parameters (N is the set of all natural numbers). The

justification of this method requires the study of basis properties (completeness, minimality, basicity)
of above systems in Lebesgue and Sobolev function spaces. Their basis properties in Lebesgue spaces
Lp (−π, π) with γ = 0, have been comprehensively studied in [24–33]. The weighted case of Lp have been
considered in works by E.I.Moiseev [34,35]. Basis properties of some perturbed systems of exponents in
Sobolev spaces have been studied in [36–39]. To the number of the similar works the results of authors
of [40–44] can also be attributed.

One of the methods to study basis properties of systems like (1), (2) is a method of boundary value
problems of the theory of analytic functions. It dates back to one note by A.V. Bitsadze [45]. This method
was successfully used by the authors of [24–33].
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2 Needful Information

We will need some facts about the theory of Morrey-type spaces. Let Γ be some rectifiable Jordan curve
on the complex plane C. By |M |Γ we denote the linear Lebesgue measure of the set M ⊂ Γ .

The expression f (x) ∼ g (x), x ∈M , means

∃δ > 0 : δ ≤
∣∣∣∣f (x)
g (x)

∣∣∣∣ ≤ δ−1,∀x ∈M.

A similar meaning will be attached to the expression f (x) ∼ g (x), x→ a.
By the Morrey-Lebesgue space Lp,α (Γ ), 0 ≤ α ≤ 1, p ≥ 1, we mean a normed space of all functions

f ( · ) measurable on Γ equipped with a finite norm ‖ · ‖Lp,α(Γ ):

‖f‖Lp,α(Γ ) = sup
B

(∣∣∣B⋂Γ
∣∣∣α−1

Γ

∫
B
⋂
Γ

|f (ξ)|p |dξ|
)1/p

< +∞.

Lp,α (Γ ) is a Banach space and Lp,1 (Γ ) = Lp (Γ ), Lp,0 (Γ ) = L∞ (Γ ). Weighted version of the Morrey-
Lebesgue space Lp,αµ (Γ ) on Γ with a weight function µ ( · ) and a norm ‖ · ‖Lp,αµ (Γ ) can be defined in a
natural way

‖f‖Lp,αµ (Γ ) = ‖fµ‖Lp,α(Γ ) , f ∈ L
p,α
µ (Γ ) .

The embedding Lp,α1 (Γ ) ⊂ Lp,α2 (Γ ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus, Lp,α (Γ ) ⊂ L1 (Γ ), ∀α ∈ [0, 1],
∀p ≥ 1. The case of Γ ≡ [−π, π] will be denoted by Lp,α (−π, π) ≡ Lp,α.

By SΓ we denote the following singular integral operator

(SΓ f) (τ) = 1
2πi

∫
Γ

f (ζ) dζ
ζ − τ

, τ ∈ Γ.

Unit circle centered at z = 0 will be denoted by γ with int γ = ω. Define the Morrey-Hardy space
Hp,α

+ of functions f (z) analytic inside ω with a norm ‖ · ‖Hp,α+
:

‖f‖Hp,α+
= sup

0<r<1

∥∥f (reit)∥∥
Lp,α

.

Denote by L̃p,α the linear subspace of Lp,α consisting of functions whose shifts are continuous in Lp,α,
i.e. ‖f (· + δ)− f ( · )‖Lp,α → 0 as δ → 0. The closure of L̃p,α in Lp,α will be denoted by Mp,α.

When studying non-homogeneous Riemann boundary value problem, we will essentially use the
following lemma from [46].

Lemma 2.1. [46] Let f ( · ) ∈ L∞; g ( · ) ∈ Mp,α ∧1 ≤ p < +∞, 0 < α ≤ 1. Then the inclusion
f ( · ) g ( · ) ∈Mp,α is valid.

Consider the following singular operator

(Sf) (τ) = 1
2πi

∫
γ

f (ξ) dξ
ξ − τ

, τ ∈ γ.

Using the results of [13,14,16], it is easy to prove the following

Theorem 2.1. Singular operator S acts boundedly in Mp,α (γ) when 0 < α ≤ 1 and 1 < p < +∞.

The following theorem can also be proved.

Theorem 2.2. Let f ∈Mp,α, 0 < α ≤ 1, 1 < p < +∞. Then∥∥(Kf) (rξ)− f+ (ξ)
∥∥
Lp,α
→ 0, r → 1− 0,

where (Kf) (z) is a Cauchy type integral

(Kf) (z) = 1
2πi

∫
γ

f (ξ) dξ
ξ − z

, z /∈ γ.
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The similar assertion is also true for f− (ξ) as r → 1 + 0, where f− ( · ) are nontangential boundary
values of f ( · ) outside ω.

Consider the space Hp,α
+ . Denote by Lp,α+ the subspace of Lp,α, generated by the restrictions of the

functions from Hp,α
+ to γ. It follows directly from the above results that the spaces Hp,α

+ and Lp,α+ are
isomorphic and f+ (τ) = (Jf) (z), where f ∈ Hp,α

+ , f+ are the nontangential boundary values of f on
γ, and J performs a corresponding isomorphism. Let M

p,α
+ = Mp,α

⋂
Lp,α+ . It is clear that M

p,α
+ is a

subspace of Mp,α with regard to the norm ‖ · ‖Lp,α . Let MHp,α
+ = J−1 (Mp,α

+
)
. This is a subspace of Hp,α

+ .
Let f ∈ Hp,α

+ and f+ be its boundary values. It is absolutely clear that the norm ‖f‖Hp,α+
can be also

defined as ‖f‖Hp,α+
= ‖f+‖Lp,α .

Similar to the classical case, we define the Morrey-Hardy class outside ω. So let D = C\ω. We will say
that the function f analytic in D− has finite order k at infinity, if its Laurent series in a neighborhood of
the point at infinity has the following form

f (z) =
k∑

n=−∞
anz

n, k < +∞, ak 6= 0. (3)

Thus, when k > 0, the function f (z) has a pole of order k; when k = 0, it is bounded; and when k < 0, it
has a zero of order (−k). Let f (z) = f0 (z) + f1 (z), where f0 (z) is the main, and f1 (z) is the regular
part of expansion (1) for the function f (z). Consequently, if k ≤ 0, then f0 (z) ≡ 0. When k > 0, f0 (z)
is a polynomial of degree k. We will say that the function f (z) belongs to the class mHp,α

− , if f has an
order at infinity less than or equal to m, i.e. k ≤ m and f1

( 1
z

)
∈ Hp,α

+ .
Absolutely similar to the case of MHp,α

+ , we define the class mMHp,α
− . In other words, mMHp,α

− is a
subspace of functions from mH

p,α
− , whose shifts on a unit circle are continuous with regard to the norm

‖ · ‖Lp,α(γ).
In the study of the basicity of the system of exponents, we will need the following result of [15].

Theorem 2.3. Systems
{
ei nt

}
n∈Z+

;
{
e−i nt

}
n∈N ({z n}n∈Z+

;{z−n}n∈N) form bases for spaces M
p,α
+ ;

−1M
p,α
− (MHp,α

+ ; −1MHp,α
− ), respectively.

We will also use the following concepts. Let Γ ⊂ C be some bounded rectifiable curve, and t =
t (σ) , 0 ≤ σ ≤ l, be its parametric representation with respect to the length of arc σ, where l is the
length of Γ . Let dµ (t) = dσ, i.e. µ ( · ) is a linear measure on Γ . Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} , Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).

Definition 2.1. Curve Γ is called a Carleson curve if ∃ c > 0:

sup
t∈Γ

µ (Γt (r)) ≤ cr, ∀r > 0.

Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ , if there exists a constant
m > 0, independent of t, such that |s− s0| ≤ m |t (s)− t (s0)|, ∀t (s) ∈ Γ . Γ satisfies the chord-arc
condition uniformly on Γ , if ∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)| , ∀t (s) , t (σ) ∈ Γ .

Let’s state the following lemma from [16], which is interesting in itself.

Lemma 2.2. [16] Let Γ be a bounded rectifiable curve. If the exponential function |t− t0|γ , t0 ∈ Γ ,
belongs to the space Lp,α (Γ ) , 1 ≤ p <∞, 0 < α < 1, then γ ≥ −αp . If Γ is a Carleson curve, then this
condition is also sufficient.

We will essentially use the following theorem of N. Samko [16].

Theorem 2.4. Let the curve Γ satisfy the chord-arc condition and the weight ρ ( · ) be defined as follows

ρ (t) =
m∏
k=1
|t− tk|αk ; {tk}m1 ⊂ Γ, ti 6= tj , i 6= j. (4)
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Singular operator SΓ is bounded in the weighted space Lp,αρ (Γ ) , 1 < p < +∞, 0 ≤ α < 1, if the following
inequalities are valid

− α

p
< αk < −

α

p
+ 1, k = 1,m. (5)

Moreover, if Γ is smooth in some neighborhoods of the points tk, k = 1,m, then the validity of the
inequalities (5) is necessary for the boundedness of SΓ in Lp,αρ (Γ ).

In what follows, as Γ we will consider a unit circle γ = ∂ω. Consider the weighted space Lp,αρ (γ) =: Lp,αρ
with the weight ρ ( · ). Let the weight ρ ( · ) satisfy the condition (5). Then, by Theorem 2.4, the operator
S is bounded in Lp,αρ , i.e. ∃ c > 0:

‖Sf‖Lp,αρ ≤ C ‖f‖Lp,αρ , ∀f ∈ Lp,αρ .

3 Basicity of the Perturbed System of Exponents in Morrey-Lebesgue
Space

Consider the following system of exponents

{ei(n+βsignn)t}n∈Z .

Let us represent the following type system:{
A (t) ei nt;B (t) e−i kt

}
n∈Z+,k∈N

, (6)

where

A (t) = eiβt;B (t) = e−iβt,

on an interval [−π, π], where Z+ = {0} ∪N .
Let

G
(
eit
)

= A (t)
B (t) , t ∈ [−π, π] .

Take ∀f ∈ Mp,α and consider the following Riemann boundary value problem in classes MHp,α
+ ×

−1MHp,α
− :

F+ (τ)−G (τ)F− (τ) = A−1 (arg τ) f (arg τ) , τ ∈ γ. (7)

Assume that the following inequalities are fulfilled

− 1− α
q
≤ β < 1− α

p
. (8)

We will apply Theorem 10 [46] to the solution of the problem (7). From Lemma 2.1 follows that the
function A−1 ( · ) f ( · ) belongs to the space L̄p,α. Therefore, if the inequality (8) are fulfilled, as it follows
from Theorem 10 [46] the problem (7) is uniquely solvable in class MHp,α

+ ×−1 MHp,α
− , and this solution

can be represented as an integral

F (z) = Z (z)
2π

∫ π

−π

f (t)
A (t)Z+ (eit)

dt

1− ze−it .

Absolutely obvious that the following inclusion is true

F+ ( · ) ∈M
p,α
+ ;F− ( · ) ∈ −1M

p,α
− .

By Theorem 2.3, systems
{
ei nt

}
n∈Z+

,
{
e−i nt

}
n∈N form a basis for spaces Mp,α

+ and −1M
p,α
− , respectively.

Let us expand the functions F+ ( · ) and F− ( · ) on these systems. We have
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F+ (eit) =
∞∑
n=0

ane
i nt;F−

(
eit
)

=
∞∑
n=1

bne
i nt.

Taking into account these decompositions in (7) we obtain, that the function f ( · ) has an expansion on
the system (6) in Mp,α:

f (t) = A (t)
∞∑
n=0

a+
n e

i nt +B (t)
∞∑
n=1

a−n e
−i nt, (9)

where a+
n = an, a−n = −bn. Let us find an expression for the coefficients {a±n }. Let

Z (z) =
∞∑
n=0

c+
n z

n, |z| < 1,

be a Taylor expansion of the function Z ( · ) in the neighborhood of the point z = 0. We have

1
2π

∫ π

−π

f (t)
A (t)Z+ (eit)

dt

1− ze−it =
∞∑
n=0

d+
n z

n,

where

d+
n = 1

2π

∫ π

−π

e−i nt

A (t)Z+ (eit)f (t) dt, n ∈ Z+.

As a result, for F ( · ) we have the decomposition

F (z) =
∞∑
n=0

A+
n z

n, |z| < 1,

where A+
n =

∑n
k=0 c

+
n−kd

+
k . Taking into account the expression for d+

n we have

A+
n =

∫ π

−π
v+
n (t)f (t) dt,

where

v+
n (t) = 1

2π

n∑
k=0

c̄+
n−k

e+i kt

A (t)Z+ (eit)
, n ∈ Z+.

Similarly, let us expand the function F ( · ) in a Taylor series in the neighborhood of z =∞. Again,
using the expression for F ( · ), we have

Z (z) =
∞∑
n=0

c−n z
−n, |z| > 1.

Also we have

1
2π

∫ π

−π

f (t)
A (t)Z+ (eit)

dt

1− ze−it =
∞∑
n=1

d−n z
−n,

where

d−n = − 1
2π

∫ π

−π

ei nt

A (t)Z+ (eit)f (t) dt, n ∈ N.

So, F ( · ) has an expansion
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F (z) =
∞∑
n=1

A−n z
−n, |z| > 1,

where

A−n =
n∑
k=1

c−n−kd
−
k .

Similar to the previous case for A−n we have A−n =
∫ π
−π v

−
n (t)f (t) dt, where

v−n (t) = − 1
2π

n∑
k=1

c̄−n−k
e−i kt

A (t)Z+ (eit)
, n ∈ N.

On the other hand, it is easy to see that

a+
n = 1

2π

∫ π

−π
F+ (eit) e−i ntdt,

A+
n = 1

2πrn

∫ π

−π
F
(
reit
)
e−i ntdt, 0 < r < 1, ∀n ∈ Z+.

are true. Then from Theorem 2.2 it directly follows that A+
n = a+

n , ∀n ∈ Z+. Similarly we obtain A−n = a−n ,
∀n ∈ N .

And now, as f (t) we take f (t) ≡ A (t) ein0t, where n0 ∈ Z+ is an arbitrary fixed number. In this case
the solution of the problem (7) is the following function

Φ+ (z) =
{
zn0 , |z| < 1
0, |z| > 1.

As it follows from Theorem 10 [46], the problem (7) is uniquely solvable in classes MHp,α
+ × 1MHp,α

− .
Therefore, comparing functions F ( · ) and Φ+ ( · ), we have

A+
n =

{
1, n = n0,
0, n 6= n0,

A−n = 0,∀n ∈ N,

i.e., we have ∫ π

−π
A (t) ein0tv̄n (t) dt = δnn0 ,∀n, n0 ∈ Z+,∫ π

−π
A (t) ein0tv̄−n (t) dt = 0,∀n0 ∈ Z+,∀n ∈ N.

Similarly, taking f (t) = B (t) e−in0t, we obtain that in this case the solution of the problem (7) is also
the following function

Φ− (z) =
{

0, |z| < 1,
z−n0 , |z| > 1.

Again, from the similar considerations we obtain∫ π

−π
B (t) e−in0tv̄+

n (t) dt = 0,∀n0 ∈ N, ∀n ∈ Z+;

∫ π

−π
B (t) e−in0tv̄−n (t) dt = δnn0 ,∀n, n0 ∈ N.

From these relations it follows that if the inclusion {v+
n ; v−n }n∈Z+,k∈N ⊂ (Mp,α)∗ is true, then the

system (6) is minimal in Mp,α. It suffices to show that
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v+
n ; v−k ∈ L

q,α,∀n ∈ Z+,∀k ∈ N.

We have ∣∣Z+ (eit)∣∣−1 ∼ |t− π|β , t ∈ [−π, π] .

Let the inequality

β ≥ α− 1
q

,

be fulfilled. Then by Lemma 2.2 it follows that
∣∣Z+ (eit)∣∣−1 belongs to Lq,α. Hence, from the expressions

for v±n follows the inclusion {v±n } ⊂ Lq,α. As a result we have that the system (6) is minimal in Mp,α. It
is clear that the function f ( · ) has a unique expansion of the form (9) on this system. Thus, the following
theorem is true.

Theorem 3.1. Let the inequality

−1
q

+ α

q
≤ β < 1

p
− α

p
,

be fulfilled, then the system (6) forms a basis for Mp,α, 1 < p < +∞, 0 < α < 1.
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