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Abstract In this present work, we study the Nikolskii type estimations for algebraic polynomials
in the bounded regions with piecewise-asymptotically conformal curve, having interior and exterior
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1 Introduction

Let C be a complex plane; G C C be a bounded region, with 0 € G and Jordan boundary L := 0G.

Let {¢; };":1 be a fixed system of distinct points on curve L located in the positive direction. For some
finite region G* C C such that G C G* and z € G*, consider a so-called generalized Jacobi weight
function h (z) being defined as follows:

IOES | EEIE (1

where v; > —1 forall j=1,2,....m.

For a rectifiable Jordan curve L and for 0 < p < oo, let £,(h, L) denote the weighted Lebesgue
space of complex-valued functions on L. Specifically, f € £,(h,L) if f is measurable and the following
quasinorm (a norm for 1 < p < oo and a p—norm for 0 < p < 1) is finite:

1/p

1A s = 1Ly = / WPzl L 0<p< oo
L
1l = 17 er o= csssup | £ p = .

We denote by p,, n = 1,2, ..., the set of all algebraic polynomials P, (z) of degree at most n € N.
In this work, we study the following Nikolskii-type inequality

1Polloe < c1pn (G, hyp) | Pall,, (2)

for some general regions having interior and exterior zero angles of the power type, where ¢; = ¢1(G,p) > 0
is a constant independent of n, h and P,, and u, (G, h,p) — 0o, n — 0o, depending on the geometrical
properties of region G' and weight function h in the neighborhood of the points {¢; };n=1

The first result of (2)-type, in case h(z) =1 and L = {z:|z] =1} for 0 < p < oo was found by
Jackson [18]. Another classical results similar to (2) belong to Szegd and Zigmund [31]. Suetin [32], [33]
investigated this problem with sufficiently smooth Jordan curve. The estimate of (2)-type for 0 < p < oo
and h(z) = 1 when L is a rectifiable Jordan curve was investigated by Mamedhanov [21], [22], Nikolskii
[24, pp.122-133], Pritsker [29], Andrievskii [10, Theorem 6] and others. More references regarding the
inequality of (2)-type, we can find in Milovanovic et al. [23, Sect.5.3].
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Further, analogous estimates of (2) for some regions and the weight function h(z) were obtained: in
[2] (p > 1) and in [25] (p > 0, h = hq) for regions bounded by rectifiable quasiconformal curve having
some general properties; in [4] (p > 1) for piecewise Dini-smooth curve with interior and exterior cusps;
in [3] ( p > 1) for regions bounded by piecewise smooth curve with exterior cusps but without interior
cusps; in [5] (p > 0) for regions bounded by piecewise rectifiable quasiconformal curve with cusps; in [6]
(p > 0) for regions bounded by piecewise quasismooth (by Lavrentiev) curve with cusps.

Now, let’s give some definitions and notations.

Let z1, 25 be an arbitrary points on | and 1(z1,z2) denotes the subarc of 1 of shorter diameter with
endpoints zy and z3. The curve | is a quasicircle if and only if the quantity

|21 — 2| + |2 — 22|

sup
21,22€l; z€1(21,22) ‘Zl - 22|

3)

is bounded [19, p.105]. Following to Lesley [20], we say that the curve [ to be said "c—quasiconformal", if
the quantity (3) bounded by positive constant ¢, independent from points z1, 2o and z. At the literature
it is possible to find various functional definitions of the quasiconformal curves (see, for example, Def. 3,
[26, pp.286-294], [19, p.105], [7, p.81], [27, p.107]).

The Jordan curve 1 is called asymptotically conformal ([12], [27]), if

|21 — 2| + |z — 22|

sup — 1, |z1 — 22| = 0. 4)

z1,22€1l; z€1(21,22) |Z1 - 22|
We will denote this class as AC, and will write G € AC, if L := 0G € AC.

The asymptotically conformal curves occupy a special place in the problems of the geometric theory of
functions of a complex variable. These curves in various problems have been studied by J.M. Anderson, J.
Becker and F.D. Lesley [8], E.M.Dyn’kin [13], Ch. Pommerenke, S.E. Warschawski [28], V.Ya. Gutlyanskii,
V.I. Ryazanov [14], [15], [16] and others. According to the geometric criteria of quasiconformality of
the curves ([7, p.81], [27, p.107]), every asymptotically conformal curve is a quasicircle. Every smooth
curve is asymptotically conformal but corners are not allowed. It is well known that quasicircles can be
non-rectifiable (see, for example, [11], [19, p.104]). The same is true for asymptotically conformal curves.

We say that L € ZE’, if L € AC and L is rectifiable. A Jordan arc £ is called asymptotically conformal
arc, when £ is a part of some asymptotically conformal curve.

Now, we define a new class of regions bounded by piecewise asymptotically conformal curves having
interior and exterior zero angles of the power type at the connecting points of boundary arcs.

Throughout this paper, c,co.c1,c2,... are positive and eg, €1, €2, ... are sufficiently small positive
constants (generally, different in different relations), which depend on G in general and on parameters
inessential for the argument; otherwise, such dependence will be explicitly stated.

For any k > 0 and m > k, notation ¢ = k,m meansi=k,k+1,....m. Foranyi=1,2,..., k=0,1,2
and g1 > 0, we denote by f; :[0,e1] - RY and g; : [0,e1] — RT twice differentiable functions such that

k k
£:(0) = g:i(0) =0, fP(z) >0, ¢M(z)>0,0<z<er. (5)
Definition 1 We say that a Jordan region G € AC (fi, g;), for some f; = fi(x), i = 1,m; and
m
gi = gi(z), i = m1+1,m, defined as in (5), if L = 0G = |J L; is the union of the finite number
i=0
of asymptotically conformal arcs L;, connecting at the points {zi};io € L and such that L is a locally
asymptotically conformal arc at the zo € L\ {z}.~, and, in the (z,y) local co-ordinate system with its
origin at the z;, 1 < i < m, the following conditions are satisfied:
a) for every z; € L, i =1, my, my < m,
{z=atiy: |zl Ser, enf @<y S enfi@), 0o <} G,
{z=a+iy:|z[<er, |yl 2 e, 0< o<1} C O
b) for every z; € L, i =mj + 1,m,
{z =x4iy:|z| <es, chgi(r) <y <chygi(z), 0<a< 53} c 0,
{z=a+iy: |zl <es |yl Zeaz, 0<2<e3} CG,
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for some constants —oco < ¢t; < ¢ty < 00, —00 < cby < chy < 00 and g5 >0, s =1, 4.

Definition 2 We say that a Jordan region G € Zé(fi,gi), fi = filz), i = 1,mq, ¢; = gi(x), i =
my +1,m, if G € AC (fi,g9,) and L := 0G is rectifiable.

It is clear from Definitions 2 and 1, that each region G € AC (fi,9;) may have m; interior and m —my
exterior zero angles (with respect to G) at the points {z;};~, € L. If a region G does not have interior
zero angles (my= 0) (exterior zero angles (my=m)), then it is written as G € AC (0, g,) (G € AC (f;,0)).
If a domain G does not have such angles (m = 0), then we will assume that G is bounded by a rectifiable
asymptotically conformal curves and in this case we set AC (0,0) = AC.

Throughout this work, we will assume that the points {¢;};", € L defined in (1) and the points
{z:}*, € L defined in Definition 2 and 1 coincide. Without loss of generality, we also will assume that
the points {z;},~, are ordered in the positive direction on the curve L such that G has interior zero

angles at the points {z;};" , if 1 > 1 and exterior zero angles at the points {z;};" ,,if m >m; + 1.

2 Main Results

Now, we can state our new results. Our first result (Nikolskii-type inequality) is related to the general
case. Namely, let region G has m; > 1 interior zero angles at the points {z;};-}, and m — m; exterior
zero angles at the points {zi};n:mﬁl . In this case, we have the following estimate, i.e. with respect to
each points {z;},~, :

Theorem 1 Let p > 0; G € E(fi,gi), for some fi(x) = Cix'T «a; > 0, i = 1,mq, and g;(z) =
Ciz'thi By > 0, i = my + 1,m; h(z) defined as in (1). Then, for any v; > —1, i = 1,m, and
P, € pn, n €N, there exists ¢c1 = c1(G,p,e,7i, B:) > 0 such that the following

L S Yees) o (%-&-1)%—&-5
1Pallo i | Don 7+ > 1Pnll, » (6)
i=1 i=mi+1
~ g, Zf a1 = 0, . ~ .
holds for € := ; and arbitrary small € > 0, where ¥; :== max {0;7;}, i =1, m.
17 Zf aq # 07

Now, for simplicity of our presentations, we assume that: i = 1,2; my = 1, m = 2; i.e. our region G
has one interior zero (or it does not exist) angle having " f; —touching" with f;(x) = C12'**1, a7 >0, at
the point z; and exterior zero angle having "ga—touching" with go(x) = Cox'*52 By > 0, at the point 29,
for some constants —oco < C; < 400 , C; := Cy(c}y, ¢ly), i = 1,2, where the constants c};, i,j = 1,2, are
taken from Definition 2. In this case, combining the terms related to the interior and exterior zero angles,
we obtain the following;:

Theorem 2 Letp > 0; G € AC (f1,95), for some fi(x) = Ciz'te1 oy >0, and go(x) = Cox' ™82, By >
0; h(z) defined as in (1) for m = 2. Then, for any v; > —1, i = 1,2, and P, € p,, n € N, there exists
co = co(G,p,e,7i, B2) > 0 such that:

[Pl < c2An || Pall, , (7)
where
Nt 2 1 1 .
n.r, 71>TB2_7’Y2> +527
2 1
An = n(1+52+1)1,+5’ O<"}/1 S%Qﬁz*]., ’}/2>1+ﬁg; (8)
n+z
n e, Nn>-1 1<y <1+ f.

In particular, if a; = 0, i.e. G has only exterior zero angle at the z5, then we have:
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Theorem 3 Let p > 0; G € AC (0, g,), for some ga(z) = Cox'+P2. By > 0; h(z) defined as in (1) for
m = 2. Then, for anyv; > —1, i = 1,2, and P,, € p,, n € N, there exists cs = c3(G,p,&,v:, B2) > 0 such
that:

[Plloe < c3An [[Pall,

where -
1
n-r te, M > s 2 >0
_ 2. q1)1
An - n(1+32+ )P+6, O < Y1 S 7112527 Y2 > 0, (9)
1
nv+8, *1<"}’1,’)/2§0,

The sharpness of the estimations (7)-(9) for some special cases can be discussed by comparing them
with the following results:

Remark 1 For the polynomials Pi(z) =1+ 2z +...+2", a) h*(2) =1, b) h**(z) = |2 - 1], v >0, and
L:={z:|z| =1}, there exists a constant cy = c4(p) > 0 and c5 = c¢5(h**,p) > 0 such that:

1
) 1P = ean? 1P 1y 2> 1

241
D) 1Bl = esn™ 5 1Pl g e, 1y >+ 1.

3 Some Aauxiliary Results

For a > 0 and b > 0, we shall use the notations “a < b” (order inequality), if a < ¢b and “a < b” are
equivalent to cia < b < cqa for some constants ¢, ¢, ¢ (independent of a and b) respectively.

Let G C C be a bounded region, and L := dG be a Jordan curve, 2 := C \ G = extL (C := CU{oo}.
Denote by w = &(z) the univalent conformal mapping of 2 onto A := {w : |w| > 1} with normalization
&(00) = 00, lim, 0 45(;) >0and ¥ =1,

Fort>1,z€ Cand M C C, we set:;

Ly - ={z: |9(2)| =t} (L1 =L), Gy :=1ntLy, (2 := extLy;
d(z, M) = dist(z, M) :==inf {|z — (| : (€ M},

The following definitions of the K-quasiconformal curves are well known (see, for example, [7], [19,
p-97] and [30]):

Definition 3 The Jordan arc (or curve) L is called K—quasiconformal (K > 1), if there is a K—
quasiconformal mapping [ of the region D D L such that f(L) is a line segment (or circle).

Let F(L) denote the set of all sense preserving plane homeomorphisms f of the region D D L such
that f(L) is a line segment (or circle) and let

Kp:=inf{K(f): fe F(L)},

where K(f) is the mazimal dilatation of a such mapping f. L is a quasiconformal curve, if K, < 0o, and
L is a K—quasiconformal curve, if K; < K.

Lemma 1 [1] Let L be a K—quasiconformal curve, z1 € L, z0,23 € 2N {z : |z — 21| = d(z1, L) };
w; =PD(25), 5 =1,2,3. Then

a) The statements |z1 — zo| = |21 — 23| and |wy — wa| < |wy — ws| are equivalent.
So are |z1 — 22| < |21 — 23| and |wy — we| < |wy — ws].
b) If |21 — 22| = |21 — 23|, then

€1

=

wy — w; 21 — 23 wy — ws |

= )
w1 — W2 21 — 22 w1 — w2

where g1 < 1, ¢>1, 0<rg <1 are constants, depending on G and L, := {z = ¢Y(w) : |w| = ro}.
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Lemma 2J20, p.342] Let L be an asymptotically conformal curve. Then, & and ¥ are Lipa for all o < 1
in §2 and A, correspondingly.

Lemma 3 Let L be an asymptotically conformal curve. Then,
@ (wy) = W (ws)] = wy —wa|
for all wy,wy € A and Ve > 0.

This fact follows from Lemma 2. We also will use the estimation for the ¥ (see, for example, [9,
Th.2.8]):
d¥(r),L)
[r-1 ~

Let {z]} | be a fixed system of the points on L and the weight function h (z) defined as (1).

@ (7)] = (10)

Lemma 4 Let L be a rectifiable Jordan curve; h(z) defined as in (1). Then, for arbitrary P,(z) € pn, any
R >1 and n € N, we have

1Pallz, hnr) < <R ||P lz,hLy> P>0; (11)

where 7 := max {O;% = 1,m} .

Remark 2 In case of h(z) = 1, the estimate (11) has been proved in [17].

4 Proof of Theorems

4.1 Proof of Theorems 1-3.

Proof. Let G € A\é(fi,gi), for some f;(z) = c;x' T a; >0, i = 1,my, and g;(x) = ¢;z' P, B; > 0,
i =m1 + 1,m, be given. Let w = ¢r(2) be the univalent conformal mapping of Gr, R > 1, onto the
B normalized by ¢r(0) =0, ¢z(0) > 0, and let {(;}, 1 < j < m <mn, be zeros of P,(z) lying on Gg. Let

u i a(2)

— ¥R CJ)

denote a Blaschke function with respect to zeros {(;}, 1 < j <m < n, of P,(z).
Let us set:

P, (z p/2
B}i()z):| ,p>0,Z€GR.

The function Q,, (2) is analytic in Gg, continuous on G'r and does not have zeros in G'r. Then, Cauchy
integral representation for the @, (z) in Gg gives:

Qn(z):%/Qn(g)%v z € G,
Lr

P (2) r“ 1 ‘Pmo ‘ d¢| |d<|
|:Bm,R(Z) S 27TL/ Bm,R(C) |C_Z| /|P Z|’

since | By, r(¢)] = 1, for ¢ € Lg. Let now z € L. Multiplying the numerator and determinator of the
integrand by h!/ 2(¢), according to the Holder inequality, we obtain:

Q)= |

or

1/2

<50 | [HOP7 14 (12)

’ P, (Z) p/2

Bme(Z)
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1/2
d 1
X / ™ | C| = % n,1 X Jn,27
; 2
Ln 1LIC=2]7 ¢~ 2|
J=1
where
1/2
1/2
d¢
gai= | [romm@ria| = | [
R Ln TLIC= 27 1C— 2|
j=1
Then, since |By, r(%)| < 1, for z € L, from Lemma 4, we have:
[P (2] = (- Ju )" <\ Pul, - 13 2 € L. (13)

To estimate the integral J,, o, we introduce:

w; = P(z5), pj = argw;, L{,—i :=Lp ﬂﬁj, ji=1m,

where 27 := LD(A;»);

and, for j=2,m—1

A= {t =R R>1, PELIE < BT A }

Then, we get
2 _\ ¢ N\ ¢ N i
JW:Z/ 0 v 2 A,Z/IQ—,ZW ¢ —z|? :'ZJ”’% (14)
’ZlLE jl;I1|<_Zj| |C_Z| 1:1[,}'{ ' i=1
where J
J o ::/ | ?' 5. i=1m, (15)
’ =z~ 2
L

since the points {z; };ﬂzl € L are distinct. It remains to estimate the integrals JfLQ for each i = 1, m. For
simplicity of our next calculations, we assume that:

E
i=1,2,mi=1,m=2 z=-1,2=1 (-1,1)CG; R=1+-2, (16)
n

and let local co-ordinate axis in Definitions 1 and 2 is parallel to OX and OY in the OXY co-
ordinate system; L = LT U L™, where LT := {z € L : Imz > 0}, L™ := {z € L : Imz < 0}. Let w® :=
{w =e: 0= %}, 2+ € U(wt) and L? an arcs, connecting the points 2%, z;, 2~ € L; LvF =
L'NL*, i =1,2. Let 2y be taken as an arbitrary point on L+ (or on L~ subject to the chosen direction).
For simplicity, without loss of generality, we assume that zo = 2T (20 =27 ).

Analogously to the previous notations, we introduce the following: Ly = LE U Ly, where LE =
{z€Lg:Imz>0}, Ly := {2 € Lg: Imz < 0}; Let w} := {w=Re?:0= %}, 2E € U(w}).We
set: z; g € Lp, such that d; g = |2 — 2;.r| and (* € L*, such that d(z2 g, L? N LF) := d(29,r, LF); P

7

= {C €L |-z = cid(zi,LR)}, zi[R = {C €Ly |C—zir|l= cid(zi7R,LR)}, wi[R = @(zi[R). Let
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Lﬁé, 1 = 1,2, denote arcs, connecting the points zE, 2R, 2 € Lg, Lzéi =LhnN Lljé and lfR(sz, z?{:)
denote arcs, connecting the points zi:"ER with zﬁ, respectively and lfR‘ = mes lfR(sz,zﬁ), i=1,2.
We denote:
it Je
SiR:= {C €Ly |-z < Cidi7R}a

N .
S;R::{QGL; cedip < |C— 2| <

i,k _ i,k
|} Fin = oS
Si’i L= {C S Li’i : |C — Zz| < Cidi,R}7

S;’i::{CELi’iZCidi,RSK—Zi‘S j

liR’} Frr=o(S0F), ij=1,2.

Taking into consideration these designations and replacing the variable 7 = @((), from (10) and (15),
we have:

)

2
- V' (7)] |d7| 17
n.2 Z / (1) — W (w)|" |[¥(r) — ¥ (w')| "

VR
g Z d(¥(r), L) |dr]
= i .
i, @) = )" () = e (w) (|7 - 1)
Fi RV R
2 . .
=3 I ED +IFR)-
i,j=1

So, we need to evaluate the integrals J (}';E) and J (.7-";1;) for each i,j = 1,2. For this, we will continue
in the following manner. Let
[Pallo =2 1P (2], 2" € L, (18)

and let w’ = &(2'). There are two possible cases: the point 2’ may lie on L' or L2.
1) Suppose first that 2z’ € L1 If 2/ € S’il’i, then w’ € .7-'Z-l’i7 for ¢ = 1,2. Consider the individual cases.
1.1) If 2/ € $7F, then w’ € FI** and

J(FLE) + J(Flg) 19)
|d7|
= i Y1+1
R [min {|¥(7) — @ (w1)]; |¥(7) — ¥ (w')|}]
=n / |dT]| 0D,
[min {|7 — w1 |; |7 — wl|}}(’)’1+1)(1+5)

14, £l.—
]:l,RU}-l,R

for v1 > 0, and
(1) — @ (wy)| " |dr|

HER+IFER <0 [ HEEEE (20)
FileYF R
|dr| / |dr| 142
=n / ————— 3N ———— <n'te,
W (r) — w(w)] |
FieYF iR FLEVF R
for =1 <y <0;
1.2) If 2/ € S3=, then
1,4 1,— |d|
J(Fig)+J(Fig) 2n (21)

’ @ (7) = @ (w)[™ [#(7) — ()]

1,+ 1,—
'7:1,RU'7:1,R
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<n / |dr| =< n(71+1)(1+;)7

B ; il e D) T
FLiuFL: [min {|7 — w1 ]; |7 — w'|}]

for all ;3 > 0 and

(=)
1+ - |¥(7) — ¥(w1)| |d|
) ’ <
J(}—LR) + J(}—LR) on / W(7) — o(w)]
Figurt
<n / |d7-| _ =< 1+e
- s114e
sty 177

for -1 <~ <0
1.3) If 2/ € §7= then

1,+ 1,— n
J(For) +J(Fylg) 2 W (7) — W (w) [ |#(r) — & (w')]

N
]:2,RU]:2,R

~n / jd7] < A+
N : o e — (D) T
]_-21:;U]_-21:§ mln{h— w1| ) |T w |}

for 77 > 0 and

@(r) = w(w)| " |dr|

IFED+IER = [

’ @ (7) — ¥ (w')]
FymUFsn
<n / |d7'|1 _< an,
_ )i tE
sty 177
for —1 <~ <0;
14)If 2’ € Sé’i, then
|dr|

J(Fyi) +J(Fyp) 2n

@ (7) = @ (w)[™ [#(r) — ¥(w)]

1+ rl—
]:2,RU‘7:2,R

<n / a7 _ =< n(71+1)(1+2)
B i e L1 — a4 T ’
prghrs i (i =il =)

for v1 > 0, and
_ dr| =
J(Fyd) + J(Fyp) =n / S ) B P
wr) + o ) — ¥
FolnVFaln
for —1 < 71 < 0. Combining the relations (19)-(26), we obtain:
2 ~
> [IFER) + I(F)] 3 00,

i=1

for 41 > 0 and

2 [‘](Fi{ﬁ) + J(J-“j,g)} < nlte,

i=1

Copyright © 2018 Isaac Scientific Publishing
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(23)

(24)

(25)

(26)

(28)
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for —1 <~ <0.
Therefore, in case of 2’ € L' for each v, > —1, from (17), (27) and (28) we get:

J}L , = n(;1+1)(1+’5v). (29)
2) Now, suppose that 2/ € L2 If 2’ € S?’i, then w’ € ff’i, for 4 = 1,2. For the estimate of thz from

(17), again we will consider individual cases.
2.1) If 2/ € §2F, then

J(Fom) +J(Fig) = (30)
i dr|
= / (r) — W)™ |9(7) — B ()]
i dr|
" / () = 0 (wa) [ |2 (r) — W ()|

for all 75 > —1. The last two integrals are evaluated identically. Therefore, we evaluate one of them, say
the first. When 7 € .7-'12’;7 for the |¥(7) — ¥(w’)|, we obtain:

|& (1) — lI/(u/)| > max{|!p(7') — ¥ (ws)|; ‘ — 2 ’}
= |LZ/(T) —Q/(wgﬂ - ‘lp(r _ Z;’l+ﬁ2 .

Then,
2,4 |d7| |dT|
J(FiR) 2 n / I =n / T
_ 118 _ 18
P |W(r) — = |77 Fo |7 —wy |
Ja+1
nliﬁ2+e %>1—g7
= nlnn ﬁ_‘gi =1-—¢,
1
n, Yi?az <1l-—c¢,
if 9 > 0, and
) < / () = ()| Jdr| / jdrl
n 14¢ — n 2)
+‘ 1+B2 ’7. _ +’W
Fop 1T
if —1 < 2 <0, and so, in this case, we get:
n1H5s e 1’3:51 >1—c¢,
2,+ 2,— i
J(fl’R)—i-J(]:LR) = nlnn, I’j_";i =1—c¢, (31)
2+l
n, 1-21-/5’2 <1-—g¢,
if 9 > 0, and
_ 1+e
J(Fom)+J(Fig) 2 nts,
if =1 <, <0.
2.2) If 2/ € S5, then
|d7|

J(FUR) +J(Fig) <n

2, + 2, —
'7:1,RUJ:1,R
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for all v > —1. When 7 € J‘-‘i’;‘,/r for the |¥(7) — ¥(w')|, we obtain:
@(r) — @ (w')] = |@(7) — 25 |

and, analogous to previous case, we get:

) <n / |d| / \dTL < gt
W(T) — W(wa) " |¥(7) — 23 ‘ B wﬂﬁﬂﬂ -
if 9 > 0, and
(=72)
e / LGOI S el DO S N
|lI/ ) — 27 | /. @ () — 25 |
]:1:R

if =1 <2 < 0. So, in this case we have:
J(FLE) + J(Fog) = nTiE e (32)
if v > 0, and
J(FUR) +J(Fig) Sn'™,

if —1 <y <0
2.3) If 2/ € §2, then

2,+ 2,—y |d|
DD [ e e e
st

(33)

i dr| i dr|
= / () — W (wa) [ |2 (7) — 0 (w)] f/ () = W (wn) [ [@(7) — U ()|

for v5 > 0. The last two integrals are evaluated identically. Let’s estimate first integral. For 7 € ]-"22 ’;{ and

2,4
z' € 87, we have:

@(r) = ()| = [#(r) — 25|

)

1 1+ﬁ5
1 1+82
()~ W) = dan= Jran -7 = (1)
n
Then,
|d| 2 +14e |dr| +lte
J(]:22’IJ€) =n / Tz < nithz =< n1+52
’ - +| — 14e —
o (1) = 2 | |@(r) — 2 | . 7 —wi|

2,R

and so, for 5 > 0, we obtain:
_ 2
J(F) + T (Fyp) <m0,
For —1 < v <0, we get:

_ W(r) — W(wy)| ") | (r)] |dr]|
J(Fyp)+ J(Fog) = / | 34
(Fob) +J(Fain) T — TP (34)
FRLUFE,
|dT| / |d| 1+
=n / = . 5
J |W(T)—z2+‘ S I — ;r|1+
]:2,71? ]:2,71?
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Then, in this case, we have:
J(F3p) + I (Fyg) 3 niii e,

)

2.4) If 2/ € S5, then for 5 > 0

IdTI
i< |
d%iz (7 w’')|
F
< plt g (4e) / _dr| < e
— |1te —
|7 —w'|
2,‘R
and d ‘
-
J(Fn
T /|w )
< pltTi e / |d| < it T e / |dT| -
J () — e (w) r—w|F
F3'r 2R

-
< n1+%2 +1+€.

Case of 2/ € S5~ is absolutely identical to the case 2’ € Sy, If =1 < 75 < 0, then

/|w (w2)| 72 @' (7)| |dr|
s >—www
2,R
|d7'| 1+e
=< B
—"/|wﬂ—www—” ’
w2
and
o () = W (w)| T @ (7)] |dr ]
J(]:z,R) - e
Ea () — w(w)]
2,R
‘dT‘ 14e
=< e )
—”/\wﬂfwww—”
Fin

Combining the estimations (17), (31)-(39), we obtain:
Jr%,z < n'te

for each —1 < 5 < 0 and
J < n(1+ﬂ2+ +E7

for each 45 > 0. Combining (40) and (29), for my =1, mo =1, and any p > 0, we get:

1 2 1+e 1
Jpot+JduoZn Te 4 plte

foreach —1 <7 <0, -1 <7y <0 and

+1+e 22— +14e
j n’Yl + n1+62 ,

(37)
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for each 1 > 0, v2 > 0, where € := {

g, if a3 =0,

1,if oy £0 and p > 0. Then, from (12)-(17), (41) and (42), for all
B} 1 5

z € L, we obtain:

g +1+? :72+1)l+e
|P, (2)] =% ||Pn||p, n’VlT +n(1+62 »

y1+2 o
noro, 71>m_1772>1+52;
+2
nr 71> 0,0 <72 <14 Py
= ||Pn||p : ( 2 +1);+s
n\T+52 P O<71§11252—1,’}/2>1+/62;
2
nr, 1< <0, =1 <7y <14 B
if a1 # 0, and
+1
nrote, N> >0
. Y2 1)1
P (2)] = (1Pl n(+ Vit o< < 2, > 0
netE, —1< 7,7 <0,

if a; = 0. Therefore, we completed the proof.

Acknowledgments. This work is supported by KTMU Project No: 2016 FBE 13.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

F.G. Abdullayev, V.V. Andrievskii, On the orthogonal polynomials in the domains with K -quasiconformal
boundary. Izv. Akad. Nauk Azerb. SSR., Ser. FTM, no.1, pp. 3-7, 1983.

F. G. Abdullayev, N. P. Ozkartepe, C. D. Giin, Uniform and pointwise polynomial inequalities in regions
without cusps in the weighted Lebesgue space, Bulletin of Tbilisi ICMC vol. 18, no. 1, pp. 146-167, 2014.
F. G. Abdullayev, C.D. Giin, N.P. Ozkartepe, Inequalities for algebraic polynomials in regions with exterior
cusps, J. Nonlinear Funct. Anal. Article ID, no. 3, pp. 1-32, 2015.

. F.G. Abdullayev, P. Ozkartepe , On the growth of algebraic polynomials in the whole complex plane, J.

Korean Math. Soc. vol. 52, no. 4, pp. 699-725, 2015.

F.G. Abdullayev, P. Ozkartepe, Uniform and pointwise polynomial inequalities in regions with cusps in the
weighted Lebesgue space, Jaen Journal on Approximation, vol. 7, no. 2, pp. 231-261, 2015.

F.G.Abdullayev, P. Ozkartepe, Polynomial inequalities in Lavrentiev regions with interior and exterior zero
angles in the weighted Lebesgue space, Publications de I'Institut Mathématique (Beograd), vol. 100 (114), pp.
209-227, 2016.

L. Ahlfors, Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, 1966.

J. M. Anderson, J. Becker, and F. D. Lesley, Boundary values of asymptotically conformal mappings, J.
London Math. Soc., vol. 38, pp. 453462, 1988.

V.V. Andrievskii, V.I. Belyi, V.K. Dzyadyk, Conformal invariants in constructive theory of functions of
complex plane. World Federation Publ.Com., Atlanta, 1995.

V.V. Andrievskii, Weighted Polynomial Inequalities in the Complex Plane, Journal of Approzimation Theory,
vol. 164, no. 9, pp. 1165-1183, 2012.

P.P. Belinskii, General Properties of Quasiconformal Mappings, Nauka, Sib. otd., Novosibirsk, 1974. [in
Russian]

J. Becker, C. Pommerenke, Uber die quasikonforme Fortsetzung schlichten Funktionen, Math. Z., 1978, 161,
69-80.

E.M. Dyn’kin, Nonanalytic symmetry principle and conformal mappings. - St. Petersburg Math. J., vol. 5, pp.
523-544, 1994.

V. Gutlyanskii, V. Ryazanov, On asymptotically conformal curves, Complex Variables, vol. 25, pp. 357-366,
1994.

V. Gutlyanskii, V. Ryazanov, On the local behaviour of quasi-conformal mappings, lzvestiya: Mathematics,
vol. 59, no. 3, pp. 471-498, 1995,.

V. Ya. Gutlyanskii, V. I. Ryazanov, On quasi-circles and asymptotically conformal circles, Dokl. Ross. Akad.
Nauk, vol. 330, no. 5, pp. 546-548, 1993; (English transl., Russian Acad. Sci. Math., vol. 47, pp. 563-566,
1993).

Copyright © 2018 Isaac Scientific Publishing AAN



112

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Advances in Analysis, Vol. 3, No. 2, April 2018

E. Hille, G. Szego, J.D. Tamarkin, On some generalization of a theorem of A.Markoff ; Duke Math., vol. 3, pp.
729-739, 1937,.

D. Jackson, Certain problems on closest approximations. Bull. Amer. Math. Soc., vol. 39, pp. 889-9061933.
O. Lehto, K.I. Virtanen, Quasiconformal Mapping in the plane, Springer Verlag, Berlin, 1973.

F.D. Lesley, Holder continuity of conformal mappings at the boundary via the strip method, Indiana Univ.
Math. J., vol. 31, pp. 341-354, 1982 .

D.I.Mamedhanov, Inequalities of S.M.Nikol’skii type for polynomials in the complex variable on curves, Soviet
Math.Dokl., vol. 15, pp. 34-37, 1974.

D.I. Mamedhanov, On Nikol’skii-type inequalities with new characteristics, Doklady Mathematics, vol. 82, pp.
882-883, 2010.

G.V. Milovanovic, D.S. Mitrinovic, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities,
Zeros, World Scientific, Singapore, 1994.

S.M. Nikolskii, Approzimation of Function of Several Variable and Imbeding Theorems, Springer-Verlag,
New-York, 1975.

N. P. Ozkartepe, F. G. Abdullayev, On the interference of the weight and boundary contour for algebraic
polynomials in the weighted Lebesgue spaces 1. Ukr. Math. J., vol. 68, no. 10, 2016: (Trans. from Ukr. Mat.
Zh. vol. 68, no. 10, 2016, pp. 1365-1379).

Ch. Pommerenke, Univalent Functions, Gottingen, Vandenhoeck & Ruprecht, 1975.

Ch. Pommerenke, Boundary Behaviour of Conformal Maps. - Springer-Verlag, Berlin, 1992.

Ch. Pommerenke, S.E. Warschawski, On the quantitative boundary behavior of conformal maps, Comment.
Math. Helv., vol. 57, pp. 107-129, 1982.

1. Pritsker, Comparing Norms of Polynomials in One and Several Variables, J. of Math. Anal. and Appl., vol.
216, pp.685-695, 1997.

S. Rickman, Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A, Mathematica., 1966, 395,
30 p.

G. Szegd, A. Zigmund, On certain mean values of polynomials, J.Anal. Math., no. 3, pp. 225-244, 1954.
P.K. Suetin, The ordinally comparison of various norms of polynomials in the complex domain, Matematicheskie
zapiski Uralskogo Gos. Universiteta, vol. 5 no. 4, 1966. (in Russian).

P.K. Suetin, On some estimates of the orthogonal polynomials with singularities weight and contour, Sib.
Maith. J, vol. VIII, no:3, pp. 1070-1078, 1967. (in Russian).

AAN Copyright © 2018 Isaac Scientific Publishing





