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Abstract: We have studied the spatially homogeneous and anisotropic Locally Rotationally 
Symmetric (LRS) Bianchi type-I universe in F(T) theory of gravity. By using a conservation 
equation, we have discussed some well known F(T) models. It is interesting to observe that these 
F(T) gravity models represent the different phases (matter, radiation and dark energy eras)  of the 
universe. An attempt has been made to retain Sharif and Rani’s [1] forms of the various quantities. 
Our results are analogous to the results obtained by Sharif and Rani [1].   
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1   Introduction 

The observations of Supernova type-Ia experiments [2-6], cosmic microwave background (CMB) 
anisotropies [7-9], large scale structure [10-12] have proposed that a peculiar component, generally 
known as the dark energy (DE), with high negative pressure is pushing this present cosmic accelerated 
expansion. This component occupies 68.3% of the present universe dominating the other components of 
the universe. (i.e., dark matter component (26.8%) and baryonic matter (4.9%) as observed by 
PLANCK 2013 [13]. 

The concept of DE was introduced by Einstein himself when he added the cosmological constant in 
the field equations. In spite of all observational evidences, explaining expansion of universe has been an 
open challenge in modern physics [14]. The most suitable of the modified theories is F(R) theory of 
gravity which is a function of Ricci scalar R in standard Einstein-Hilbert Lagrangian [15-20]. The F(R) 
theory gives cosmic inflation and depicts nature of dark energy with present cosmic acceleration. 
Another modified theory developed by Harko et al. [21] is known as F(R,T) which is the generalization 
of F(R) gravity and depends upon coupling of matter and geometry. Here the Lagrangian includes a 
function of the scalar curvature R and the trace of energy momentum tensor T. Also, Ferraro and 
Fiorini [22, 23] have developed F(T) theory and solved practical horizontal problem as well as obtained 
singularity free solutions with positive cosmological constant. This F(T) theory of gravity is the 
generalization of teleparallel gravity where curvature free Weitzenböck connections are used. This theory 
reduces to general relativity if F(T) is replaced by a constant [24, 25]. Although F(R) gravity has given 
many cosmologically important models [26-28], it is rather challenging as its equations are of fourth 
order. On the other hand, F(T) produces equations of order two and gives interesting results [29-33]. 

Our universe is homogeneous and isotropic on large scale. Result obtained by WMAP data [34-36] 
shows the existence of an anisotropic phase of the universe which approaches isotropy. The anisotropic 
model has been gaining interest since then. The Bianchi type models are spatially homogeneous and 
anisotropic. The most basic anisotropic model i.e. the Bianchi Type I (BI) universe has been studied by 
several researchers to discuss the effect of anisotropy in several contexts. Kumar and Singh [37, 38] have 
studied the exact solutions for the Bianchi Type I universe in various theories. Sharif and Waheed [39] 
investigated exact solutions for anisotropic fluid by considering the LRS Bianchi type-I universe which 
generalizes the flat FRW universe in the modified theory. Work by many researchers on this model is 
available using different parameters and different theories [40-46].      

We have discussed LRS Bianchi type-I models in F(T) gravity. In the second section we have 
presented some basics of teleparallel gravity and the corresponding field equations for LRS Bianchi 
Type-I are given in section 3. A detailed construction of F(T) gravity models is given using continuity 
equation in section 4. In the last section, we summarize and conclude the results.  
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2   F(T) Gravity Formalism  

Let us present F(T) gravity. We introduce the modified teleparallel theory of gravity as well as 
extension to F(T) theory. The Lagrangian density for teleparallel and F(T) gravity [25] are respectively 
given by 

 
π

= −
16T

eL T
G

   (1) 

 ( ) ( )
π

= −
16F T

eL F T
G

  (2) 

where T is the torsion scalar, F(T) is a differentiable function of torsion scalar T, G is the gravitational 
constant and = −e g . 

The torsion has the form  
 µυ ρ

ρ µυ=T S T   (3) 

where µυ
ρS  is the antisymmetric tensor; ρ

µυT  is the torsion tensor which are respectively defined by 

 ( )µυ µυ µ θυ υ θµ
ρ ρ ρ θ ρ θδ δ= + −

1
2

S K T T   (4) 

 ( )λ ρ ρ λ
µυ µυ υµ µ υ υ µ= Γ − Γ = ∂ − ∂i i

iT h h h   (5) 

where
 

ρ
υµΓ  is the Weitzenböck connection. 

A discretionary option in choosing the vierbein field related to the metric tensor µυg  by the following 
relation 

 µυ µ υη= i i
i jg h h      µ υ= =, ,... 0,1,2,3 ; , ,... 0,1,2,3.i j  (6) 

where the field ( )µ
ih x  at every point  µx  of manifold are orthonormal basis for the space- time and 

=i j ije e n , where  ( )= − − −1, 1, 1, 1ijn diag  is the Minkowski metric. 
Here, µ

ih satisfies the properties 

 µ µ υ
µ µ µδ δ= =,i i i

j j ih h h h   (7) 

The contorsion tensor µυ
ρK   has the following form 

 ( )µυµυ µυ υµ
ρ ρ ρ ρ= − − −

1
2

K T T T   (8) 

where contorsion tensor is the connection of difference between Weitzenböck and Levi-Civita. 
Now, we present the field equations of F(T) theory of gravity for the action (2) with respect to tetrad 

field 

 ( ) ( )µυ υµ µυλ ρ υ ρ υ
µ µλ ρ µ ρ

− ∂ − + ∂ + = 
1 21 1

4 2i i T i TT i ie eS h T S F S T F h F k h T   (9) 

where F(T) is the general differentiable function of torsion, π= =2 8 , ,T
dFk G F
dT

 µ µυρ
ρ=i iS h S . 

The energy momentum tensor has the components 
 ( )υ

ρ ρ= − − −, , ,m m m mT diag p p p   (10) 

where ρm and mp are  energy density and pressure of matter inside the universe respectively.  

3   The Field Equations 

Now we assume the line element for homogenous and anisotropic LRS Bianchi type-I space-time having 
one transverse direction x  and two equal longitudinal directions y  and z which are responsible for 
anisotropic behavior [47]  
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 ( ) ( ) ( )= − − +2 2 2 2 2 2 2ds dt A t dx B t dy dz   (11) 

where ( )A t and ( )B t are the cosmic scale factors. 
 We obtain the vierbein components by using equation (6) and equation (11) as 
 ( ) ( )µ

µ
− − −= = 1 1 11, , , , 1, , ,i

ih diag A B B h diag A B B   (12) 

By using equations (4) and (5) in equation (3), the torsion tensor for LRS Bianchi type-I has the form  

  
= − +  

 

� � � 2
2

2 2 AB BT
AB B

  (13) 

The above field equations (9) of F(T) theory of gravity, using equations (10)-(13) reduce to the 
following set of equations for υ= =0i  and   υ= =1i ,  

 ρ
 

− + =  
 

� � � 2
2

2
4 2 2T m

AB BF F k
AB B

  (14) 

 
        

+ + − − + − + − =                     

� �� � �� � �� � � �� � �2 2 2
2

2 2 2
4 16 2T TT m

AB B B B B A A B B B AF F F k p
AB B B B A B B AB A B

  (15) 

The conservation equation of energy momentum tensor turns out to be  

 ( )ρ ρ
 

+ + + = 
 

� �
� 2 0m m m

A B p
A B

  (16) 

The directional Hubble parameter iH  in the direction of x ,y and z  axes respectively are defined as  

 = = =
� �

1 2 3,A BH H H
A B

  (17) 

We have defined the average scale factorR , the Hubble parameter H and the anisotropy parameter 
∆  for LRS Bianchi type-I by 

 ( )=
1

2 3R AB   (18) 

 
 

= + 
 

� �1 2
3

A BH
A B

  (19) 

 
=

 −
∆ =   

 
∑

2
3

1

1
3

i

i

H H
H

  (20) 

For ∆ = 0 , it is observed that isotropic behavior of the universe is obtained, which depends on the 
values of unknown scale factors and parameters that are involved in the model [47-49]. 

Using equations (13) and (19), we get 

 = − +29T H J  with = +
� �2 2

2 2
2A BJ

A B
 (21) 

which is equal to 

 = −
1
3

H J T   (22) 

Now using ( ) = =, 1TF T T F in equations (14) and (15), we get 

 ρ ρ
  

+ = − + +      

� � � 2
2 2

1 4 2
2m T

AB B T
ABk B

  (23) 

 
  

+ = + + −      

� � � ��2

2 2

1 4
2m T

AB B Bp p T
AB Bk B

  (24) 

where ρT  and Tp  are the torsion contribution to the energy density and pressure given by 
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 ( )ρ
  

= − + − + −      

� � � 2
2 2

1 4 2 1
2T T

AB B F T F
ABk B

  (25) 

 ( )          = + + − + − + − +                        

� �� � �� � �� � � �� � �2 2 2

2 2 2 2

1 4 1 16
2T T

AB B B B B A A B B B Ap F
AB B B B A B B Ak B A B

  (26) 

We get the  solution from the homogeneous part of equation (14) ρ =. . 0i e  as 

 ( ) = 0cF T
T

  (27) 

where 0c  is the constant of integration. 
 From this solution, equation (15) takes the form 

 χ τ + +
= − − 

 

��
0

2 2

1 6 3 1
22m

cT H Jp
Tk T T

  (28) 

where χ τ= =
� � 2

2
,B B

B B
. 

4   Construction of Some F(T) Models Using Continuity Equation  

In this section by using continuity equation (16), we have constructed the F(T) models for different 
cases of perfect fluid and  discussed the values of EoS parameter for non-relativistic matter, radiation 
and D.E. 

Here for LRS Bianchi type-I universe, we use equation [50] 

 ρ 
+ = + 

 

� � 2 2
2 0
0 2

1 2
9 3

kA B H
A B AB

  (29) 

It implies 

 ( ) ( )
ρ

−
= −

12 2 2
02

0

3AB H H
k

  (30) 

where ρ0  is the constant of integration and 0H  is the Hubble constant. 
Equation (16) can be written in terms of EoS parameter 

 ( )ρ
ω

ρ
+ + =

�
3 1 0m

m

H   (31) 

Now we construct the F(T) models for the different cases of fluids and their combination which are 
for relativistic matter, non-relativistic matter and DE era [51]. 

Case 1: For non-relativistic matter i.e. ω = 0 . It represents cold dark matter (CDM) and baryons. 
 In equation (31), we put ω = 0  and from equation (30), we get 

 ( ) ( )ρ
ρ ρ

ρ

−
= = −

12 2 2
02

0

3 c
m c AB H H

k
  (32) 

since ρc  is a constant of integration.  
Also, equation (32) in the form of torsion scalar is  

 ( )ρ
ρ

ρ
= − −2

02
0

9
3

c
m J H T

k
  (33) 

By substituting the values of ρm  in equation (14) we get  

 ( )ρ
ρ

+ = − −2
0

0

2
2 9

3
c

TTF F J H T   (34) 

Solution of the above equation is 
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 ( ) ( )ρ
ρ

= − −2
0

0

2
9

3
cF T J H T   (35) 

Equation (35) gives a unique solution if the unknown scale factor J  is known. 
So, here we get the model in terms of torsion and Hubble constant. 

Case2: For relativistic matter i.e. ω =
1
3

 which represents photons and massless neutrinos. It 

indicates the radiation dominated era of the universe.  

Putting ω =
1
3

 in equation (31) and by using equation (21) and equation (30), we get 

 ( )ρ
ρ

ρ
= − −

4
2 3
084 4

3 3 3
0

9
3

r
m J H T

k
  (36) 

where ρr  is another constant of integration. 
 Substituting the values of ρm  in equation (14), it implies 

 ( )ρ

ρ
+ = − −

4
2 3
04 2 4

3 3 3
0

2
2 9

3
r

TTF F J H T
k

  (37) 

Equation (37) has the solution 

 ( ) ( )ρ

ρ
= − −

4
2 3
04 2 4

3 3 3
0

2
9

3
rF T J H T

k
  (38) 

Here also the solution depends upon the values of J , torsion scalar T and Hubble constant. 
Case 3: For DE era i.e. ω = −1 . This represents the major component of the universe i.e. the DE 

component which has a large negative pressure. 
Now by using ω = −1  in equation (31), we get 
 ρ ρ=m d   (39) 

where ρd   is the constant of integration. From equation (39), equation (14) implies that 

 ρ+ = 22 2T dTF F k   (40) 
Solution of the above equation is 
 ( ) ρ= 22 dF T k   (41) 
This solution gives the constant model which is consistent with cosmological constant. 

Case 4: Combination of Dust fluid and radiation i.e. ω = 0  and ω =
1
3

. Here we take the 

combination of two different fluids, the dust fluid and the radiations.  
By adding equation (33) and equation (36) we get 

 ( ) ( )ρ
ρ ρ

ρ ρ

 
 = − − + − −
 
  

1
2 2 3
0 02 1 2 1

3 3 30 0

1 9 9
3 3

r
m cJ H T J H T

k k
  (42) 

Put the value of ρm  in equation (14), it follows that 

 ( ) ( )ρ
ρ

ρ ρ

 
 + = − − + − −
 
  

1
2 2 3
0 01 2 1

3 3 30
0

22 9 9
3 3

r
T cTF F J H T J H T

k
  (43) 

We obtain 

 ( ) ( ) ( )ρ
ρ

ρ ρ

 
 = − − + − −
 
  

1
2 2 3
0 01 2 1

3 3 30
0

2 9 9
3 3

r
cF T J H T J H T

k
  (44) 

Case 5: Combination of Dust fluid and DE i.e. ω = 0  and ω = −1 , which gives  
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 ( )ρ
ρ ρ

ρ
= − − +2

02
0

9
3

c
m dJ H T

k
  (45) 

By using equation (45), equation (14) takes the form  

 ( )ρ
ρ

ρ
+ = − − +2 2

0
0

2
2 9 2

3
c

T dTF F J H T k   (46) 

This gives 

 ( )ρ
ρ

ρ
= − − +2 2

0
0

2
( ) 9 2

3
c

dF T J H T k   (47) 

Case 6: Combination of DE and Radiation i.e. ω = −1 and ω =
1
3

.  

In this section we consider the combination of EoS parameter for DE and radiation dominated era 
which yields 

 ( )ρ
ρ ρ

ρ
= + − −

4
2 3
084 4

3 3 3
0

9
3

r
m d J H T

k
  (48) 

Using equation (48) in equation (14), we have 

 ( )ρ
ρ

ρ
+ = + − −

4
2 2 3

04 2 4
3 3 3

0

2
2 2 9

3
r

T dTF F k J H T
k

  (49) 

It implies the following solution 

 ( ) ( )ρ
ρ

ρ
= + − −

4
2 2 3

04 2 4
3 3 3

0

2
2 9

3
r

dF T k J H T
k

  (50) 

5   Conclusion 

By using continuity equation, some F(T) gravity LRS Bianchi type-I models have been constructed. 
These F(T) gravity models represent three different phases such as matter, radiation and DE 
respectively corresponding to ω = 0 , ω = 1

3 and ω = −1 . Matter dominated era explains expansion of 

the universe filled with non-interacting dust particles while radiation dominated era represents early 
universe filled with radiation. The DE era corresponds to the universe dominated by a strong negative 
pressure causing late time acceleration. An attempt has been made for the revival of the form used by 
Sharif & Rani [1]. Our results are analogous to the results obtained by Sharif and Rani [1]. 
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