Polynomial Inequalities in Regions with Piecewise Asymptotically Conformal Curve in the Weighted Lebesgue Space

F.G.ABDULLAYEV^{1*}, D. SİMŞEK², N. SA YPIDINOVA³ and Z. TASHPAEVA³

¹Kyrgyz-Turkish Manas University, Bishkek-KYRGYZSTAN- Mersin University, Mersin-TURKEY ²Kyrgyz-Turkish Manas University, Bishkek-KYRGYZSTAN- Selçuk University, Konya-TURKEY ³Kyrgyz-Turkish Manas University, Bishkek-KYRGYZSTAN Email: fabdul@mersin.edu.tr; fahreddinabdullayev@gmail.com

Abstract In this present work, we study the Nikolskii type estimations for algebraic polynomials in the bounded regions with piecewise-asymptotically conformal curve, having interior and exterior zero angles, in the weighted Lebesgue space

Keywords: Algebraic polynomials, conformal mapping, assymptotically coformal curve, quasicircle

1 Introduction

Let \mathbb{C} be a complex plane; $G \subset \mathbb{C}$ be a bounded region, with $0 \in G$ and Jordan boundary $L := \partial G$. Let $\{\xi_j\}_{j=1}^m$ be a fixed system of distinct points on curve L located in the positive direction. For some finite region $G^* \subset \mathbb{C}$ such that $G \subset G^*$ and $z \in G^*$, consider a so-called generalized Jacobi weight function h(z) being defined as follows:

$$h(z) := \prod_{j=1}^{m} |z - \xi_j|^{\gamma_j},$$
 (1)

where $\gamma_j > -1$ for all j = 1, 2, ..., m.

For a rectifiable Jordan curve L and for $0 , let <math>\mathcal{L}_p(h, L)$ denote the weighted Lebesgue space of complex-valued functions on L. Specifically, $f \in \mathcal{L}_p(h, L)$ if f is measurable and the following quasinorm (a norm for $1 \le p \le \infty$ and a p-norm for 0) is finite:

$$\begin{split} \|f\|_p := \|f\|_{\mathcal{L}_p(h,L)} := \left(\int\limits_L h(z) \, |f(z)|^p \, |dz|\right)^{1/p}, \ 0$$

We denote by \wp_n , n = 1, 2, ..., the set of all algebraic polynomials $P_n(z)$ of degree at most $n \in \mathbb{N}$. In this work, we study the following Nikolskii-type inequality

$$||P_n||_{\infty} \le c_1 \mu_n(G, h, p) ||P_n||_p,$$
 (2)

for some general regions having interior and exterior zero angles of the power type, where $c_1 = c_1(G, p) > 0$ is a constant independent of n, h and P_n , and $\mu_n(G, h, p) \to \infty$, $n \to \infty$, depending on the geometrical properties of region G and weight function h in the neighborhood of the points $\{\xi_j\}_{j=1}^m$.

The first result of (2)-type, in case $h(z) \equiv 1$ and $L = \{z : |z| = 1\}$ for $0 was found by Jackson [18]. Another classical results similar to (2) belong to Szegö and Zigmund [31]. Suetin [32], [33] investigated this problem with sufficiently smooth Jordan curve. The estimate of (2)-type for <math>0 and <math>h(z) \equiv 1$ when L is a rectifiable Jordan curve was investigated by Mamedhanov [21], [22], Nikolskii [24, pp.122-133], Pritsker [29], Andrievskii [10, Theorem 6] and others. More references regarding the inequality of (2)-type, we can find in Milovanovic et al. [23, Sect.5.3].

Further, analogous estimates of (2) for some regions and the weight function h(z) were obtained: in [2] (p > 1) and in [25] $(p > 0, h \equiv h_0)$ for regions bounded by rectifiable quasiconformal curve having some general properties; in [4] (p > 1) for piecewise Dini-smooth curve with interior and exterior cusps; in [3] (p > 1) for regions bounded by piecewise smooth curve with exterior cusps but without interior cusps; in [5] (p > 0) for regions bounded by piecewise rectifiable quasiconformal curve with cusps; in [6] (p > 0) for regions bounded by piecewise quasismooth (by Lavrentiev) curve with cusps.

Now, let's give some definitions and notations.

Let z_1 , z_2 be an arbitrary points on l and $l(z_1, z_2)$ denotes the subarc of l of shorter diameter with endpoints z_1 and z_2 . The curve l is a quasicircle if and only if the quantity

$$\sup_{z_1, z_2 \in l; \ z \in l(z_1, z_2)} \frac{|z_1 - z| + |z - z_2|}{|z_1 - z_2|} \tag{3}$$

is bounded [19, p.105]. Following to Lesley [20], we say that the curve l to be said "c-quasiconformal", if the quantity (3) bounded by positive constant c, independent from points z_1 , z_2 and z. At the literature it is possible to find various functional definitions of the quasiconformal curves (see, for example, Def. 3, [26, pp.286-294], [19, p.105], [7, p.81], [27, p.107]).

The Jordan curve l is called asymptotically conformal ([12], [27]), if

$$\sup_{z_1, z_2 \in l; \ z \in l(z_1, z_2)} \frac{|z_1 - z| + |z - z_2|}{|z_1 - z_2|} \to 1, \qquad |z_1 - z_2| \to 0.$$
(4)

We will denote this class as AC, and will write $G \in AC$, if $L := \partial G \in AC$.

The asymptotically conformal curves occupy a special place in the problems of the geometric theory of functions of a complex variable. These curves in various problems have been studied by J.M. Anderson, J. Becker and F.D. Lesley [8], E.M.Dyn'kin [13], Ch. Pommerenke, S.E. Warschawski [28], V.Ya. Gutlyanskii, V.I. Ryazanov [14], [15], [16] and others. According to the geometric criteria of quasiconformality of the curves ([7, p.81], [27, p.107]), every asymptotically conformal curve is a quasicircle. Every smooth curve is asymptotically conformal but corners are not allowed. It is well known that quasicircles can be non-rectifiable (see, for example, [11], [19, p.104]). The same is true for asymptotically conformal curves.

We say that $L \in AC$, if $L \in AC$ and L is rectifiable. A Jordan arc ℓ is called asymptotically conformal arc, when ℓ is a part of some asymptotically conformal curve.

Now, we define a new class of regions bounded by piecewise asymptotically conformal curves having interior and exterior zero angles of the power type at the connecting points of boundary arcs.

Throughout this paper, $c, c_0, c_1, c_2, ...$ are positive and $\varepsilon_0, \varepsilon_1, \varepsilon_2, ...$ are sufficiently small positive constants (generally, different in different relations), which depend on G in general and on parameters inessential for the argument; otherwise, such dependence will be explicitly stated.

For any $k \ge 0$ and m > k, notation $i = \overline{k, m}$ means i = k, k + 1, ..., m. For any i = 1, 2, ..., k = 0, 1, 2 and $\varepsilon_1 > 0$, we denote by $f_i : [0, \varepsilon_1] \to \mathbb{R}^+$ and $g_i : [0, \varepsilon_1] \to \mathbb{R}^+$ twice differentiable functions such that

$$f_i(0) = g_i(0) = 0, \ f_i^{(k)}(x) > 0, \ g_i^{(k)}(x) > 0, \ 0 < x \le \varepsilon_1.$$
 (5)

Definition 1 We say that a Jordan region $G \in AC(f_i, g_i)$, for some $f_i = f_i(x)$, $i = \overline{1, m_1}$ and $g_i = g_i(x)$, $i = \overline{m_1 + 1, m}$, defined as in (5), if $L = \partial G = \bigcup_{i=0}^m L_i$ is the union of the finite number of asymptotically conformal arcs L_i , connecting at the points $\{z_i\}_{i=0}^m \in L$ and such that L is a locally asymptotically conformal arc at the $z_0 \in L \setminus \{z_i\}_{i=1}^m$ and, in the (x, y) local co-ordinate system with its origin at the z_i , $1 \le i \le m$, the following conditions are satisfied:

a) for every $z_i \in L$, $i = \overline{1, m_1}$, $m_1 \leq m$,

$$\left\{z=x+iy:\ |z|\leq \varepsilon_1,\ c_{11}^if_i(x)\leq y\leq c_{12}^if_i(x),\ 0\leq x\leq \varepsilon_1\right\}\subset \overline{G},\\ \left\{z=x+iy:|z|\leq \varepsilon_1,\ |y|\geq \varepsilon_2x,\ 0\leq x\leq \varepsilon_1\right\}\subset \overline{\Omega};$$

b) for every $z_i \in L$, $i = \overline{m_1 + 1, m}$,

$$\left\{z = x + iy : |z| < \varepsilon_3, \quad c_{21}^i g_i(x) \le y \le c_{22}^i g_i(x), \quad 0 \le x \le \varepsilon_3 \right\} \subset \overline{\Omega},$$
$$\left\{z = x + iy : |z| < \varepsilon_3, \quad |y| \ge \varepsilon_4 x, \quad 0 \le x \le \varepsilon_3 \right\} \subset \overline{G},$$

for some constants $-\infty < c_{11}^i < c_{12}^i < \infty, \ -\infty < c_{21}^i < c_{22}^i < \infty \ and \ \varepsilon_s > 0, \ s = \overline{1,4}.$

Definition 2 We say that a Jordan region $G \in \widetilde{AC}(f_i, g_i)$, $f_i = f_i(x)$, $i = \overline{1, m_1}$, $g_i = g_i(x)$, $i = \overline{m_1 + 1, m}$, if $G \in AC(f_i, g_i)$ and $L := \partial G$ is rectifiable.

It is clear from Definitions 2 and 1, that each region $G \in \widetilde{AC}(f_i, g_i)$ may have m_1 interior and $m - m_1$ exterior zero angles (with respect to \overline{G}) at the points $\{z_i\}_{i=1}^m \in L$. If a region G does not have interior zero angles $(m_1=0)$ (exterior zero angles $(m_1=m)$), then it is written as $G \in \widetilde{AC}(0,g_i)$ ($G \in \widetilde{AC}(f_i,0)$). If a domain G does not have such angles (m=0), then we will assume that G is bounded by a rectifiable asymptotically conformal curves and in this case we set $\widetilde{AC}(0,0) \equiv \widetilde{AC}$.

Throughout this work, we will assume that the points $\{\xi_i\}_{i=1}^m \in L$ defined in (1) and the points $\{z_i\}_{i=1}^m \in L$ defined in Definition 2 and 1 coincide. Without loss of generality, we also will assume that the points $\{z_i\}_{i=0}^m$ are ordered in the positive direction on the curve L such that G has interior zero angles at the points $\{z_i\}_{i=1}^m$, if $m \geq 1$ and exterior zero angles at the points $\{z_i\}_{i=m_1+1}^m$, if $m \geq m_1+1$.

2 Main Results

Now, we can state our new results. Our first result (Nikolskii-type inequality) is related to the general case. Namely, let region G has $m_1 \geq 1$ interior zero angles at the points $\{z_i\}_{i=1}^{m_1}$ and $m-m_1$ exterior zero angles at the points $\{z_i\}_{i=1}^m$. In this case, we have the following estimate, i.e. with respect to each points $\{z_i\}_{i=1}^m$:

Theorem 1 Let p > 0; $G \in \widetilde{AC}(f_i, g_i)$, for some $f_i(x) = C_i x^{1+\alpha_i}$, $\alpha_i \ge 0$, $i = \overline{1, m_1}$, and $g_i(x) = C_i x^{1+\beta_i}$, $\beta_i > 0$, $i = \overline{m_1 + 1, m}$; h(z) defined as in (1). Then, for any $\gamma_i > -1$, $i = \overline{1, m}$, and $P_n \in \wp_n$, $n \in \mathbb{N}$, there exists $c_1 = c_1(G, p, \varepsilon, \gamma_i, \beta_i) > 0$ such that the following

$$\|P_n\|_{\infty} \le c_1 \left(\sum_{i=1}^{m_1} n^{\frac{\widetilde{\gamma_i}+1)(1+\widetilde{\varepsilon})}{p}} + \sum_{i=m_1+1}^{m} n^{\left(\frac{\widetilde{\gamma_i}}{1+\beta_i}+1\right)\frac{1}{p}+\varepsilon} \right) \|P_n\|_{p}, \tag{6}$$

 $holds \ for \ \widetilde{\varepsilon} := \left\{ \begin{array}{l} \varepsilon, \ if \ \alpha_1 = 0, \\ 1, \ if \ \alpha_1 \neq 0, \end{array} \right. \ and \ arbitrary \ small \ \varepsilon > 0, \ where \ \widetilde{\gamma}_i := \max \left\{ 0; \gamma_i \right\}, \ i = \overline{1, m}.$

Now, for simplicity of our presentations, we assume that: i=1,2; $m_1=1,\ m=2$; i.e. our region G has one interior zero (or it does not exist) angle having " f_1 -touching" with $f_1(x)=C_1x^{1+\alpha_1},\ \alpha_1\geq 0$, at the point z_1 and exterior zero angle having " g_2 -touching" with $g_2(x)=C_2x^{1+\beta_2},\ \beta_2>0$, at the point z_2 , for some constants $-\infty < C_i < +\infty$, $C_i := C_i(c_{i1}^i,c_{i2}^i),\ i=1,2$, where the constants $c_{ij}^i,\ i,j=1,2$, are taken from Definition 2. In this case, combining the terms related to the interior and exterior zero angles, we obtain the following:

Theorem 2 Let p > 0; $G \in \widetilde{AC}(f_1, g_2)$, for some $f_1(x) = C_1 x^{1+\alpha_1}$, $\alpha_1 \ge 0$, and $g_2(x) = C_2 x^{1+\beta_2}$, $\beta_2 > 0$; h(z) defined as in (1) for m = 2. Then, for any $\gamma_i > -1$, i = 1, 2, and $P_n \in \wp_n$, $n \in \mathbb{N}$, there exists $c_2 = c_2(G, p, \varepsilon, \gamma_i, \beta_2) > 0$ such that:

$$||P_n||_{\infty} \le c_2 A_n \, ||P_n||_{n},$$
 (7)

where

$$A_{n} := \begin{cases} n^{\frac{\gamma_{1}+2}{p}}, & \gamma_{1} > \frac{\gamma_{2}}{1+\beta_{2}} - 1, \, \gamma_{2} > 1 + \beta_{2}; \\ n^{\left(\frac{\gamma_{2}}{1+\beta_{2}} + 1\right)\frac{1}{p} + \varepsilon}, & 0 < \gamma_{1} \leq \frac{\gamma_{2}}{1+\beta_{2}} - 1, \, \gamma_{2} > 1 + \beta_{2}; \\ n^{\frac{\gamma_{1}+2}{p}}, & \gamma_{1} > -1, \, -1 < \gamma_{2} < 1 + \beta_{2}. \end{cases}$$
(8)

In particular, if $\alpha_1 = 0$, i.e. G has only exterior zero angle at the z_2 , then we have:

Theorem 3 Let p > 0; $G \in \widetilde{AC}(0, g_2)$, for some $g_2(x) = C_2 x^{1+\beta_2}$, $\beta_2 > 0$; h(z) defined as in (1) for m=2. Then, for any $\gamma_i>-1$, i=1,2, and $P_n\in\wp_n$, $n\in\mathbb{N}$, there exists $c_3=c_3(G,p,\varepsilon,\gamma_i,\beta_2)>0$ such

$$||P_n||_{\infty} \le c_3 A_n ||P_n||_p,$$

where

$$A_{n} = \begin{cases} n^{\frac{\gamma_{1}+1}{p}+\varepsilon}, & \gamma_{1} > \frac{\gamma_{2}}{1+\beta_{2}}, \ \gamma_{2} > 0; \\ n^{\left(\frac{\gamma_{2}}{1+\beta_{2}}+1\right)\frac{1}{p}+\varepsilon}, & 0 < \gamma_{1} \leq \frac{\gamma_{2}}{1+\beta_{2}}, \ \gamma_{2} > 0; \\ n^{\frac{1}{p}+\varepsilon}, & -1 < \gamma_{1}, \gamma_{2} \leq 0, \end{cases}$$
(9)

The sharpness of the estimations (7)-(9) for some special cases can be discussed by comparing them with the following results:

Remark 1 For the polynomials $P_n^*(z) = 1 + z + ... + z^n$, a) $h^*(z) \equiv 1$, b) $h^{**}(z) = |z - 1|^{\gamma}$, $\gamma > 0$, and $L := \{z : |z| = 1\}$, there exists a constant $c_4 = c_4(p) > 0$ and $c_5 = c_5(h^{**}, p) > 0$ such that:

a)
$$||P_n^*||_{\mathcal{L}_{\infty}} \ge c_4 n^{\frac{1}{p}} ||P_n^*||_{\mathcal{L}_p(1, L)}, \quad p > 1;$$

b)
$$||P_n^*||_{\mathcal{L}_{\infty}} \ge c_5 n^{\frac{\gamma+1}{p}} ||P_n^*||_{\mathcal{L}_p(h^{**}, L)}, \quad p > \gamma + 1.$$

3 Some Aauxiliary Results

For a > 0 and b > 0, we shall use the notations " $a \leq b$ " (order inequality), if $a \leq cb$ and " $a \approx b$ " are equivalent to $c_1 a \le b \le c_2 a$ for some constants c, c_1, c_2 (independent of a and b) respectively.

Let $G \subset \mathbb{C}$ be a bounded region, and $L := \partial G$ be a Jordan curve, $\Omega := \overline{\mathbb{C}} \setminus \overline{G} = extL$ ($\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$). Denote by $w = \Phi(z)$ the univalent conformal mapping of Ω onto $\Delta := \{w : |w| > 1\}$ with normalization $\Phi(\infty) = \infty, \lim_{z \to \infty} \frac{\Phi(z)}{z} > 0 \text{ and } \Psi := \Phi^{-1}.$

For $t \geq 1$, $z \in \mathbb{C}$ and $M \subset \mathbb{C}$, we set:;

$$L_t := \{z : |\Phi(z)| = t\} \ (L_1 \equiv L), \ G_t := intL_t, \ \Omega_t := extL_t; \ d(z, M) = dist(z, M) := \inf\{|z - \zeta| : \ \zeta \in M\},$$

The following definitions of the K-quasiconformal curves are well known (see, for example, [7], [19, p.97] and [30]):

Definition 3 The Jordan arc (or curve) L is called K-quasiconformal $(K \geq 1)$, if there is a Kquasiconformal mapping f of the region $D \supset L$ such that f(L) is a line segment (or circle).

Let F(L) denote the set of all sense preserving plane homeomorphisms f of the region $D \supset L$ such that f(L) is a line segment (or circle) and let

$$K_L := \inf \{ K(f) : f \in F(L) \},$$

where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve, if $K_L < \infty$, and L is a K-quasiconformal curve, if $K_L \leq K$.

Lemma 1 [1] Let L be a K-quasiconformal curve, $z_1 \in L$, $z_2, z_3 \in \Omega \cap \{z : |z-z_1| \leq d(z_1, L_{r_0})\}$; $w_{i} = \Phi(z_{i}), j = 1, 2, 3.$ Then

- a) The statements $|z_1 z_2| \leq |z_1 z_3|$ and $|w_1 w_2| \leq |w_1 w_3|$ are equivalent. So are $|z_1 - z_2| \approx |z_1 - z_3|$ and $|w_1 - w_2| \approx |w_1 - w_3|$. b) If $|z_1 - z_2| \leq |z_1 - z_3|$, then

$$\left|\frac{w_1-w_3}{w_1-w_2}\right|^{\varepsilon_1} \preceq \left|\frac{z_1-z_3}{z_1-z_2}\right| \preceq \left|\frac{w_1-w_3}{w_1-w_2}\right|^c,$$

where $\varepsilon_1 < 1, \ c > 1, \ 0 < r_0 < 1$ are constants, depending on G and $L_{r_0} := \{z = \psi(w) : |w| = r_0\}$.

Lemma 2 [20, p.342] Let L be an asymptotically conformal curve. Then, Φ and Ψ are Lip α for all $\alpha < 1$ in $\overline{\Omega}$ and $\overline{\Delta}$, correspondingly.

Lemma 3 Let L be an asymptotically conformal curve. Then,

$$|\Psi(w_1) - \Psi(w_2)| \succeq |w_1 - w_2|^{1+\varepsilon},$$

for all $w_1, w_2 \in \overline{\Delta}$ and $\forall \varepsilon > 0$.

This fact follows from Lemma 2. We also will use the estimation for the $\Psi^{'}$ (see, for example, [9, Th.2.8]):

$$|\Psi'(\tau)| \simeq \frac{d(\Psi(\tau), L)}{|\tau| - 1}.$$
 (10)

Let $\{z_j\}_{j=1}^m$ be a fixed system of the points on L and the weight function h(z) defined as (1).

Lemma 4 Let L be a rectifiable Jordan curve; h(z) defined as in (1). Then, for arbitrary $P_n(z) \in \wp_n$, any R > 1 and $n \in \mathbb{N}$, we have

$$||P_n||_{\mathcal{L}_p(h,L_R)} \le R^{n+\frac{1+\gamma}{p}} ||P_n||_{\mathcal{L}_p(h,L)}, \ p > 0,$$
 (11)

where $\widetilde{\gamma} := \max \{0; \gamma_i : i = \overline{1, m}\}$.

Remark 2 In case of $h(z) \equiv 1$, the estimate (11) has been proved in [17].

4 Proof of Theorems

4.1 Proof of Theorems 1-3.

Proof. Let $G \in \widetilde{AC}(f_i, g_i)$, for some $f_i(x) = c_i x^{1+\alpha_i}$, $\alpha_i \ge 0$, $i = \overline{1, m_1}$, and $g_i(x) = c_i x^{1+\beta_i}$, $\beta_i > 0$, $i = \overline{m_1 + 1, m}$, be given. Let $w = \varphi_R(z)$ be the univalent conformal mapping of G_R , R > 1, onto the B normalized by $\varphi_R(0) = 0$, $\varphi_R'(0) > 0$, and let $\{\zeta_j\}$, $1 \le j \le m \le n$, be zeros of $P_n(z)$ lying on G_R . Let

$$B_{m,R}(z) := \prod_{j=1}^{m} b_{j,R}(z) = \prod_{j=1}^{m} \frac{\varphi_R(z) - \varphi_R(\zeta_j)}{1 - \overline{\varphi_R(\zeta_j)}\varphi_R(z)}$$

denote a Blaschke function with respect to zeros $\{\zeta_j\}$, $1 \leq j \leq m \leq n$, of $P_n(z)$.

Let us set:

$$Q_{n}\left(z\right):=\left[\frac{P_{n}\left(z\right)}{B_{m,R}(z)}\right]^{p/2}\quad,\ p>0,\ z\in G_{R}.$$

The function $Q_n(z)$ is analytic in G_R , continuous on \overline{G}_R and does not have zeros in G_R . Then, Cauchy integral representation for the $Q_n(z)$ in G_R gives:

$$Q_{n}(z) = \frac{1}{2\pi i} \int_{L_{R}} Q_{n}(\zeta) \frac{d\zeta}{\zeta - z}, \ z \in G_{R},$$

or

$$\left| \left[\frac{P_n\left(z\right)}{B_{m,R}(z)} \right]^{p/2} \right| \leq \frac{1}{2\pi} \int_{L_R} \left| \frac{P_n\left(\zeta\right)}{B_{m,R}(\zeta)} \right|^{p/2} \frac{\left| d\zeta \right|}{\left| \zeta - z \right|} \leq \int_{L_R} \left| P_n\left(\zeta\right) \right|^{p/2} \frac{\left| d\zeta \right|}{\left| \zeta - z \right|},$$

since $|B_{m,R}(\zeta)| = 1$, for $\zeta \in L_R$. Let now $z \in L$. Multiplying the numerator and determinator of the integrand by $h^{1/2}(\zeta)$, according to the Hölder inequality, we obtain:

$$\left| \frac{P_n(z)}{B_{m,R}(z)} \right|^{p/2} \le \frac{1}{2\pi} \left(\int_{L_R} h(\zeta) \left| P_n(\zeta) \right|^p \left| d\zeta \right| \right)^{1/2} \tag{12}$$

$$\times \left(\int\limits_{L_R} \frac{|d\zeta|}{\prod\limits_{j=1}^m |\zeta - z_j|^{\gamma_j} |\zeta - z|^2} \right)^{1/2} =: \frac{1}{2\pi} J_{n,1} \times J_{n,2},$$

where

$$J_{n,1} := \left(\int\limits_{L_R} h(\zeta) \left| P_n(\zeta) \right|^p \left| d\zeta \right| \right)^{1/2}, \ J_{n,2} := \left(\int\limits_{L_R} \frac{\left| d\zeta \right|}{\prod\limits_{j=1}^m \left| \zeta - z_j \right|^{\gamma_j} \left| \zeta - z \right|^2} \right)^{1/2}.$$

Then, since $|B_{m,R}(z)| < 1$, for $z \in L$, from Lemma 4, we have:

$$|P_n(z)| \le (J_{n,1} \cdot J_{n,2})^{2/p} \le ||P_n||_p \cdot J_{n,2}^{2/p}, \ z \in L.$$
 (13)

To estimate the integral $J_{n,2}$, we introduce:

$$w_j := \Phi(z_j), \ \varphi_j := \arg w_j, \ L_R^j := L_R \cap \overline{\Omega}^j, \ j = \overline{1, m},$$

where $\Omega^{j} := \Psi(\Delta'_{i});$

$$\begin{split} & \Delta_1^{'} := \left\{t = Re^{i\theta}: R > 1, \ \frac{\varphi_m + \varphi_1}{2} \ \leq \theta < \frac{\varphi_1 + \varphi_2}{2} \right\}, \\ & \Delta_m^{'} := \left\{t = Re^{i\theta}: R > 1, \ \frac{\varphi_{m-1} + \varphi_m}{2} \ \leq \theta < \frac{\varphi_m + \varphi_1}{2} \right\}. \end{split}$$

and, for $j = \overline{2, m-1}$

$$\Delta_j^{'} := \left\{ t = Re^{i\theta} : R > 1, \ \frac{\varphi_{j-1} + \varphi_j}{2} \ \leq \theta < \frac{\varphi_j + \varphi_{j+1}}{2} \right\}.$$

Then, we get

$$J_{n,2}^{2} = \sum_{i=1}^{m} \int_{L_{R}^{i}} \frac{|d\zeta|}{\prod\limits_{i=1}^{m} |\zeta - z_{j}|^{\gamma_{j}} |\zeta - z|^{2}} \approx \sum_{i=1}^{m} \int_{L_{R}^{i}} \frac{|d\zeta|}{|\zeta - z_{i}|^{\gamma_{i}} |\zeta - z|^{2}} =: \sum_{i=1}^{m} J_{n,2}^{i}, \tag{14}$$

where

$$J_{n,2}^{i} := \int_{L_{R}^{i}} \frac{|d\zeta|}{|\zeta - z_{i}|^{\gamma_{i}} |\zeta - z|^{2}}, \ i = \overline{1, m}, \tag{15}$$

since the points $\{z_j\}_{j=1}^m \in L$ are distinct. It remains to estimate the integrals $J_{n,2}^i$ for each $i = \overline{1,m}$. For simplicity of our next calculations, we assume that:

$$i = 1, 2; \ m_1 = 1, \ m = 2; \ z_1 = -1, \ z_2 = 1; \ (-1, 1) \subset G; \ R = 1 + \frac{\varepsilon_0}{n},$$
 (16)

and let local co-ordinate axis in Definitions 1 and 2 is parallel to OX and OY in the OXY co-ordinate system; $L = L^+ \cup L^-$, where $L^+ := \{z \in L : \operatorname{Im} z \geq 0\}$, $L^- := \{z \in L : \operatorname{Im} z < 0\}$. Let $w^\pm := \{w = e^{i\theta} : \theta = \frac{\varphi_1 \pm \varphi_2}{2}\}$, $z^\pm \in \varPsi(w^\pm)$ and L^i an arcs, connecting the points z^+ , z_i , $z^- \in L$; $L^{i,\pm} := L^i \cap L^\pm$, i = 1, 2. Let z_0 be taken as an arbitrary point on L^+ (or on L^- subject to the chosen direction). For simplicity, without loss of generality, we assume that $z_0 = z^+$ ($z_0 = z^-$).

Analogously to the previous notations, we introduce the following: $L_R = L_R^+ \cup L_R^-$, where $L_R^+ := \{z \in L_R : \operatorname{Im} z \geq 0\}$, $L_R^- := \{z \in L_R : \operatorname{Im} z < 0\}$; Let $w_R^\pm := \{w = Re^{i\theta} : \theta = \frac{\varphi_1 \pm \varphi_2}{2}\}$, $z_R^\pm \in \Psi(w_R^\pm)$. We set: $z_{i,R} \in L_R$, such that $d_{i,R} = |z_i - z_{i,R}|$ and $\zeta^\pm \in L^\pm$, such that $d(z_{2,R}, L^2 \cap L^\pm) := d(z_{2,R}, L^\pm)$; $z_i^\pm := \{\zeta \in L^i : |\zeta - z_i| = c_i d(z_i, L_R)\}$, $z_{i,R}^\pm := \{\zeta \in L_R^i : |\zeta - z_{i,R}| = c_i d(z_{i,R}, L_R)\}$, $w_{i,R}^\pm = \Phi(z_{i,R}^\pm)$. Let

 $L_{R}^{i},\ i=1,2,$ denote arcs, connecting the points $z_{R}^{+},\ z_{i,R},\ z_{R}^{-}\in\ L_{R},\ L_{R}^{i,\pm}:=L_{R}^{i}\cap L_{R}^{\pm}$ and $l_{i,R}^{\pm}(z_{i,R}^{\pm},z_{R}^{\pm})$ denote arcs, connecting the points $z_{i,R}^{\pm}$ with z_R^{\pm} , respectively and $\left| l_{i,R}^{\pm} \right| := mes \ l_{i,R}^{\pm}(z_{i,R}^{\pm}, z_R^{\pm}), \ i = 1, 2.$ We denote:

$$\begin{split} S_{1,R}^{i,\pm} &:= \left\{ \zeta \in L_R^{i,\pm} : \ |\zeta - z_i| < c_i d_{i,R} \right\}, \\ S_{2,R}^{i,\pm} &:= \left\{ \zeta \in L_R^{i,\pm} : c_i d_{i,R} \leq |\zeta - z_i| \leq \left| \ l_{i,R}^{\pm} \right| \right\}, \ \mathcal{F}_{j,R}^{i,\pm} := \varPhi(S_{j,R}^{i,\pm}); \\ S_1^{i,\pm} &:= \left\{ \zeta \in L^{i,\pm} : \ |\zeta - z_i| < c_i d_{i,R} \right\}, \\ S_2^{i,\pm} &:= \left\{ \zeta \in L^{i,\pm} : c_i d_{i,R} \leq |\zeta - z_i| \leq \left| \ l_{i,R}^{\pm} \right| \right\}, \ \mathcal{F}_j^{i,\pm} := \varPhi(S_j^{i,\pm}), \ i,j = 1, 2. \end{split}$$

Taking into consideration these designations and replacing the variable $\tau = \Phi(\zeta)$, from (10) and (15), we have:

$$J_{n,2}^{i} \approx \sum_{i,j=1}^{2} \int_{\mathcal{F}_{j,R}^{i,+} \cup \mathcal{F}_{j,R}^{i,-}} \frac{|\Psi'(\tau)| |d\tau|}{|\Psi(\tau) - \Psi(w_{i})|^{\gamma_{i}} |\Psi(\tau) - \Psi(w')|^{2}}$$

$$\approx \sum_{i,j=1}^{2} \int_{\mathcal{F}_{j,R}^{i,+} \cup \mathcal{F}_{j,R}^{i,-}} \frac{d(\Psi(\tau),L) |d\tau|}{|\Psi(\tau) - \Psi(w_{i})|^{\gamma_{i}} |\Psi(\tau) - \Psi(w')|^{2} (|\tau| - 1)}$$

$$= : \sum_{i,j=1}^{2} \left[J(\mathcal{F}_{j,R}^{i,+}) + J(\mathcal{F}_{j,R}^{i,-}) \right].$$

$$(17)$$

So, we need to evaluate the integrals $J(\mathcal{F}_{i,R}^{i,+})$ and $J(\mathcal{F}_{i,R}^{i,-})$ for each i,j=1,2. For this, we will continue in the following manner. Let

$$||P_n||_{\infty} =: |P_n(z')|, \ z' \in L,$$
 (18)

and let $w'=\Phi(z')$. There are two possible cases: the point z' may lie on L^1 or L^2 . 1) Suppose first that $z'\in L^1$. If $z'\in S_i^{1,\pm}$, then $w'\in \mathcal{F}_i^{1,\pm}$, for i=1,2. Consider the individual cases. 1.1) If $z'\in S_1^{1,\pm}$, then $w'\in \mathcal{F}_1^{1,\pm}$ and

$$J(\mathcal{F}_{1,R}^{1,+}) + J(\mathcal{F}_{1,R}^{1,-}) \tag{19}$$

$$\begin{split} &\preceq n \int\limits_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{\left[\min\left\{\left|\varPsi(\tau) - \varPsi(w_1)\right|; \left|\varPsi(\tau) - \varPsi(w')\right|\right\}\right]^{\gamma_1 + 1}} \\ &\preceq n \int\limits_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{\left[\min\left\{\left|\tau - w_1\right|; \left|\tau - w'\right|\right\}\right]^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})}} \preceq n^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})}, \end{split}$$

for $\gamma_1 > 0$, and

$$J(\mathcal{F}_{1,R}^{1,+}) + J(\mathcal{F}_{1,R}^{1,-}) \leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|\Psi(\tau) - \Psi(w_1)|^{(-\gamma_1)} |d\tau|}{|\Psi(\tau) - \Psi(w')|}$$

$$\leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|} \leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{|\tau - w'|^{1+\widetilde{\varepsilon}}} \leq n^{1+\widetilde{\varepsilon}},$$
(20)

for $-1 < \gamma_1 \le 0$; 1.2) If $z' \in S_2^{1,\pm}$, then

$$J(\mathcal{F}_{1,R}^{1,+}) + J(\mathcal{F}_{1,R}^{1,-}) \leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_1)|^{\gamma_1} |\Psi(\tau) - \Psi(w')|}$$
(21)

$$\preceq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{\left[\min\left\{\left|\tau - w_1\right|; \left|\tau - w'\right|\right\}\right]^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})}} \preceq n^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})},$$

for all $\gamma_1 > 0$ and

$$J(\mathcal{F}_{1,R}^{1,+}) + J(\mathcal{F}_{1,R}^{1,-}) \leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|\Psi(\tau) - \Psi(w_1)|^{(-\gamma_1)} |d\tau|}{|\Psi(\tau) - \Psi(w')|}$$

$$\leq n \int_{\mathcal{F}_{1,R}^{1,+} \cup \mathcal{F}_{1,R}^{1,-}} \frac{|d\tau|}{|\tau - w'|^{1+\widetilde{\varepsilon}}} \leq n^{1+\widetilde{\varepsilon}},$$
(22)

for $-1 < \gamma_1 \le 0$; 1.3) If $z' \in S_1^{1,\pm}$,then

$$J(\mathcal{F}_{2,R}^{1,+}) + J(\mathcal{F}_{2,R}^{1,-}) \leq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_1)|^{\gamma_1} |\Psi(\tau) - \Psi(w')|}$$
(23)

$$\preceq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{|d\tau|}{\min\left\{\left|\tau - w_1\right|; \left|\tau - w'\right|\right\}^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})}} \preceq n^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})},$$

for $\gamma_1 > 0$ and

$$J(\mathcal{F}_{2,R}^{1,+}) + J(\mathcal{F}_{2,R}^{1,-}) \leq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{\left| \Psi(\tau) - \Psi(w_1) \right|^{(-\gamma_1)} \left| d\tau \right|}{\left| \Psi(\tau) - \Psi(w') \right|}$$

$$\leq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{\left| d\tau \right|}{\left| \tau - w' \right|^{1+\widetilde{\varepsilon}}} \leq n^{1+\widetilde{\varepsilon}},$$

$$(24)$$

for $-1 < \gamma_1 \le 0$; 1.4) If $z' \in S_2^{1,\pm}$, then

$$J(\mathcal{F}_{2,R}^{1,+}) + J(\mathcal{F}_{2,R}^{1,-}) \leq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_1)|^{\gamma_1} |\Psi(\tau) - \Psi(w')|}$$
(25)

$$\preceq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{|d\tau|}{\left[\min\left\{|\tau - w_1|; |\tau - w'|\right\}\right]^{[\gamma_1 + 1](1 + \widetilde{\varepsilon})}} \preceq n^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})},$$

for $\gamma_1 > 0$, and

$$J(\mathcal{F}_{2,R}^{1,+}) + J(\mathcal{F}_{2,R}^{1,-}) \leq n \int_{\mathcal{F}_{2,R}^{1,+} \cup \mathcal{F}_{2,R}^{1,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|} \leq n^{1+\widetilde{\varepsilon}}, \tag{26}$$

for $-1 < \gamma_1 \le 0$. Combining the relations (19)-(26), we obtain:

$$\sum_{i=1}^{2} \left[J(\mathcal{F}_{i,R}^{1,+}) + J(\mathcal{F}_{i,R}^{1,-}) \right] \leq n^{(\gamma_1 + 1)(1 + \widetilde{\varepsilon})}, \tag{27}$$

for $\gamma_1 > 0$ and

$$\sum_{i=1}^{2} \left[J(\mathcal{F}_{i,R}^{1,+}) + J(\mathcal{F}_{i,R}^{1,-}) \right] \preceq n^{1+\widetilde{\varepsilon}}, \tag{28}$$

for $-1 < \gamma_1 \le 0$.

Therefore, in case of $z' \in L^1$ for each $\gamma_1 > -1$, from (17), (27) and (28) we get:

$$J_{n,2}^{1} \leq n^{(\widetilde{\gamma}_{1}+1)(1+\widetilde{\varepsilon})}.$$
 (29)

2) Now, suppose that $z' \in L^2$. If $z' \in S_i^{2,\pm}$, then $w' \in \mathcal{F}_i^{2,\pm}$, for i=1,2. For the estimate of $J_{n,2}^i$ from (17), again we will consider individual cases. 2.1) If $z' \in S_1^{2,\pm}$, then

$$J(\mathcal{F}_{1\,R}^{2,+}) + J(\mathcal{F}_{1\,R}^{2,-}) = \tag{30}$$

$$\leq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{\left| d\tau \right|}{\left| \Psi(\tau) - \Psi(w_2) \right|^{\gamma_2} \left| \Psi(\tau) - \Psi(w') \right|} \\ + n \int\limits_{\mathcal{F}_{1,R}^{2,-}} \frac{\left| d\tau \right|}{\left| \Psi(\tau) - \Psi(w_2) \right|^{\gamma_2} \left| \Psi(\tau) - \Psi(w') \right|},$$

for all $\gamma_2 > -1$. The last two integrals are evaluated identically. Therefore, we evaluate one of them, say the first. When $\tau \in \mathcal{F}_{1,R}^{2,+}$, for the $|\Psi(\tau) - \Psi(w')|$, we obtain:

$$\begin{aligned} |\Psi(\tau) - \Psi(w')| &\succeq \max \left\{ |\Psi(\tau) - \Psi(w_2)| \, ; \, \left| \Psi(\tau) - z_2^+ \right| \right\} \\ &= |\Psi(\tau) - \Psi(w_2)| \succeq \left| \Psi(\tau) - z_2^+ \right|^{\frac{1}{1 + \beta_2}}. \end{aligned}$$

Then.

$$\begin{split} J(\mathcal{F}_{1,R}^{2,+}) & \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{|d\tau|}{\left| \Psi(\tau) - z_2^+ \right|^{\frac{\gamma_2 + 1}{1 + \beta_2}}} \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{|d\tau|}{\left| \tau - w_2^+ \right|^{\frac{\gamma_2 + 1}{1 + \beta_2} + \varepsilon}} \\ & \leq \left\{ \begin{array}{cc} n^{\frac{\gamma_2 + 1}{1 + \beta_2} + \varepsilon}, & \frac{\gamma_2 + 1}{1 + \beta_2} > 1 - \varepsilon, \\ n \ln n, & \frac{\gamma_2 + 1}{1 + \beta_2} = 1 - \varepsilon, \\ n, & \frac{\gamma_2 + 1}{1 + \beta_2} < 1 - \varepsilon, \end{array} \right. \end{split}$$

if $\gamma_2 > 0$, and

$$J(\mathcal{F}_{1,R}^{2,+}) \leq n \int_{\mathcal{F}_{1,R}^{2,+}} \frac{|\Psi(\tau) - \Psi(w_2)|^{(-\gamma_2)} |d\tau|}{|\Psi(\tau) - z_2^+|^{\frac{1}{1+\beta_2}}} \leq n \int_{\mathcal{F}_{1,R}^{2,+}} \frac{|d\tau|}{|\tau - w_2^+|^{\frac{1+\varepsilon}{1+\beta_2}}} \leq n^{\frac{1+\varepsilon}{1+\beta_2}},$$

if $-1 < \gamma_2 \le 0$, and so, in this case, we get:

$$J(\mathcal{F}_{1,R}^{2,+}) + J(\mathcal{F}_{1,R}^{2,-}) \leq \begin{cases} n^{\frac{\gamma_2+1}{1+\beta_2}+\varepsilon}, & \frac{\gamma_2+1}{1+\beta_2} > 1-\varepsilon, \\ n \ln n, & \frac{\gamma_2+1}{1+\beta_2} = 1-\varepsilon, \\ n, & \frac{\gamma_2+1}{1+\beta_2} < 1-\varepsilon, \end{cases}$$
(31)

if $\gamma_2 > 0$, and

$$J(\mathcal{F}_{1,R}^{2,+}) + J(\mathcal{F}_{1,R}^{2,-}) \leq n^{\frac{1+\varepsilon}{1+\beta_2}},$$

if
$$-1 < \gamma_2 \le 0$$
.
2.2) If $z' \in S_2^{2,\pm}$, then

$$J(\mathcal{F}_{1,R}^{2,+}) + J(\mathcal{F}_{1,R}^{2,-}) \leq n \int_{\mathcal{F}_{1,R}^{2,+} \cup \mathcal{F}_{1,R}^{2,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_2)|^{\gamma_2} |\Psi(\tau) - \Psi(w')|},$$

for all $\gamma_2 > -1$. When $\tau \in \mathcal{F}_{1,R}^{2,+}$ for the $|\Psi(\tau) - \Psi(w')|$, we obtain:

$$|\Psi(\tau) - \Psi(w')| \succeq |\Psi(\tau) - z_2^+|$$

and, analogous to previous case, we get:

$$J(\mathcal{F}_{1,R}^{2,+}) \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_2)|^{\gamma_2} |\Psi(\tau) - z_2^+|} \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{|d\tau|}{|\tau - w_2^+|^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon}} \preceq n^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon},$$

if $\gamma_2 > 0$, and

$$J(\mathcal{F}_{1,R}^{2,+}) \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{\left| \varPsi(\tau) - \varPsi(w_2) \right|^{(-\gamma_2)} \left| d\tau \right|}{\left| \varPsi(\tau) - z_2^+ \right|} \preceq n \int\limits_{\mathcal{F}_{1,R}^{2,+}} \frac{\left| d\tau \right|}{\left| \varPsi(\tau) - z_2^+ \right|} \preceq n^{1+\varepsilon},$$

if $-1 < \gamma_2 \le 0$. So, in this case we have:

$$J(\mathcal{F}_{1,R}^{2,+}) + J(\mathcal{F}_{1,R}^{2,-}) \leq n^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon}, \tag{32}$$

if $\gamma_2 > 0$, and

$$J(\mathcal{F}_{1,R}^{2,+}) + J(\mathcal{F}_{1,R}^{2,-}) \leq n^{1+\varepsilon},$$

if $-1 < \gamma_2 \le 0$. 2.3) If $z' \in S_1^{2,\pm}$, then

$$J(\mathcal{F}_{2,R}^{2,+}) + J(\mathcal{F}_{2,R}^{2,-}) \leq n \int_{\mathcal{F}_{2,R}^{2,+} \cup \mathcal{F}_{2,R}^{2,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_2)|^{\gamma_2} |\Psi(\tau) - \Psi(w')|}$$
(33)

$$\preceq n \int\limits_{\mathcal{F}^{2,+}_{2,R}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_2)|^{\gamma_2} |\Psi(\tau) - \Psi(w')|} + n \int\limits_{\mathcal{F}^{2,-}_{2,R}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w_2)|^{\gamma_2} |\Psi(\tau) - \Psi(w')|},$$

for $\gamma_2 > 0$. The last two integrals are evaluated identically. Let's estimate first integral. For $\tau \in \mathcal{F}_{2,R}^{2,+}$ and $z' \in S_1^{2,\pm}$, we have:

$$|\Psi(\tau) - \Psi(w')| \succeq |\Psi(\tau) - z_2^+|;$$

 $|\Psi(\tau) - \Psi(w_2)| \succeq d_{2,R} \succeq |z_{2,R} - z_2^+|^{\frac{1}{1+\beta_2}} \succeq \left(\frac{1}{n}\right)^{\frac{1+\varepsilon}{1+\beta_2}}.$

Then,

$$J(\mathcal{F}_{2,R}^{2,+}) \preceq n \int\limits_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{\left| \varPsi(\tau) - z_2^+ \right|^{\gamma_2}} \frac{|d\tau|}{\left| \varPsi(\tau) - z_2^+ \right|} \preceq n^{\frac{\gamma_2}{1+\beta_2} + 1 + \varepsilon} \int\limits_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{\left| \tau - w_2^+ \right|^{1+\varepsilon}} \preceq n^{\frac{\gamma_2}{1+\beta_2} + 1 + \varepsilon},$$

and so, for $\gamma_2 > 0$, we obtain:

$$J(\mathcal{F}_{2R}^{2,+}) + J(\mathcal{F}_{2R}^{2,-}) \leq n^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon}$$

For $-1 < \gamma_2 \le 0$, we get:

$$J(\mathcal{F}_{2,R}^{2,+}) + J(\mathcal{F}_{2,R}^{2,-}) = \int_{\mathcal{F}_{2,R}^{2,+} \cup \mathcal{F}_{2,R}^{2,-}} \frac{|\Psi(\tau) - \Psi(w_2)|^{(-\gamma_2)} |\Psi'(\tau)| |d\tau|}{|\Psi(\tau) - \Psi(w')|^2}$$

$$\preceq n \int_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{|\Psi(\tau) - z_2^+|} \preceq n \int_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{|\tau - w_2^+|^{1+\varepsilon}} \preceq n^{1+\varepsilon},$$
(34)

Then, in this case, we have:

$$J(\mathcal{F}_{2,R}^{2,+}) + J(\mathcal{F}_{2,R}^{2,-}) \le n^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon}.$$
 (35)

2.4) If $z' \in S_2^{2,+}$, then for $\gamma_2 > 0$

$$J(\mathcal{F}_{2,R}^{2,+}) \leq \frac{n}{d_{2,R}^{\gamma_2}} \int_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|}$$
(36)

$$\preceq n^{1+\frac{\gamma_2}{1+\beta_2}(1+\varepsilon)} \int\limits_{\mathcal{F}^{2,+}_{2,R}} \frac{|d\tau|}{|\tau-w'|^{1+\varepsilon}} \preceq n^{\frac{\gamma_2}{1+\beta_2}+1+\varepsilon},$$

and

$$J(\mathcal{F}_{2,R}^{2,-}) \leq \frac{n}{d_{2,R}^{\gamma_2}} \int_{\mathcal{F}_{2,R}^{2,+}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|}$$
(37)

$$\preceq n^{1 + \frac{\gamma_2}{1 + \beta_2} + \varepsilon} \int_{\mathcal{F}_{2,R}^{2,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|} \preceq n^{1 + \frac{\gamma_2}{1 + \beta_2} + \varepsilon} \int_{\mathcal{F}_{2,R}^{2,-}} \frac{|d\tau|}{|\tau - w'|^{1 + \varepsilon}}$$

$$\preceq n^{\frac{\gamma_2}{1 + \beta_2} + 1 + \varepsilon}$$

Case of $z' \in S_2^{2,-}$ is absolutely identical to the case $z' \in S_2^{2,+}$. If $-1 < \gamma_2 \le 0$, then

$$J(\mathcal{F}_{2,R}^{2,+}) = \int_{\mathcal{F}_{2,R}^{2,+}} \frac{|\Psi(\tau) - \Psi(w_2)|^{(-\gamma_2)} |\Psi'(\tau)| |d\tau|}{|\Psi(\tau) - \Psi(w')|^2}$$

$$\preceq n \int_{\mathcal{F}^{2,+}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|} \preceq n^{1+\varepsilon},$$
(38)

and

$$J(\mathcal{F}_{2,R}^{2,-}) = \int_{\mathcal{F}_{2,R}^{2,-}} \frac{|\Psi(\tau) - \Psi(w_2)|^{(-\gamma_2)} |\Psi'(\tau)| |d\tau|}{|\Psi(\tau) - \Psi(w')|^2}$$

$$\preceq n \int_{\mathcal{F}_{2,R}^{2,-}} \frac{|d\tau|}{|\Psi(\tau) - \Psi(w')|} \preceq n^{1+\varepsilon}.$$
(39)

Combining the estimations (17), (31)-(39), we obtain:

$$J_{n,2}^2 \preceq n^{1+\varepsilon},$$

for each $-1 < \gamma_2 \le 0$ and

$$J_{n,2}^2 \le n^{\frac{\gamma_2}{(1+\beta_2}+1+\varepsilon},$$
 (40)

for each $\gamma_2 > 0$. Combining (40) and (29), for $m_1 = 1$, $m_2 = 1$, and any p > 0, we get:

$$J_{n,2}^1 + J_{n,2}^2 \le n^{1+\widetilde{\varepsilon}} + n^{1+\varepsilon},\tag{41}$$

for each $-1 < \gamma_1 \le 0$, $-1 < \gamma_2 \le 0$ and

$$J_{n,2}^{1} + J_{n,2}^{2}$$

$$\leq n^{\gamma_{1}+1+\widetilde{\varepsilon}} + n^{\frac{\gamma_{2}}{1+\beta_{2}}+1+\varepsilon},$$

$$(42)$$

for each $\gamma_1 > 0$, $\gamma_2 > 0$, where $\widetilde{\varepsilon} := \begin{cases} \varepsilon, & \text{if } \alpha_1 = 0, \\ 1, & \text{if } \alpha_1 \neq 0, \end{cases}$ and p > 0. Then, from (12)-(17), (41) and (42), for all $z \in L$, we obtain:

$$|P_{n}(z)| \leq ||P_{n}||_{p} \cdot \left(n^{\frac{\gamma_{1}+1+\widetilde{\varepsilon}}{p}} + n^{\left(\frac{\gamma_{2}}{1+\beta_{2}}+1\right)\frac{1}{p}+\varepsilon}\right)$$

$$\leq ||P_{n}||_{p} \cdot \begin{cases} n^{\frac{\gamma_{1}+2}{p}}, & \gamma_{1} > \frac{\gamma_{2}}{1+\beta_{2}} - 1, \gamma_{2} > 1 + \beta_{2}; \\ n^{\frac{\gamma_{1}+2}{p}}, & \gamma_{1} > 0, 0 < \gamma_{2} < 1 + \beta_{2}; \\ n^{\left(\frac{\gamma_{2}}{1+\beta_{2}}+1\right)\frac{1}{p}+\varepsilon}, & 0 < \gamma_{1} \leq \frac{\gamma_{2}}{1+\beta_{2}} - 1, \gamma_{2} > 1 + \beta_{2}; \\ n^{\frac{2}{p}}, & -1 < \gamma_{1} \leq 0, -1 < \gamma_{2} < 1 + \beta_{2}; \end{cases}$$

if $\alpha_1 \neq 0$, and

$$|P_{n}(z)| \leq ||P_{n}||_{p} \cdot \begin{cases} n^{\frac{\gamma_{1}+1}{p}+\varepsilon}, & \gamma_{1} > \frac{\gamma_{2}}{1+\beta_{2}}, \gamma_{2} > 0; \\ n^{\left(\frac{\gamma_{2}}{1+\beta_{2}}+1\right)\frac{1}{p}+\varepsilon}, & 0 < \gamma_{1} \leq \frac{\gamma_{2}}{1+\beta_{2}}, \gamma_{2} > 0; \\ n^{\frac{1}{p}+\varepsilon}, & -1 < \gamma_{1}, \gamma_{2} \leq 0, \end{cases}$$

if $\alpha_1 = 0$. Therefore, we completed the proof.

Acknowledgments. This work is supported by KTMU Project No: 2016 FBE 13.

References

- 1. F.G. Abdullayev, V.V. Andrievskii, On the orthogonal polynomials in the domains with K -quasiconformal boundary. $Izv.\ Akad.\ Nauk\ Azerb.\ SSR.,\ Ser.\ FTM,\ no.1,\ pp.\ 3-7,\ 1983.$
- 2. F. G. Abdullayev, N. P. Özkartepe, C. D. Gün, Uniform and pointwise polynomial inequalities in regions without cusps in the weighted Lebesgue space, *Bulletin of Tbilisi ICMC* vol. 18, no. 1, pp. 146-167, 2014.
- F. G. Abdullayev, C.D. Gün, N.P. Ozkartepe, Inequalities for algebraic polynomials in regions with exterior cusps, J. Nonlinear Funct. Anal. Article ID, no. 3, pp. 1-32, 2015.
- 4. F.G. Abdullayev, P. Özkartepe , On the growth of algebraic polynomials in the whole complex plane, *J. Korean Math. Soc.* vol. 52, no. 4, pp. 699-725, 2015.
- 5. F.G. Abdullayev, P. Özkartepe, Uniform and pointwise polynomial inequalities in regions with cusps in the weighted Lebesgue space, *Jaen Journal on Approximation*, vol. 7, no. 2, pp. 231-261, 2015.
- 6. F.G.Abdullayev, P. Özkartepe, Polynomial inequalities in Lavrentiev regions with interior and exterior zero angles in the weighted Lebesgue space, *Publications de l'Institut Mathématique (Beograd)*, vol. 100 (114), pp. 209-227, 2016.
- 7. L. Ahlfors, Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, 1966.
- 8. J. M. Anderson, J. Becker, and F. D. Lesley, Boundary values of asymptotically conformal mappings, *J. London Math. Soc.*, vol. 38, pp. 453–462, 1988.
- 9. V.V. Andrievskii, V.I. Belyi, V.K. Dzyadyk, Conformal invariants in constructive theory of functions of complex plane. World Federation Publ.Com., Atlanta, 1995.
- V.V. Andrievskii, Weighted Polynomial Inequalities in the Complex Plane, Journal of Approximation Theory, vol. 164, no. 9, pp. 1165-1183, 2012.
- 11. P.P. Belinskii, General Properties of Quasiconformal Mappings, Nauka, Sib. otd., Novosibirsk, 1974. [in Russian]
- 12. J. Becker, C. Pommerenke, Uber die quasikonforme Fortsetzung schlichten Funktionen, Math. Z., 1978, 161, 69-80.
- 13. E.M. Dyn'kin, Nonanalytic symmetry principle and conformal mappings. St. Petersburg Math. J., vol. 5, pp. 523–544, 1994.
- V. Gutlyanskii, V. Ryazanov, On asymptotically conformal curves, Complex Variables, vol. 25, pp. 357–366, 1994.
- 15. V. Gutlyanskii, V. Ryazanov, On the local behaviour of quasi-conformal mappings, *Izvestiya: Mathematics*, vol. 59, no. 3, pp. 471-498, 1995,.
- V. Ya. Gutlyanskii, V. I. Ryazanov, On quasi-circles and asymptotically conformal circles, *Dokl. Ross. Akad. Nauk*, vol. 330, no. 5, pp. 546-548, 1993; (English transl., *Russian Acad. Sci. Math.*, vol. 47, pp. 563-566, 1993).

- 17. E. Hille, G. Szegö, J.D. Tamarkin, On some generalization of a theorem of A.Markoff , *Duke Math.*, vol. 3, pp. 729-739, 1937..
- 18. D. Jackson, Certain problems on closest approximations. Bull. Amer. Math. Soc., vol. 39, pp. 889-9061933.
- 19. O. Lehto, K.I. Virtanen, Quasiconformal Mapping in the plane, Springer Verlag, Berlin, 1973.
- 20. F.D. Lesley, Hölder continuity of conformal mappings at the boundary via the strip method, $Indiana\ Univ.$ $Math.\ J.$, vol. 31, pp. 341-354, 1982 .
- D.I.Mamedhanov, Inequalities of S.M.Nikol'skii type for polynomials in the complex variable on curves, Soviet Math. Dokl., vol. 15, pp. 34-37, 1974.
- 22. D.I. Mamedhanov, On Nikol'skii-type inequalities with new characteristics, *Doklady Mathematics*, vol. 82, pp. 882-883, 2010.
- G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
- S.M. Nikolskii, Approximation of Function of Several Variable and Imbeding Theorems, Springer-Verlag, New-York, 1975.
- 25. N. P. Özkartepe, F. G. Abdullayev, On the interference of the weight and boundary contour for algebraic polynomials in the weighted Lebesgue spaces I. *Ukr. Math. J.*, vol. 68, no. 10, 2016: (Trans. from *Ukr. Mat. Zh.* vol. 68, no. 10, 2016, pp. 1365-1379).
- 26. Ch. Pommerenke, Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.
- 27. Ch. Pommerenke, Boundary Behaviour of Conformal Maps. Springer-Verlag, Berlin, 1992.
- 28. Ch. Pommerenke, S.E. Warschawski, On the quantitative boundary behavior of conformal maps, *Comment. Math. Helv.*, vol. 57, pp. 107-129, 1982.
- I. Pritsker, Comparing Norms of Polynomials in One and Several Variables, J. of Math. Anal. and Appl., vol. 216, pp.685-695, 1997.
- S. Rickman, Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395, 30 p.
- 31. G. Szegő, A. Zigmund, On certain mean values of polynomials, J. Anal. Math., no. 3, pp. 225-244, 1954.
- 32. P.K. Suetin, The ordinally comparison of various norms of polynomials in the complex domain, *Matematicheskie zapiski Uralskogo Gos. Universiteta*, vol. 5 no. 4, 1966. (in Russian).
- 33. P.K. Suetin, On some estimates of the orthogonal polynomials with singularities weight and contour, Sib. Math. J, vol. VIII, no:3, pp. 1070-1078, 1967. (in Russian).