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Abstract. Plane Symmetric cosmological models with linear equation of state (EoS) p αρ β= − , 
where α  and β  are constants, have been investigated, in General Relativity. The exact solutions 
of the field equations are obtained by assuming a constant deceleration parameter that leads two 
different aspects of the volumetric expansion namely a power law and an exponential volumetric 
expansion. Some physical and geometric properties of the models along with physical acceptability of 
the solutions have also been discussed in detail. 

Keywords: Plane Symmetric universe, linear equation of state, dark energy. 

PACS codes: 04.20.-q, 98.80.Jk, 04.20.Jb. 

1   Introduction 

Accelerating enlargement of our universe determined by cosmological observations like SNeIa [1, 2], 
CMB [3, 4] and WMAP [5, 6] can be explained by dark energy [7, 8]. Barrow [9] in his investigation has 
pointed that the entropy level of the universe makes it probable that its initial state was isotropic and 
quiescent ( p ωρ= , ( 1,0)ω ∈ − ) instead of chaotic provided that the equation of state for prime density 
of matter tends to stiff pρ =  ( ρ  being the matter density and p  the isotropic pressure). The cosmic 
background radiation is additionally thought of to be a significant experimental proof on that the 
foremost unremarkably accepted theory regarding the origin of universe i.e. “Big-Bang” cosmology relies. 
Dark energy cosmology with generalized equation of state for FRW cosmological model has been 
investigated by Bachichev et al. [10]. Singh and Chaubey [11] have thought of a spatially unvaried and 
anisotropic Bianchi type-I cosmological model crammed with dark energy with generalized equation of 
state. Recently, Adhav et. al.[12-15] have studied cosmological models with equation of state normally 
relativity theory. 

Motivating with on high of study work, throughout this paper I tend to acquire plane symmetrical 
cosmological models with equation of state (EoS) p αρ β= − , where α  and β  are constants, in 
General Relativity. The exact solutions of the field equations are obtained by assuming a constant 
deceleration parameter that leads two different aspects of the volumetric expansion namely a power law 
and an exponential volumetric expansion.Physical and kinematical properties of the model are discussed. 

2   Metric and Field Equations 

We consider plane-symmetric, which is less restrictive than spherical symmetry and can provide an 
avenue to study inhomogeneities. Inhomogeneous cosmological models play an important role in 
understanding some essential features of the universe such as the formation of galaxies during the early 
stages of evolution and process of homogenization. Plane symmetric inflationary model has astrophysical 
interest since cosmological models play a vital role in the structure formation of the universe. At the 
present state of evolution, the universe, on the whole, is spherically symmetric and isotropic. But in its 
early stages of evolution, it could not have had such a smoothed out picture. The plane symmetric 
metric is in the form 
 2 2 2 2 2 2 2( )ds dt A dx dy B dz= − + −   (1) 
where the metric potentials A  and B are the functions of time t only. 
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Katore et. al. [16] investigated Plane symmetric cosmological models with perfect fluid and dark 
energy. Katore and Shaikh [17] studied Plane symmetric dark energy model in Brans-Dicke theory of 
gravitation. Statefinder Diagnostic for Modified Chaplygin Gas in Plane Symmetric Universe has been 
discussed by Katore and Shaikh [18]. Katore and Shaikh [19] have investigated Plane Symmetric 
cosmological model in the presence of cosmic string and Bulk Viscosity in Saez-Ballester scalar tensor 
theory of gravitation. Very recently, Katore et. al. [20] obtained Plane Symmetric Inflationary Universe 
with Massless Scalar Field and Time Varying Lambda. 

The energy momentum tensor is given by 
 1 2 3 4

1 2 3 4, , , , , ,T diag T T T T diag p p pµ
γ ρ   = = − − −     (2) 

where, ρ  is the energy density of the fluid and p is its pressure. 
Here we use linear equation of state [21] as 

 p αρ β= −   (3) 
where, α  and β  are constants. 

The Einstein field equations, in natural units (8π G = 1 and c = 1), are 

 1
2

G R Rg Tµγ µγ µγ µγ= − = −   (4) 

where, 1 , (0,0,0,1)g u u uµ γ µ
µλ = =  is the four velocity vector, Rµγ  is the Ricci tensor, R is the Ricci 

scalar, and Tµγ  is the energy-momentum Tensor. 
Using equations (4), the corresponding field equations for metric (1) with the help of equation (3) and 

(4) can be written as 

 ( )A AB B
A AB B

αρ β+ + = − −
�� � � ��

  (5) 

 ( )
2

2
2 A A
A A

αρ β+ = − −
�� �

  (6) 

 
2

2
2A AB
ABA

ρ+ =
� � �

  (7) 

where a dot here in after denotes ordinary differentiation with respect to cosmic time “t” only. 

3   Solutions of the Field Equations 

Using equations (5) and (6), we get 

 0d A B A B V
dt A B A B V

   
− + − =   

   

� �� � �
  (8) 

which on integration gives 

 2 1expA dtk k
B V

 
=  

 
∫   (9) 

where 1k  and 2k  are constants of integration. 
In view of 2V A B= , we write ,A B  in the explicit form 

 
1
3

1 1
1expA DV X dt
V

 
=  

 
∫   (10) 

 
1
3

2 2
1expB DV X dt
V

 
=  

 
∫   (11) 

where ( 1, 2)iD i =  and ( 1, 2)iX i =  satisfy the relation 2
1 2 1D D =  and 1 22 0X X+ = . 

Since field equations (5)–(7) are three equations having four unknowns and are highly nonlinear, an 
extra condition is needed to solve the system completely. Here we have used two different volumetric 
expansion laws 
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 bV at=   (12) 
and 
 1

1
tV eβα=   (13) 

where a, b, 1 1,α β  are constants. In this way, all possible expansion histories, the power law expansion, 
(12), and the exponential expansion, (13), have been covered. 

4   Isotropization 

The anisotropy of the expansion can be parameterized after defining the directional Hubble parameters 
and the mean Hubble parameter of the expansion. The directional Hubble parameters within the 
directions for the Plane symmetric metric outlined in (1) are also outlined as follows: 

 ,x y z
A BH H H
A B

= = =
� �

  (14) 

The mean Hubble parameter, H, is given by 

 1 1 2
3 3

R V A BH
R V A B

 
= = = + 

 

�� � �
  (15) 

where R is the mean scale factor and 3 2V R A B= =  is the spatial volume of the universe. 
The anisotropy parameter of the expansion ∆  is defined as 

 
2

3

1

1
3

i

i

H H
H=

 −
∆ =   

 
∑   (16) 

in the , ,x y z  directions, respectively. The mean anisotropic parameter of the expansion ∆  has a very 
crucial role in deciding whether the model is isotropic or anisotropic. It is the measure of the deviation 
from isotropic expansion, the universe expands isotropically when 0∆ = . 

Let us introduce the dynamical scalars, such as expansion parameter ( )θ  and the shear 2( )σ  as 
usual 
 3Hθ =   (17) 

 2 23
2

Hσ = ∆   (18) 

5   Model for Power Law 

Using (12) in (10) and (11), we obtain the scale factors as follows: 

 
1

113 3
1 exp

(1 )

b
bX

A D a t t
a b

−  =  
−  

  (19) 

and 

 
1

123 3
2 exp

(1 )

b
bX

B D a t t
a b

−  =  
−  

  (20) 

Metric (1) with the help of (19) and (20) can be written as 

 ( )2 3 2 3 2 3 2 32 2 2 1 2 2 2 1 21 2
1 2exp 2 exp 2

(1 ) (1 )
b bb bX X

ds dt D a t t dx dy D a t t dz
a b a b

− −
         = − + −      

− −            
  (21) 

Using equations (19) and (20) in equation (7), we get the energy density as 

 
22

1 2 1 1 2
2 1 2 2

2 (2 ) 2
3 3 b b

b X X X X Xb
t at a t

ρ
+

 + + = + + 
  

  (22) 
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Figure 1. Energy density vs time. 

Using equation (28) and (3), we obtain the pressure as 

 
22

1 2 1 1 2
2 1 2 2

2 (2 ) 2
3 3 b b

b X X X X Xbp
t at a t

α β
+

 + + = + + − 
  

  (23) 
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Figure 2. Pressure vs time. 

The directional Hubble parameters as defined in (14) are found as 

 1

3x y b

XbH H
t at

= = +   (24) 

 2

3z b

XbH
t at

= +   (25) 

From equation (15), the mean Hubble’s parameter, H, is given by 

 
3
bH
t

=   (26) 

Using the directional and mean Hubble’s parameter in (16), we obtain 

 ( )

2

2 12 2

3
b

X
a b t −

∆ =   (27) 

From (17) and (18), the dynamical scalars are given by 
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 b
t

θ =   (28) 

The shear Scalar 

 
2

2
2 22 b

X
a t

σ =   (29) 

where 2 2 2
1 22X X X= + = constant. 

The deceleration parameter 

 3 1q
b

= −   (30) 

The deceleration parameter is always negative for 3b >  indicating accelerating universe. It is 
observed that the Hubble parameter H , expansion scalarθ , shear scalarσ  are very large near ~ 0t  
and finally tend to zero as t → ∞ . 

6.   Model for Exponential Law 

Using (13) in (10) and (11), we obtain the scale factors as follows: 

 
1

1

1
13 3

1 1
1 1

exp
t

tX
A D e e

β
βα

α β
− − =  

  
  (31) 

and 

 
1

1

1
23 3

2 1
1 1

exp
t

tX
B D e e

β
βα

α β
− − =  

  
  (32) 

It is clear that, the scale factor admit constant values at time 0t = , afterwards they evolve with time 
without any type of singularity and finally diverge to infinity. This is consistent with big bang scenario 
which resembles with Katore and Shaikh [22]. 

Metric (1) with the help of (31) and (32) can be written as 

 ( )
1 1

1 1

2 2
2 2 2 2 2 2 21 23 3 3 3

1 1 2 1
1 1 1 1

exp 2 exp 2
t t

t tX X
ds dt D e e dx dy D e e dz

β β
β βα α

α β α β
− −

         = − − + − −      
            

  (33) 

Using equations (31) and (32) in equation (7), we get the energy density as 

 
1 1

2 2
1 1 1 2 1 1 2

22
1 1

2 (2 ) 2
3 3 t t

X X X X X
e eβ β

β β
ρ

α α

 + + = + + 
  

  (34) 
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Figure 3. Energy density vs time. 
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Using equation (34) and (3), we obtain the pressure as 

 
1 1

2 2
1 1 1 2 1 1 2

22
1 1

2 (2 ) 2
3 3 t t

X X X X X
p

e eβ β

β β
α β

α α

 + + = + + − 
  

  (35) 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7

Pr
es

su
re

Time

 

Figure 4. Pressure vs time. 

The directional Hubble parameters defined in (14) are found as 

 
1

1 1

1
3x y t

X
H H

eβ

β

α
= = +   (36) 

 
1

1 2

1
3z t

X
H

eβ

β

α
= +   (37) 

From (15), the mean Hubble’s parameter, H, is given by 

 1

3
H

β
=   (38) 

The anisotropy parameter of the expansion, ∆ , is 

 
122

2 2
1 1

3 tX e β

α β

−

∆ =   (39) 

The expansion scalar, θ , is found as 
 1θ β=   (40) 

The shear scalar, 2σ , is found as 

 
122

2
2

12

tX e β

σ
α

−

=   (41) 

The deceleration parameter 
 1q = −   (42) 
where 2 2 2

1 22X X X= + = constant. 

For this model 1q = −  and 0dH
dt

= , hence, it provides the best values of the Hubble parameter and 

also the quickest rate of growth of the universe. Thus, this model could represent the inflationary era 
within the early universe and also the terribly late times of the universe. It is observed that the 
anisotropy parameter measures a constant value at 0t =  while it vanishes at infinite time of the 
universe which indicates that the universe expands isotropically at later times. The shear scalar 
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0, as tσ → → ∞ . The shear scalar is finite at 0t = . The expansion scalar for these scale factors 
exhibits the constant value. 

7   Conclusion 

Plane Symmetric cosmological models with linear equation of state (EoS) p αρ β= − , where α  and 
β  are constants, have been studied, in General Relativity. The exact solution of the field equations 
have been obtained by assuming two different volumetric expansion laws in a way to cover all possible 
expansion: namely exponential and power law expansion.  

In power law model, at 0t = , both the scale factors vanish, start evolving with time and finally as 
t → ∞  they diverge to infinity. This is consistent with the big bang model. 
In exponential model, it is clear that, the scale factor admit constant values at time 0t = , afterwards 

they evolve with time without any type of singularity and finally diverge to infinity. This is consistent 
with big bang scenario. The universe accelerates with the highest rate q = -1, which is consistent with 
the present day observations. 

It is observed that, the fluid work as dark energy (negative pressure p ) depending on the particular 
values of α  and β  was shown in Figure 2 and 4 for both the models. Also, the models reduce to 

Strange Quark Matter (SQM) for 1
3

α =  and 4
3 cBβ = , where cB  is Bag constant or vacuum energy 

density of Bag Model of quark matter. It is interesting to note that the results obtained resemble with 
the investigations of Adhav et. al. [12,14]. 
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