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Abstract. Inflationary universe scenario with constant deceleration parameter in the presence of 
massless scalar field and flat potential taking Bianchi Type VI0 space time as a source is discussed. 
We find that the rate of expansion slows down with increase of time. It is also observed that the 
ratio of shear and expansion is non-zero for all values of T where at + b = T, t being cosmic time, a 
and b being constants. Thus the universe remains anisotropic throughout the evolution. The Higgs 
field is constant for large values of T when α < 2  and the Higgs field evolves slowly but the 
universe expands for α > 2  where α is a constant. It may be positive and negative both. The model 
represents decelerating and accelerating phases of universe and has Point Type singularity at T=0 
(MacCallum [25]). In special case i.e. if N=0 and α > 0  then the model isotropizes at late time, N 
being constant of integration. 
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1   Introduction 

The primordial acceleration in which the universe undergoes rapid exponential expansion is known as 
inflation. The notion of inflation is so far one of the best mechanism at the early stages of evolution of 
the universe to explain the flat, homogeneous and isotropic nature of the present day universe. In these 
models, the universe undergoes a phase transition characterized by the evolution of Higgs field φ. The
inflation will take place if potential V(φ) has flat region and in this region, the Higgs field φ evolves
slowly but the universe expands in an exponential way due to vacuum field energy. The flat part of the 
potential is naturally associated with a vacuum energy that is identified as an effective cosmological 
constant (Ʌ) which makes the universe enter an inflationary period. Historically, a model closely related
to the inflationary universe was suggested by Starobinsky [1] but the inflationary cosmological models 
became popular after an important paper of Guth [2] who proposed inflationary model in the context of 
grand unified field theory (GUT). There are two basic types of inflationary models: one is due to 
appearance of a flat potential e.g. in GUT’s phase transitions and the other is due to a scalar curvature-
squarred term. Barrow and Turner [3] pointed out that a universe with a large amount of anisotropy 
will not undergo the inflationary phase. A universe with only moderate anisotropy will undergo inflation 
and will be rapidly isotropized. Sato [4] in a study has shown that the most prevailing inflationary 
models are investigated through the scalar field which acts as a source of inflation and generates cosmic 
acceleration. Inflationary scenario for homogeneous and isotropic models (FRW models) has been 
studied by many authors viz. Linde [5], Wald [6], Barrow [7], Abrecht and Steinhardt [8], Abbott and 
Wise [9], La and Steinhardt [10], Mataresse and Lucchin [11]. Rothman and Ellis [12] have pointed out 
that we can have solution for isotropic problem if we work with anisotropic metric but isotropize in 
special cases. In view of these observations Singh [13] investigated Bianchi Type II inflationary models 
with constant deceleration parameter in general relativity. Bali [14] investigated inflationary scenario in 
Bianchi Type I space time with flat potential. 

The universe in smaller scale is neither homogeneous nor isotropic nor do we expect the universe to 
have these properties in its early stages. Also Astronomical observations in late eighties revealed that 
the predictions of FRW models do not always meet our requirements as were believed earlier (Smoot et. 
al. [15]). Therefore, spatially homogeneous and anisotropic Bianchi space times (I-IX) are considered to 
study the universe in its early stages of evolution. Among these, Bianchi Type VI0 space time is of 
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particular interest because this is simple generalization of Bianchi Type I space time. Barrow [16] 
pointed out that Bianchi Type VI0 cosmological models give a better explanation of some of the 
cosmological problems like helium abundance and these can be istropized in special cases. Seeing the 
importance of these models, various authors viz. Ellis and MacCallum [17], Collins [18], Roy and Singh 
[19], Tikekar and Patel [20], Bali et. al. [21,22], Ram and Singh [23] have investigated cosmological 
models considering Bianchi Type VI0 space – time in different contexts. 

2   Metric and Field Equations 

We consider Bianchi Type VI0 metric in the form 
 −= − + + +2 2 2 2 2 2x 2 2 2x 2ds dt A dx B dy C ee dz   (1) 
where A, B, C are metric potentials and functions of t-alone. 

We assume the co-ordinates to be comoving so that 
 = = = =1 2 3 4v 0 v v ,v 1   

The action of the gravitational field minimally coupled to a scalar field with potential V(φ) is given 
by Stein-Schabes [24] as 

 ( )φ φ φ
 

= − − ∂ ∂ − 
 

∫ ij 4
i j

1S g R g V d x
2

  (2) 

The Einstein’s Field equations (in gravitational units G = c=1) in the case of massless scalar field φ 
with potential V(ϕ) are given by 

 π− = −ij ij ij
1R g 8 T
2

R   (3) 

with 

 ( )ρ
ρφ φ φ φ φ

 
= ∂ ∂ − ∂ ∂ + 

 
ij i j ij

1T V g
2

  (4) 

The conservation relation =j
i;jT 0  leads to 

 ( )µφ φµ∂ − ∂ = −
−

1 dVg
dg

  (5) 

The Einstein’s Field equation (3) for the metric (1) leads to 

 ( )π φ φ
 

+ + + = − − 
 

24 4 44 44
42
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2
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V
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  (6) 
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  (9) 

 − =4 4 0
B C
B C

  (10) 

Equation (10) leads to 
 =  B mC   (11) 
where m is constant of integration. 

3   Solution of Field Equation 

The equation (5) for the scalar field (φ) leads to 
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 φ φ
φ

 
+ + = −  
 

4 4
44 4

2A C dV
A C d

  (12) 

where suffix ‘4’ indicates ordinary partial derivatives with respect to t. 
We are interested in inflationary solution so flat region is considered. Thus V(ϕ) = K is constant. 
Now equation (12) leads to 

 φ φ
 

+ + =  
 

4 4
44 4

2
0

A C
A C

  (13) 

From equation (13), we have 

 φ =
�

4 2AC
  (14) 

where �  is constant of integration. 
The scale factor R for line-element (1) is given by 

 = =3 2R ABC mAC   (15) 
To find the deterministic model of the universe, we assume that deceleration parameter is constant. 

The deceleration parameter in Cosmology is a dimensionless measure of the cosmic acceleration of the 
expansion of space in FRW universe. It is defined as 

 ( )α
−

= =44
2 2
4

Cons
R R

q
R R

tant   (16) 

where α > 0 or α < 0 and R is scale factor of the universe. If constant deceleration is taken then 
accelerating and decelerating phases are included in the following manner. The expansion of the universe 
is said to be accelerating if R44 > 0 and in this case, q < 0 as per recent astronomical observations. 

Observations of the cosmic microwave background demonstrate that the universe is very nearly flat, 
so q > 0. 

This implies that the universe is decelerating. However, observations of distant Ia Supernovae indicate 
that q < 0 and the expansion of universe is accelerating. Thus, it is interesting to assume that 
decelerating parameter is constant with the help of which we can explain the decelerating and 
accelerating phases of universe. 

From equation (16), we have 

 α+ =44 4

4

0
R R
R R

  

which leads to 

 ( )α += +
1

1R at b   (17) 
where a =β(𝛼𝛼+1), β is constant of integration. 

From equation (15) and (17), we have 

  ( )α += +
3

2 11AC at b
m

 (18) 

Adding equation (6) and (9), we have 

 π+ + =
2

44 4 4 4
2

8
C C A C

K
C ACC

  (19) 

Multiplying equation (19) by 2AC , we have 
 π+ + =2 2

44 4 4 4 8ACC AC A C C KAC   (20) 
After using (18), we have 

 ( ) ( )απ
+= +
3

1
4 4

8 KACC at b
m

  (21) 

Thus, we have 
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( )
( ) ( )

α
α

π α

α

+
+

+
= + +

+

4
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8 1

4

K
ACC at b N

ma
  (22) 

where N is constant of integration. 
Dividing equation (22) by A 2C  and using equation (18), we have 

 
( )

( ) ( ) ( ) α
π α

α

−
+

+
= + + +

+

3
4 1

8 1

4
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C a
  (23) 

Equation (23) leads to 

 
( )
( ) ( ) ( )

( ) ( )
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α

π α α

α α

−
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= + + + +

+ −
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which leads to 

 
α
αγ λ
−
+

 
= +  
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2
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and L is constant of integration. 
Now 

 
α
αγ λ
−
+

 
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 

2
2 1expB mC mL T T   (25) 

From equation (18), we have 

 

α
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−
+

 
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2
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  (26) 

where at+b = T. 
After suitable transformation of coordinates, the metric (1) leads to the form 

 { }
α
α

α
α

γ λα

γ λ

−
+

−
+
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  (27) 

where 

 = = =
2

1 , ,x X mLy Y Lz Z
mL

  

4   Physical and Geometrical Features 

The rate of Higgs fields (ϕ) is given by equation (14) as 

 
α

φ
+

= =
� �

4 2 3
1

m
AC

T
  (28) 

which leads to 

 
( )
( )

α
α

α
φ

α

−
+

+
= +

−

� 2
1

1

2

m
T M

a
  (29) 

where M is constant of integration. 
The spatial volume ( 3R ), the Hubble parameter (H), the expansion (𝜃𝜃) and shear (𝜎𝜎) for the model 

(27) are given by 
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−
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5   Conclusion 

The spatial volume increases with time. The rate of expansion slows down with the increase of time and 
finally drops to zero when T→ ∞ . It is also observed that the ratio of shear and expansion is non-zero 
for all values of T. Thus universe remains anisotropic throughout the evolution and the Higgs field (ϕ) is 
constant for large value of T when 𝛼𝛼 < 2 . When α > 2  then the Higgs field (ϕ) evolves slowly but the 
universe expands. Thus the model represents shearing, non-rotating and expanding universe. Also since 
deceleration parameter q = 𝛼𝛼 (constant). Therefore, the model represents decelerating and accelerating 
phases of universe when α > 0  and α <  0  respectively and the model (27) indicates the results as per 
astronomical observations. At the time of evolution of universe, the anisotropy is constant and during 
the inflation, it is still homogeneous and anisotropic. Thus the results obtained in this paper can be 
interpreted in the framework of perfect fluid scenario. The model (27) has Point Type singularity at T 
= 0 (MacCallum[25]). During an initial period, the universe is assumed to be dominated by constant 
potential term V(φ) with scalar field φ giving rise to power law inflation. Hence inflationary scenario is 
observed in Bianchi Type VI0 space time in presence of massless scalar field with flat potential. 
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