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Abstract. This paper investigates a least-time (or fastest-path) two-point algorithm for numerically 
propagating a light ray in a gravitational field using anisotropic coordinate velocity and distant-
observer coordinates. Rather than imaging or ray tracing, the objective is to support analysis of 
fundamentals and to be able to find null geodesics in arbitrary metrics. First we establish that results 
agree with geodesic paths in regard to bending angles to very high accuracy. Then we investigate the 
bending rate of two coordinate bending angles, wave and displacement, and find that wave angle 
illustrates well-known points about spatial and time components of light bending, while the dis-
placement angle leads to simple analytic description of Einstein’s comment about the relation be-
tween these components, and a new figure showing the compatibility of light bending and equivalence. 
A second analysis compares light bending near a neutron star for Schwarzschild and one alternate 
metric to evaluate feasibility of future experiments. Two methods of extension to non-light speed 
objects are discussed. 
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1   Introduction 

In this paper we begin by introducing an effective and accurate computational technique for calculating 
light paths in a static spherically symmetric gravitational field using only simple mathematics, the local 
constancy of the speed of light from Special Relativity (SR), the principle of coordinate velocity, and the 
Schwarzschild line element from General Relativity (GR). It is easy to substitute other metrics as long 
as they are static. Unlike numerical methods which propagate and store a family or group of geodesics 
efficiently for purposes such as imaging, [1] [2] or handle the fields of rotating or collapsing objects, [3] 
this method attempts to propagate a single ray in an easy-to-visualize metric for purposes of identifying 
patterns and behavior relevant to the investigation of fundamental or experimental issues. First the 
method is described and its accuracy is established, then two questions are studied.   

The first question is an old one, the relation between so-called “double bending” and equivalence. In 
his 1916 book, Einstein said, "According to the theory, half of this deflection is produced by the 
Newtonian field of attraction of the sun, and the other half by the geometrical, modification (‘curvature’) 
of space caused by the sun." [4] We take the discussion of Ehlers and Rindler regarding the locality of 
bending relating to time dilation and the inability to localize bending related to the spatial component 
of the metric as the current “best explanation.” [5] The baseline for single or time dilation bending via 
equivalence (resulting in a lower coordinate velocity and refraction bending) is taken as that in Einstein 
1911 [6] and assumed to be what he meant by “field of attraction,” since time dilation was inferred from 
universal acceleration in that source. For full and correct or “double” bending, i.e. both halves, we take 
Einstein 1916, [7] and for 2nd order full bending, Bodenner and Will[8]. The algorithm is able to plot 
either type of bending by adjusting coordinate velocities. Results will include comparative plots of two 
coordinate angles, one a wave angle which illustrates the varying “location” of full vs. equivalence 
bending, and the other an interesting coordinate displacement angle comparison which only approaches 
the total bending angle asymptotically and therefore doesn’t give “location,” but which shows a 
displacement doubling point by point. Two figures new to the literature support analytical verification 
of the coordinate displacement doubling, and show how spatial-component bending is excluded from an 
equivalence frame, preserving compatibility with equivalence regardless of location of bending. 
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The second question is an investigation of light bending near a dense object such as a neutron star, 
comparing General Relativity (GR) with another arbitrarily selected metric differing only at 2nd order to 
assess the feasibility of certain kinds of 2nd order GR field strength tests (as opposed to for example 
order in v/c which has already been tested to 3rd order [9]) in astrophysical settings. 

2   Methods 

2.1   Coordinates 

We perform computations in a global distant-observer Cartesian Euclidean space 2 which at large radii 
r coincides with the observer space, so that angles at large radii require no transformation. The mass of 
interest M resides at coordinates (0, 0) which is taken as the origin of a coincident static Schwarzschild 
coordinate space for the purpose of computing the vector coordinate velocity of light at points in 2. As 
long as M’s rate of spinning is limited and other mass distributions are not presently at sufficient 
density to deflect the light by greater than our margin of computational error, the light ray can be 
considered to stay in this plane.   

Such coordinates do not take advantage of symmetry for analytical problems, and require complex 
measures to handle singularities and retain accuracy in numerical methods. However, for visualizing and 
diagramming they naturally fit our minds and pages, and for computational models they provide a 
global coordinate framework to track state vectors which is independent of the positions and masses of 
objects. But since the coordinate distance is dependent on coordinate velocity, which varies with 
position, vector operations are limited to local regions in which the coordinate velocity can be 
approximated as a constant. Propagation via locally valid displacement vectors is simple vector addition. 
The question of light bending arises within such coordinates as planetary observers see no change in 
relative angular position of stars beyond the parallax range except when they pass near the central solar 
mass. 

2.2   Static Spherically Symmetric Field Metric 

Writing the Schwarzschild metric as a line element using 2 1/2(1 2 / )GM rc     gives: 
2 2 2 2 2 2 2 2 2 2 2 2d d d d (d sin d )s c c t r r            (1) 

We use this metric to determine the time dilation and spatial expansion factor ( )r . For the rules of 
light propagation we use the method described in this section, and the 2 Cartesian coordinates 
( cos , sin )x r y r   . To a coordinate stationary observer using coordinates d s  and d , light 
travels locally at velocity c. Our method is to convert this local velocity, taken at two nearby points on 
the wave front, into coordinate velocities at corresponding points in distant observer Cartesian 
coordinates 2 using radial and tangential transformations of the light’s velocity to coordinate velocity 
in 2, and integrate it in a Huygens-like fashion.   

To calculate ( )r  from (1), we can set d d 0    and use 2 2 1/2( )r x y  . In static fields for 
clocks that don’t move we have d 0r   and therefore 1d d t   . Similarly, at an instant in time for 
any particular observer we have d 0t  , and for a displacement ds  constrained to a vertical distance 
dh  we can write as d d dradials h r   . Thus we have relationships between differentials in the metric 
or distant observer coordinate differentials dr  and d t , and local coordinate differentials d  and 
dh . Coordinate velocities in this setup have the well-known forms /tangentialc c   due to time dilation, 
and 2/radialc c   due to the combination of time dilation and spatial expansion. From a unit vector u 
in a particular direction at a particular point p in 2, we resolve to tangential and radial components 
via a unit vector in the direction of the origin and calculate coordinate velocities using the magnitude of 
the radius, which will be the same as the Schwarzchild coordinate radius r=C/2. Multiplying the 
tangential and radial coordinate velocities of light by the respective components of the unit vector, we 
obtain the coordinate velocity of light in the direction of u at p in 2. 
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2.3   Propagation Method (Numerical Fastest-path Approximation of Fermat’s Principle) 

Light propagates as a wave, not as a particle. In principle, we can use the geodesic equations and there 
is no difference in methodology. In practice, simplifications to the calculations are made by first 
determining whether the geodesic is time-like (the trajectory of a free falling particle) or null (the 
trajectory of a light ray). Particles which are for example initially at rest (with respect to the 
gravitating mass) will experience acceleration. The intuitive introduction to geodesic paths used in one 
famous text [10] of an ant navigating the surface of an apple obscures this point. The ant is propelling 
itself. An object seemingly at rest must accelerate. Perhaps one could extend the analogy by considering 
that the rest object is walking through time, but this difficult abstraction defeats the intuitive value. In 
practice, time-like geodesics involve acceleration. On the other hand, since the speed of light is constant, 
changing only in direction, light rays are more perfectly analogous to the ant.   

In this paper, we consider only the path of light rays, or null geodesics. In a separate treatment the 
author hopes to generalize the alternative methods to encompass time-like geodesics, but it is 
appropriate to address and understand the simpler case first. Without doubt, null geodesics are simpler. 
Consider that as a particle-like object moves faster and faster, approaching the speed of light, more of 
its energy is light-like and a smaller and smaller fraction is its particle-like rest energy. In this limit, null 
geodesics are approached by time-like geodesics. It is our hypothesis that we can successfully understand 
null geodesics as the motion of light through curved space-time, much like the motion of the ant on the 
apple. 

It is our further hypothesis that to construct a simple and efficient propagation algorithm, we can use 
a least-time or fastest-path approach, in other words Fermat’s principle, which has the advantage of 
being coordinate free[11]. In a perfect implementation each point of a wave front is propagated in all 
possible directions for a small t interval. The tangent to the infinitely many circles defined by all 
possible propagations represents the farthest points reachable in t. The wave does not include 
backward points (except from the source point) because those have already been reached at an earlier 
time. We can modify Huygens’ Principle to accommodate asymmetric propagation velocity and still find 
the least-time new wave front as shown in Figure 1. To compute the path of a light ray, we only need 
two points on a wave front propagated in the Huygens manner, a differential distance apart with 
magnitude of the distance chosen by numerical considerations. The optimum new wave front, shown in 
the figure by a heavy dashed line, would be tangent to ovals generated by coordinate velocity vectors 
propagated in all directions from the end points over some coordinate time interval d t . A reduction in 
computation is obtained by computing only one propagation vector for each point, normal to the old 
wave front, and taking the new wave front as a line between the new end points, shown as the small 
dotted line in the figure. Bending in this approach comes from the new angle of the new wave front. 

 
 

Figure 1. Least-time path construction via 2-point approximation 
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2.4   Implementation Parameters 

To evaluate the computational model, C language versions in long double (80 bit) and GCC Quad 
Precision (128 bit) were implemented, and for reader interaction a Javascript web page (limited to 64 
bit double precision) can be found at http://mc1soft.com/papers/lightbending/. The parameters of the 
script are shown in Figure 2. The web version defaults to parameters which represent a light ray passing 
at the solar limb, with a 200 kilometer separation of propagation points on the wave front (chosen for 
Huygens’ tangent approximation validity, not to imply light actually passing through the sun), and a 
time step of one millisecond in observer coordinate time, during which the light will travel 
approximately 300 kilometers. Computational data is displayed in a new window or tab at a specified 
display interval, and can be copied into a spreadsheet for graphing or further analysis.1   

Since the two halves of the light path will be symmetric, the script only propagates the light from the 
solar limb, on an initially tangent trajectory, to the selected stopping radius or time, and doubles this 
amount to determine end to end bending. Values for a particular stopping point sufficiently large, e.g. 
10 times Earth’s orbital radius, i.e. 10 AU (astronomical units), will differ only slightly from analytically 
obtained bending. Options are provided to run some experiments regarding “what if” the coordinate 
velocity were different, for example determined only by time dilation, so that a comparison similar to 
Brown’s can be made. 

 
Figure 2. Computational light bending script parameters. 

2.5   Displacement and Wave Angle Definitions 

If the initial tangent point for purposes of computing the half angle is p0=(x0, y0) and the propagating 
wave points are p1=(x1, y1) and p2=(x2, y2), then define the center point of the wave segment pc = 
(p1+p2)/2. The simulation will print the bending angle in two ways, as a wave front angle which is a 
90 degree rotation of the vector from p1 to p2, illustrated as angle  in Figure 3. The displacement 
angle is in the direction of a vector from the tangent point p0 to the location pc, with two illustrations 
1 and 2 in the figure. Both are coordinate quantities. Since at large radii (right side of figure) the 
coordinate system matches approximately flat local observer space, the wave angle is a local observable 
at locations such as the Earth.   

Neither angle is directly observable deep in the field due to the lack of any un-deflected reference 
there. An actual observer at the tangent point would look exactly tangentially to “see” any point on the 
path of the light ray. Space there is sufficiently curved that it does not match our coordinate system.  
The displacement angle is a computational tool which at very far distances asymptotically approaches 
the wave angle, and thus will over the entire path converge to the asymptotic observable angle.     

                                              
1 At current writing, IE or Firefox will paste to spreadsheets correctly, but not Chrome. 
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Figure 3. Coordinate displacement and wave angles (1/2 of total angle shown, from limb outward) 

3   Results and Discussion 

3.1 Solar Light Bending & Method Verification 

The parameters shown in Figure 2, especially initial radius, were chosen for compatibility with the first 
order analytical light bending value of 1.7504 arc seconds usually given. (Ibid. [8]) In other words, those 
values will give 1.7504 in the 1st order analytical formula. Table 1 gives the numerical results out to 10 
AU (beyond which bending is essentially negligible at the accuracy shown) using time steps as indicated 
and a simple Euler integrator for the three precisions. 

Table 1. Solar light bending computation to 10 AU, results in arc seconds  
(results are total angle, or twice the half-angle of Fig. 3) 

 Javascript (double) C (long double) GCC Quad Precision 
initial t   1 millisecond 100 nanoseconds 100 nanoseconds 
Bending at 10 AU 1.75043159 1.75040894 1.75040682 
N=1 Bending 1.75043149 1.75040328 1.75040029 

 
Time step sizes were chosen for reasonable accuracy in modest run times. For the double precision 

web script, time steps significantly less than 1 millisecond result in unreliable results due to round off. 
This can be determined by varying parameters such as initial radius or solar mass to see if the result 
varies as expected. However, even with larger step sizes round off can result in oscillation about the final 
trajectory, making the result of the script version more like 1.7505 ± 0.0003. The script is most useful for 
copy and paste of results to a spreadsheet, but the 128 bit version should be used for accurate results. 

Most of the bending occurs near the sun, so for the higher precision cases a schedule of increased step 
sizes was used to reduce run time. At .5, 5, 20.0, and 100.0 seconds into the simulation the step sizes 
were adjusted to .0000002, .000001, .00002, and .00005 seconds respectively. All results agree well with 
the published figure of 1.7504 arc seconds 1st order bending. GR 2nd order bending at the limb of the sun 
is 1.75040681 arc seconds calculated by the method of Bodenner and Will, (Ibid. [8]), showing excellent 
agreement with the two high precision cases, especially with the 128 bit case. It appears the method 
works well even at 2nd order, and might be suitable for computations such as light bending by a neutron 
star. The C version has parameters for a neutron star, with an iteration loop to plot bending over a 
range of radii. 

There are options to turn off either time dilation or spatial bending, done by adjusting coordinate 
velocities, and disabling either reduces bending by ½. The plot in Figure 4 shows the change in bending 
angle at logarithmic time increments in light-seconds from closest approach, comparing the full and 
correct computation (dark bars) with a time dilation only computation (light bars) constructed by using 
the tangential coordinate velocity in both directions. This is comparable to Einstein’s 1911 computation, 
which is the usual reference point over which bending is considered to be doubled. (Ibid. [6]) It is 
apparent from the figure that the “factor of 2” is present at all points on the trajectory when using 
coordinate deflection angle (b). Using wave front angle (a) the factor of 2 is not present until after .5 to 
1 light second, while a much greater factor is present above 6 light seconds. Wave angle bending is 
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complete by about 50 light seconds (0.1 AU), and so Earth telescopes register almost the full bending. 
But the deflection angle bending continues accumulating more than 20 times that far.   

Table 2 shows detail of the first two time steps following the tangent position for the quad precision 
version with the recommended initial time step of 100 nanoseconds. The displacement ratio is 
1.9997073684±0.00000000004 for these two steps, indicating round off error is quite small and that the 
bending is different from the exact double by about .03%, which is due to 2nd order effects (see section 
5). 

   
 

Figure 4. Bending increment (angle) vs. light-distance from tangent point 

Table 2. Double displacement bending for early iterations for time step of 100 nanoseconds 

iteration x  normal bending x  single bending ratio 
2 -5.4768403548E-12 -2.7388209097E-12 1.9997073687E+00 
3 -1.6430521062E-11 -8.2164627271E-12 1.9997073690E+00 

 
Shapiro delay is the excess delay encountered when bouncing radar signals off Venus and timing the 

round trip when Venus (or Mars) is nearly in opposition due to the combination of time dilation and 
spatial expansion of the distance. [12] This was calculated by using an average orbital distance and 
computing the time to the orbital radius for full application of GR coordinate velocities vs. no change in 
velocities at all (options in the quad precision version), and multiplying the result by 4 since this 
represents ¼ of the round trip. Although Shapiro delay is not as sensitive to the closest approach radius 
as light bending, most of the delay is still near the sun. An excess delay at the solar limb radius of 258.6 
microseconds was obtained, comparable to 247 microseconds calculated by Shapiro for an Earth-Mars 
path, and 180 microseconds for a measured Earth-Venus path at somewhat larger closest approach. The 
algorithm obtains 195 microseconds for 3.4x106 km closest approach, and 189 microseconds for 4x106 km 
approach. 

3.2 Geometrical Interpretation 

In this section we’ll use the approximations 2 1/2 2(1 2 / ) (1 / )GM rc GM rc     as well as 
1 1 / (1 )x x    and sin x x  for 1x  . The important thing demonstrated by the numerical 
method is that in these coordinates displacement angle bending is everywhere except at the exact 
tangent point equal to double of the value expected from time dilation alone. It might seem from 
“intuition” that using the modified Huygens method, nearly horizontal ray bending would be dominated 
by the tangential coordinate velocity, and as Figure 4(a) and 4(b) show, that is true for wave angle but 
not for displacement angle.   
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Figure 5. Nearly-tangential ray bending components 

 

Consider Figure 5 showing the propagation of two wave front points at separation r along 
displacement vectors 1y  and 2y . If exactly tangential, the difference in displacement vectors due to 
the coordinate velocity difference across r for coordinate time step t is 

 

 
2

sin([ 1 2]/ ) [ 1 2]/
[ ( ) ( ) ] /

( / ) /exactly_tangent

y y r y y r
r c t r r c t r

GM rc c t r





     
         

  

  (2) 

If instead we used radial coordinate velocity, as would be approximately true for a ray that had gone 
far past the tangent point and was traveling almost radially, then the light speed adjustment would be 
instead the value 2 2 2 2(1 / ) 1 2 /GM rc GM rc      giving a double bending rate for the nearly 
radial ray: 
 2

_ (2 / ) /nearly radial GM rc c t r     (3) 

These are wave angle bending rates, which we will modify later. What we will do now is show that 
also a nearly-tangent (instead of exactly tangent) ray is bent double using displacement angles. Since 
light is an electromagnetic field which can be found by superposition, we can then decompose any ray 
into nearly tangential and nearly radial basis vectors, and argue that if they both give double bending, 
then the composite ray is also double bent according to (3). We need only consider half the path, from 
the tangent point outward, as the other half will be symmetric to that. The horizontal reference in a 
spherical field for a light ray just passing the closest tangent point is continually falling away, and 
relative to it the light ray is continually turning up. In Figure 5 the angle  represents the upturned 
angle of an un-bent ray to the new horizontal. As the light enters the radial direction 2r , it encounters 
the expanded local radial distances, or from a coordinate viewpoint it slows due to the radial coordinate 
velocity, and makes reduced progress pulling away from the changing horizontal reference, creating the 
additional bending angle . This new bending  affects all the propagation points on the wave front, 
and therefore does not affect the wave angle, but does cause a displacement of the ray and affects the 
deflection angle (shown back to the tangent point at left). At small angles (Figure 5 is greatly 
exaggerated so that we can read the angles and labels) where sin x x  the net deflection (distance) 
will be  
 1sin ( )deflection_distance          (4) 

The angle through which the tangent turns is 1 1sin( 1 / ) sin( / ) /y r c t r c t r         . The 
newly discovered horizontal reference requires a breakdown of the old tangential coordinate velocity 

1v c    into new component velocities tan cosv v v   and sin( )rv v v   . We must reduce rv  
by  to reflect the reduction in radial coordinate velocity over tangential, giving 1 1'r rv v v      .  
We can find sin( 1 / ) 1 / /y r y r v t r     . To find the deflection angle   we use the difference 
between rv  and 'rv : 
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  (5) 

Since (3) is also the time dilation only bending, and matches (5), we have analytical verification that 
  , and the near-tangential deflection bending angle, proportional to   , is the double of the 
amount due only to time dilation. To reach this conclusion we ignored a 2nd order term, so the “double 
bending” is only a first order approximation and not quite true when 2nd order is considered.   

In the nearly tangential case we have exactly what we need — a conclusion that deflection bending is 
exactly doubled. In the exactly radial direction there is of course no bending at all, so in that direction 
also we specify a basis vector which is “nearly radial.” In that case one of the wave front points is 
slightly below the other by r, moving slightly slower as a result, and thus the wave angle is rotating.  
While this r is in a different direction with respect to the wave front, nevertheless the same algebra 
used in (2) and (3) applies, and so we have the result that due to the radial coordinate velocity 
difference the wave angle is changing at the double of the rate it would be from time dilation alone 
(tangential coordinate velocity difference). 

Small wave angle changes will result in displacement changes in the same proportion eventually as the 
ray continues, i.e. also doubled, meaning we can take the wave angle as a proxy for eventual 
displacement angle bending. So we conclude we can make near-radial and near-tangential basis vectors 
for an arbitrary light ray, and treat the component velocities exactly as we have treated the nearly 
vertical and horizontal ray velocities, with the result that the composite light ray is always 
accumulating deflection bending at the double of the rate attributed to time dilation only. We cannot 
make definite statements about wave angle and therefore measured bending at finite radii from this 
argument, only about total asymptotic bending. 

3.3 Double Bending, Curvature and Equivalence 

A better and equally simple method to understand near-radial bending is to simply realize that due to 
the expanded radial distance, if equivalence frames (a rigid elevator for example) are assumed to be of 
fixed proper dimensions, there will be more of them in the radial direction by the spatial expansion 
factor. Therefore there is no extra bending in any one of them. Instead the extra bending is due to an 
expanded number of them in a global distance, confirming Ehlers and Rindler’s differentiation between 
local and global bending. If we compute bending in local proper units, y1 and y2 will be larger by the 
spatial factor  , so we again have 2  as the adjustment factor and the result (3) applies. 

Therefore double bending does not in any way imply double falling or a violation of the EP. From 
Figure 4(a) we conclude a light ray at the limb of the sun has traveled 100,000 miles and is progressing 
upward at an angle of around 8 degrees before noticeable deviation from single bending wave angles 
occurs. Before that, it is essentially indistinguishable from a near-horizontal ray in a rocket or elevator. 
The displacement angle viewpoint reveals that the doubling effect is associated with travel in the radial 
direction associated with spatial curvature.  

3.4 Testing Metrics with Light Paths Near a Neutron Star 

To illustrate investigation of an extra-solar question of fundamentals, we examine light bending near a 
neutron star of 1.4 solar masses with a closest approach radius from 12 kilometers (assumed to be 
approximately the size of the star) to 32 kilometers, and compare GR-Schwarzschild bending to an 
alternate metric, arbitrarily selected to match GR except at 2nd order and to have some interesting 
property, such as the event horizon at a different location. In this case, we use 2(1 / )GM rc    
exactly, not an approximation. We are not concerned here with the justification or selection of any 
particular alternate metric, but with an investigation of whether neutron star light bending could be 
used to distinguish these two very close metrics. We name them by the multiplier of the GM term, 
namely n=-2 for GR, and n=1 for our comparison. Figure 6 shows the light bending from the first order 
analytic formula and from our algorithm for each of the two.   
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Figure 6. Light bending near a 1.4 solar mass neutron star for two metrics 

A common problem in second order measurements is that one does not know the masses or even 
physical parameters such as G well enough to reach a conclusion about a single measurement point. It is 
apparent from the chart, however, that if a range of data were obtained, then the shape of the curve for 
the two metrics would be easily distinguishable. This is not true in the solar system where the difference 
between the two metrics is only 6 parts per million. At present we have some expectation of being able 
to do microarcsecond interferometry, [13] which only has kilometer resolution out to about a light year, 
but as time goes on the experiment may become possible. 

4. Conclusions 

By using nearly vertical and nearly horizontal light rays, we are able to produce a diagrammatic 
explanation of light bending with an analytic confirmation that uses only simple algebra and a very 
small amount of trigonometry. These insights were gained by studying a numerical simulation in a 
Euclidean coordinate space, with reference to the underlying space-time geometry via a Schwarzschild 
line element used to calculate coordinate velocity. A least-time two-point wave propagation 
methodology effectively finds the geodesic directly from the metric. It is easy to ask “what if” questions 
either about theoretical matters or experimental observables. As an analysis tool not tied to a particular 
formulation of gravity it can be used to quickly compare effects and evaluate possibilities for 
experimental tests. 

Theoretical insights obtained include first that using deflection angle in the distant observer 
coordinates, which is congruent with the asymptotic observable angle, the coordinate deflection is 
double at every time step, with an analytical demonstration confirming this. One could in principle plot 
the un-deflected path in real space using Schwarzschild coordinates, as circumferences are measurable by 
all observers. (The geodesic would appear straight, and the hypothetical single-bent path would not.)  
But it appears that gravity modifies the light path over theoretical un-bent and single-bent paths by 
double deflection at each point, while wave angles (or trajectories) follow the traditionally early vs. late 
pattern of Figure 4(a). Additionally it was determined that the spatial bending occurs due to expanded 
radial distance. 

An experimental insight obtained was that a factor of 100 to 1000 in angular resolution is required 
before 2nd order field strength tests using objects such as neutron stars are possible, based on the shape 
of the bending vs. radius relation. There has been a 1x106 improvement already in the last half century, 
and such a capability would have many other uses as well. 
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