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Abstract Some experts claim that the Riemann-Liouville variable-order fractional integral didn’t
have semigroup property. This property brought us extreme difficulties when we consider the unique
existence of solutions of variable-order fractional differential equations. In this work, based on some
analysis technique, by means of fixed point theorem, we consider the existence of solutions to
an initial value problem for differential equations of variable-order involving with variable-order
fractional integral.

Keywords: Variable-order fractional derivative, initial value problem, fractional differential equa-
tions, solution, fixed point theorem

1 Introduction

In this paper, we consider the following initial value problem for variable-order differential equation
involving with variable-order fractional integral{

D
p(t,x(t))
0+ x(t) = f(t, Iq−p(t,x(t))x), 0 < t < +∞,

I
1−p(t,x(t))
0+ |t=0 = x0 ∈ R,

(1.1)

where 0 < p(t, x(t)) < 1, q ≥ 1, 0 ≤ t < +∞, x ∈ R, D
p(t,x(t))
0+ denotes derivative of variable-order defined

by

D
p(t,(t))
0+ x(t) = d

dt

∫ t

0

(t − s)−p(s,x(s))

Γ (1 − p(s, x(s)))
x(s)ds, t > 0, (1.2)

and
I

q−p(t,x(s))
0+ x(t) =

∫ t

0

(t − s)q−p(s,x(s))−1

Γ (q − p(s, x(s)))
x(s)ds, t > 0 (1.3)

denotes integral of variable-order q − p(t).
The subject of fractional calculus has gained considerable popularity and importance due to its

frequent appearance in different research areas and engineering, such as physics, chemistry, control of
dynamical systems etc. The variable-order fractional derivative is an extension of constant order fractional
derivative. In recent years, the operator and differential equations of variable-order have been applied in
engineering more and more frequently, for the examples and details, see [1-9].

Although the existing literature on solutions of fractional differential equations is quite wide, few pa-
pers deal with the existence of solutions to differential equations involving with variable-order derivative.
According to (1.1), (1.2) and (1.3), it is obviously that when q(t) is a constant function, i.e. q(t) ≡ q

(q is a finite positive constant), then I
q(t)
0+ , D

q(t)
0+ are the usual Riemann-Liouville fractional integral and

derivative [10].
The following properties of fractional calculus operators Dq

0+, Iq
0+ play an important part in discussing

the existence of solutions of fractional differential equations.

Proposition 1.1. [10] The equality Iγ
0+Iδ

0+f(t) = Iγ+δ
0+ f(t), γ > 0, δ > 0 holds for f ∈ L(0, b), 0 < b <

+∞.

Proposition 1.2. [10] The equality Dγ
0+Iγ

0+f(t) = f(t), γ > 0 holds for f ∈ L(0, b), 0 < b < +∞.
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Proposition 1.3. [10] Let 0 < α ≤ 1. Then the differential equation

Dα
0+u = 0

has unique solution
u(t) = ctα−1, c ∈ R.

Proposition 1.4. [10] Let 0 < α ≤ 1, u(t) ∈ L(0, b), Dα
0+u ∈ L(0, b). Then the following equality holds

Iα
0+Dα

0+u(t) = u(t) + ctα−1, c ∈ R.

We are interested in whether the above properties of fractional calculus operators remain true for the
operators of variable-order.

Let’s take Proposition 1.1 for example.

Example 1.1. Let p(t) = t, q(t) = 1, f(t) = 1, 0 ≤ t ≤ 3. Now, we calculate I
p(t)
0+ I

q(t)
0+ f(t)|t=1 and

I
p(t)+q(t)
0+ f(t)|t=1.

I
p(t)
0+ I

q(t)
0+ f(t)|t=1 =

∫ 1

0

(1 − s)s−1

Γ (s)

∫ s

0

(s − τ)1−1

Γ (1)
dτds =

∫ 1

0

(1 − s)s−1s

Γ (s)
ds ≈ 0.472.

and

I
p(t)+q(t)
0+ f(t)|t=1 =

∫ 1

0

(1 − s)s

Γ (s + 1)
ds =

∫ 1

0

(1 − s)s

sΓ (s)
ds ≈ 0.686.

Therefore,
I

p(t)
0+ I

q(t)
0+ f(t)|t=1 ̸= I

p(t)+q(t)
0+ f(t)|t=1.

So, we see that Propositions 1.1-1.4 are not true for the operators of variable-order. But, for integral
of variable-order defined by (1.3), we can find that the index law holds for constant order q and variable-
order p(t).

Lemma 1.1. Let x(t), p(t, x(t)) be real functions, q be positive constant such that the integrals
I

p(t,x(t))
0+ x(t) and I

q+p(t,x(t))
0+ x(t) exist. Then the following expression hold

Iq
0+I

p(t,x(t))
0+ x(t) = I

q+p(t,x(t))
0+ x(t), t > 0. (1.4)

Proof. By (1.3), we have that

Iq
0+I

p(t,x(t))
0+ x(t) = 1

Γ (q)

∫ t

0
(t − s)q−1

∫ s

0

(s − τ)p(τ,x(τ))−1

Γ (p(τ, x(τ)))
x(τ)dτds

= 1
Γ (q)

∫ t

0

∫ t

τ

(t − s)q−1 (s − τ)p(τ,x(τ))−1

Γ (p(τ, x(τ)))
x(τ)dsdτ

= 1
Γ (q)

∫ t

0

∫ 1

0

(t − τ)q−1+p(τ,x(τ))

Γ (p(τ, x(τ)))
(1 − r)q−1rp(τ,x(τ))−1x(τ)drdτ

= 1
Γ (q)

∫ t

0

(t − τ)q−1+p(τ,x(τ))

Γ (p(τ, x(τ)))
β(q, p(τ, x(τ)))x(τ)dτ

= 1
Γ (q)

∫ t

0

(t − τ)q−1+p(τ,x(τ))

Γ (p(τ, x(τ)))
x(τ)Γ (q)Γ (p(τ, x(τ)))

Γ (q + p(τ, x(τ)))
dτ

=
∫ t

0

(t − τ)q−1+p(τ,x(τ))

Γ (q + p(τ, x(τ)))
x(τ)dτ
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= I
q+p(t,x(τ))
0+ x(t),

which implies that (1.4) holds.

Remark 1.1. But, according to Example 1.1, for x(t), p(t, x(t)) be real functions, q is positive constant
such that the integrals I

p(t,x(t))
0+ x(t) and I

q+p(t,x(t))
0+ x(t) exist. But, in general, we know that

I
p(t,x(t))
0+ Iq

0+x(t) ̸= I
q+p(t,x(t))
0+ x(t), (1.5)

for some point t.
Based on characters of calculus of variable-order, here, we don’t transform problem (1.1) to an integral

equation, but, by means of some analysis techniques, we are able to consider existence and uniqueness
of positive solution to (1.1).

Hence, one can not transform a differential equation of variable-order into an equivalent integral
equation without these propositions. It is a difficulty for us in dealing with the problems of differential
equations, which only involve variable-order derivative. But, we can consider such problems that contains
the variable-order integral in nonlinear term.

Definition 1.1. A function x(t) is an unique solution of problem (1.1), if its variable-order fractional
integral I

1−p(t,x(t))
0+ x(t) exists uniquely on [0, +∞), and satisfies problem (1.1).

2 Existence and Unique Result

In this section, we present our main results. The following results will play a very important role in our
next discussion.

Lemma 2.1. Let
E =

{
x(t)

∣∣∣∣ x(t) ∈ C[0, +∞), sup
t≥0

x(t)
1 + t2 < ∞

}
with the norm

∥x∥E = sup
t≥0

|x(t)|
1 + t2 .

Then, (E, ∥ · ∥E) is a Banach space.

Proof. The proof is similar to Lemma 2.2 [11]. Here, we omit it.

We assume that:

(H1) Let p : [0, +∞) × R → (0, 1) a continuous function;
(H2) For function h ∈ C[0, +∞), there exists function x : [0, +∞) → R satisfying equation I

1−p(t,x(t))
0+ x(t) =

h(t), 0 ≤ t < ∞;
(H3) trf : [0, ∞) × R → R (max{0, q − 2} ≤ r < 1) is continuous function, and that there exists

constant L > 0 satisfying
L

Γ (q)(q − r)
< 1,

such that
tr|f(t, (1 + t2)x) − f(t, (1 + t2)y)| ≤ L

1 + t2 |x − y|, 0 ≤ t < +∞, x, y ∈ R.

And let f(t, 0) satisfying

lim
t→+∞

1
1 + t2

∫ t

0
(t − s)ρ−1|f(s, 0)|ds < +∞.

Theorem 2.1. Assume the conditions (H1)-(H3) hold, then problem (1.1) has one unique solution.
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Proof. According to the definition of variable-order derivative (1.2) and the Riemann-Liouville fractional
derivative, applying integral I1

0+ on both sides of equation of (1.1), we get

I
1−p(t,x(t))
0+ x(t) = x0 + I1

0+f(t, I
q−p(t,x(t))
0+ x). (2.1)

It follows from Lemma 1.1 and (2.1) that

I
1−p(t,x(t))
0+ x(t) = x0 + I1

0+f(t, I
q−p(t,x(t))
0+ x) = x0 + I1

0+f(t, Iq−1
0+ I

1−p(t,x(t))
0+ x). (2.2)

We let I
1−p(t,x(t))
0+ x(t) = y(t) and

x0 = y(0) .= y0, (2.3)

then, by (2.2), we could get the following integral equation

y(t) = y0 +
∫ t

0
f(s, Iq−1

0+ y)ds, 0 ≤ t < +∞. (2.4)

According the above analysis, we will consider the unique existence result of solution to integral
equation (2.4).

Define the operator T : E → E by

Ty(t) = y0 +
∫ t

0
f(s, Iq−1

0+ y)ds. (2.5)

We assert that the operator T : E → E is well defined. First of all, we verify that Ty(t) ∈ C[0, +∞) for
y ∈ E. In fact, let

g(t, Iq−1
0+ y) = trf(t, Iq−1

0+ y),

by (H3), we know that g : [0, +∞) × R → R is continuous.
For the case of t0 ∈ [0, +∞), take t > t0, t − t0 < 1, then

|
∫ t

0
f(s, Iq−1

0+ y)ds −
∫ t0

0
f(s, Iq−1

0+ y)ds|

= |t1−r

∫ 1

0
τ−rg(tτ, Iq−1

0+ y(tτ)dτ − t1−r
0

∫ 1

0
τ−rg(t0τ, Iq−1

0+ y(t0τ)dτ |

≤ (t1−r − t1−r
0 )

∫ 1

0
τ−rg(tτ, Iq−1

0+ y(tτ)dτ + t1−r
0

∫ 1

0
τ−r(g(tτ, Iq−1

0+ y(tτ) − g(t0τ, Iq−1
0+ y(t0τ))dτ,

by the continuity of g(tτ, Iq−1
0+ y(tτ)) and t1−r, we obtain∫ t

0
f(s, Iq−1

0+ y)ds is continuous on point t0.

In view of the arbitrariness of t0, we have

y0 +
∫ t

0
f(s, Iq−1

0+ y)ds ∈ C[0, +∞).

On the other hand, for y ∈ E, we have

| Ty(t)
1 + t2 | ≤ |y0|

1 + t2 + | 1
1 + t2

∫ t

0
f(s, Iq−1

0+ y(s))ds|

≤ |y0|
1 + t2 + L

Γ (q − 1)(1 + t2)

∫ t

0
s−r(1 + s2)−1

∫ s

0
(s − τ)q−2|y(τ)|dτds
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+ 1
1 + t2

∫ t

0
s−r|f(s, 0)|ds

≤ |y0|
1 + t2 + L

Γ (q − 1)(1 + t2)

∫ t

0
s−r

∫ s

0
(s − τ)q−2|(1 + τ2)−1y(τ)|dτds

+ 1
1 + t2

∫ t

0
s−r|f(s, 0)|ds

≤ |y0|
1 + t2 + L

Γ (q − 1)(1 + t2)

∫ t

0
s−r

∫ s

0
(s − τ)q−2∥y∥Edτds

+ 1
1 + t2

∫ t

0
s−r|f(s, 0)|ds

= |y0|
1 + t2 + L∥y∥E

Γ (q)(1 + t2)

∫ t

0
sq−r−1ds + 1

1 + t2

∫ t

0
s−r|f(s, 0)|ds

= |y0|
1 + t2 + L∥y∥E

Γ (q)(q − r)
tq−r

1 + t2 + 1
1 + t2

∫ t

0
s−r|f(s, 0)|ds,

which implies that

sup
t≥0

Ty(t)
1 + t2 < ∞.

Hence, we obtain that operator T : E → E is well defined.
Now, for x, y ∈ E, we have∣∣∣∣Tx(t) − Ty(t)

1 + t2

∣∣∣∣ ≤ | 1
1 + t2

∫ t

0
(f(s, Iq−1

0+ x(s)) − f(s, Iq−1
0+ y(s)))ds|

≤ 1
1 + t2

∫ t

0
|f(s, Iq−1

0+ x(s)) − f(s, Iq−1
0+ y(s))|ds

≤ L

1 + t2

∫ t

0
s−r(1 + s2)−1|Iq−1

0+ x(s) − Iq−1
0+ y(s)|ds

≤ L

Γ (q − 1)(1 + t2)

∫ t

0
s−r(1 + s2)−1

∫ s

0
(s − τ)q−2|x(τ) − y(τ)|dτds

≤ L

Γ (q − 1)(1 + t2)

∫ t

0
s−r

∫ s

0
(s − τ)q−2(1 + τ2)−1|x(τ) − y(τ)|dτds

≤ Ltq−r

Γ (q)(q − r)(1 + t2)
∥x − y∥E

≤ L

Γ (q)(q − r)
∥x − y∥E

According to L
Γ (q)(q−r) < 1, the Banach contraction principle assures that operator T has one unique

fixed point y∗ ∈ E, which is unique solution of integral equation (2.4). That is , y∗ ∈ E satisfies

y∗(t) = y0 +
∫ t

0
f(s, Iq−1

0+ y∗)ds, 0 ≤ t < +∞.
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Now, by (H2), for y∗ ∈ E, there exits function x : [0, +∞) satisfying

I
1−p(t,x(t))
0+ x(t) = y∗(t), 0 ≤ t < +∞.

then, by (2.4), we know that I
1−p(t,x(t))
0+ x(t)|t=0 = y∗(0) = y0 = x0. Hence, putting y∗(t) = I

1−p(t,x(t))
0+ x(t)

into (2.1), we get that

I
1−p(t,x(t))
0+ x(t) = x0 +

∫ t

0
f(s, Iq−1

0+ I
1−p(t,x(t))
0+ x), 0 ≤ t < +∞

according to Lemma 1.1, we have that

I
1−p(t,x(t))
0+ x(t) = x0 +

∫ t

0
f(s, I

q−p(t,x(t))
0+ x)ds, 0 ≤ t < +∞

which implies that
D

p(t,x(t))
0+ x(t) = f(t, Iq−p(t,x(t))x), 0 < t < +∞,

thus, we obtain that x(t) is a solution of problem (1.1).

Remark 2.1. Unfortunately, we couldn’t obtain result of Propositions 1.1, 1.2 for variable-order op-
erators I

1−p(t,x(t))
0+ and D

1−p(t,x(t))
0+ , therefore, we don’t have any way to know which functions space x

should belong to, we only know I
1−p(t,x(t))
0+ x(t) .= y∗(t) ∈ E.

Remark 2.2. For Theorem 2.1, the condition (H2) is stronger, but, it is very important in obtaining
the unique existence result of solution to problem (1.1). In (H2), the existence of function x(t) is another
important and complex problem, we will investigate it in our following works.

Remark 2.3. According to Theorem 2.1, y∗(t) = I
1−p(t,x(t))
0+ x(t) is unique solution of problem (1.1).

And that, by Remark 2.2, we don’t know that what is x(t). For the condition (H2), when p(t, x(t)) is a
function of variable t, i.e. p(t, x(t)) = p(t), 0 ≤ t < +∞, we may consider the approximate function of
x(t), in this sense, we could call this approximate function as approximate solution of problem (1.1). For
example, we let p : [0, +∞) → (0, 1) be a continuous function, for arbitrary small positive ε, there exists
positive constants 0 < pi < 1, i = 1, 2, · · · , 11, such that

|p(t) − p1| < ε, 0 ≤ t ≤ 10, (2.6)

|p(t) − p2| < ε, 10 < t ≤ 20, (2.7)

|p(t) − p3| < ε, 20 < t ≤ 30, (2.8)

...

|p(t) − p10| < ε, 90 < t ≤ 100, (2.9)

|p(t) − p11| < ε, 100 < t < +∞, (2.10)

Thus, by I
1−p(t)
0+ x(t) = I1−p1

0+ x(t) = y∗(t), 0 ≤ t ≤ 10, we take function x∗
1(t) = D1−p1

0+ y∗(t) as approxi-
mate function of x(t) in the interval [0, 10], under the sense of (2.6).

For 10 < t ≤ 20, we may consider I
1−p(t)
0+ x(t), 0 ≤ t ≤ 20 as following

I
1−p(t)
0+ x(t) =

∫ t

0

(t − s)−p(s)

Γ (1 − p(s))
x(s)ds

=
∫ 10

0

(t − s)−p1

Γ (1 − p1)
x(s)ds +

∫ t

10

(t − s)−p2

Γ (1 − p2)
x(s)ds,
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in the first part above, we consider function x(s) as x∗
1(t) = D1−p1

0+ y∗(t) given, as a result, we obtain a
deterministic function as following∫ 10

0

(t − s)−p1

Γ (1 − p1)
x(s)ds =

∫ 10

0

(t − s)−p1

Γ (1 − p1)
x∗

1(s)ds
.= h1(t), 10 < t ≤ 20.

Thus, from I
1−p(t)
0+ x(t) = y∗(t) and the expression above, when 10 < t ≤ 20, we have that∫ t

10

(t − s)−p2

Γ (1 − p2)
x(s)ds = y∗(t) − h1(t), 10 < t ≤ 20.

Hence, we may take function x∗
2(t) = D1−p2

10+ [y∗(t) − h1(t)], 10 ≤ t ≤ 20 as approximate function of x(t)
in the interval (10, 20], under the sense of (2.7).

For 20 < t ≤ 30, we may consider I
1−p(t)
0+ x(t), 0 ≤ t ≤ 30 as following

I
1−p(t)
0+ x(t) =

∫ t

0

(t − s)−p(s)

Γ (1 − p(s))
x(s)ds

=
∫ 10

0

(t − s)−p1

Γ (1 − p1)
x(s)ds +

∫ 20

10

(t − s)−p2

Γ (1 − p2)
x(s)ds +

∫ t

20

(t − s)−p3

Γ (1 − p3)
x(s)ds,

similar to the previous arguments, in the first part above, we consider function x(s) as x∗
1(t) = D1−p1

0+ y∗(t)
given, and in the second part above, we consider function x(s) as x∗

2(t) = D1−p2
10+ [y∗(t) − h1(t)] given. As

a result, we obtain a deterministic functions as following∫ 10

0

(t − s)−p1

Γ (1 − p1)
x(s)ds =

∫ 10

0

(t − s)−p1

Γ (1 − p1
x∗

1(s)ds
.= h1(t), 20 < t ≤ 30,

∫ 20

10

(t − s)−p2

Γ (1 − p2)
x(s)ds =

∫ 20

10

(t − s)−p2

Γ (1 − p2)
x∗

2(s)ds
.= h2(t), 20 < t ≤ 30,

Thus, from I
1−p(t)
0+ x(t) = y∗(t) and the expressions above, when 20 < t ≤ 30, we have that∫ t

20

(t − s)−p3

Γ (1 − p3)
x(s)ds = y∗(t) − h1(t) − h2(t), 20 < t ≤ 30.

Hence, we may take function x∗
3(t) = D1−p3

20+ [y∗(t) − h1(t) − h2(t)], 20 ≤ t ≤ 30 as approximate function
of x(t) in the interval (20, 30], under the sense of (2.8).

By similar arguments above, we may obtain function x∗
11(t), 100 < t < +∞ as approximate function

of x(t) in the interval (100, +∞), under the sense of (2.10).
Thus, we take function defined by

x(t) =


x∗

1(t), 0 ≤ t ≤ 10,
x∗

2(t), 10 < t ≤ 2,
· · · ,
x∗

11(t), 100 < t < +∞

as approximate function of x(t), which is in I
1−p(t,x(t))
0+ x(t) = y∗(t), 0 ≤ t < +∞.

3 Conclusion

The variable-order fractional derivative is an extension of constant order fractional derivative. The exis-
tence of solutions to some class of differential equations of variable-order is an interesting object. But,
loss of some fundamental properties, ones have some difficulties in dealing with the existence of solutions
to some problems for differential equations of variable-order. In this article, by means of fixed point
theorem, we have considered the existence and unique of solution to some class of differential equations
of variable-order, in which there has variable-order fractional integral.
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