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Abstract Modern cosmology considers several different ingredients entering the energy-momentum
tensor of the GTR-field equations, amongst them normal baryonic matter, dark matter, dark energy
and photons. The photons are usually taken as negligibly influencing the present-day expansion
dynamics because they are seen as permanently loosing energy due to being cosmologically redshifted.
In an earlier study we have discussed why this view is questionable and why freely propagating
photons, while being transported in an expanding universe, do not change their energy. In this
paper, instead of using a cosmic photon view, we treat the cosmic electromagnetic radiation field as
a system of monodirectional wave modes. Single photons moving with the velocity of light can not
be described as sources of gravity, raising the question how cosmic photons hence may contribute to
the cosmic gravity field. Here we conclude that photons or the associated electromagnetic waves
can only be described as gravity sources, if they constitute a form of localized standing energy. To
represent localized energy, electromagnetic waves in an appropriate manner have to interfere with
their counter-propagating waves of an appropriate phase shift π to produce standing waves.
We describe the energy distribution of monochromatic standing waves and consider these monodirec-
tional, monochromatic wave modes as undamped wave modes freely extending over the dimension
of the universe. We show that they keep a constant mode energy despite the cosmic expansion
connected with the shift of their wavelengths proportional to the cosmic scale S. With these
considerations we obtain an expression for the energy density of standing electromagnetic waves and
show that their wave energy density scales with S−3, instead like S−4 as expected for the cosmic
radiation energy density by the present-day cosmology. We conclude that with our present result we
confirm an earlier study carried out on the basis of freely propagating single photons, since on both
ways we find that the energy density of cosmic electromagnetic radiation scales identically to the
scaling of the cosmic matter density, namely according to S−3.
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1 Introduction

At least with some intellectual profit, one can consider universes with an energy content constituted by
nothing else but electromagnetic radiation, or to say it in other words, by photons only. Assuming that
there exists a universe without any matter content, i.e. without dark or normal particles with rest masses,
and without dark energy as the standard ingredient of modern cosmology nowadays, then one would be
left with a universe that only contains photons. This conceptual view is not even useless or irrational,
since imagining that at the beginning of cosmic evolution we would have had a completely balanced
mixture of particles and anti-particles (koino-matter, as in accordance with the baryon conservation law)
which then have to undergo pair-annihilation below the pair-production temperature limit, this then
should have left for the rest of the cosmic times a universe with nothing else but annihilation photons.
For that scenario then it substantially counts how cosmic photons freely propagating in the universe
behave under the dynamics of the expanding universe, i.e. how are these photons redistributed in cosmic
configuration space and in frequency space at the expansion of the universe?

On the other hand, the expansion dynamics of the universe is determined by the energy-momentum
tensor Tik which, in the special case that is faced here, is constituted exclusively by photonic energy
representations. These photons, though not having rest masses, nevertheless represent a form of energy
Eν = hν and a dynamical mass mν = (hν/c2) and hence, in the sense of the GTR, have to somehow curve
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the cosmic 4d-spacetime geometry through their corresponding ingredients in the GTR energy-momentum
tensor Tik. Though pure photon universes appear to be something very special and exotic, perhaps even
utopic, they fully justify a thorough theoretical investigation. This in fact is the reason why these types
of universes have nevertheless already been discussed in the cosmologic literature at many places (see e.g.
[1], [2], [3], [4], [5]). Usually in these studies it is presented as the result that cosmic photons embedded
in the spacetime geometry of the expanding universe are subject to a permanent redshift, called the
"cosmological redshift" by which the wavelength λ of each cosmic photon grows proportional to the scale
size S of the universe according to the scaling law λ/λ0 = S/S0. This redshift result represents the GTR
generalization of the STR redshift explanation which first was the basis of the standard explanation of
galactic redshifts at the time of Hubble‘s famous detection of the expanding universe ([6]) and thereafter,
but had to be given up for non-linear redshifts larger than z ≥ 0.2.

The question of the redshifting of cosmic photons only received some newly perspected considerations
by e.g. [7], [8], [9], [10], [11]. Only most recently then a paper was published ([12]) where the nowadays
well accepted canonical GTR interpretation of the cosmic photon redshift was rediscussed and at least
rejected in parts. The main point therein was that cosmic photons in their own proper system, while
propagating on cosmic light-geodetics, do not experience the touch of the expanding universe and do
not change their proper energy, rather the cosmological energy loss is only registered later, when these
photons at some later cosmic times are measured, i.e. spectrally analyzed. Treating cosmic photons as
particles this would imply that the energy density of such cosmic photons would decrease as S−3 in
contrast to the prediction of the standard cosmology saying that it decreases like S−4. As shown by [12]
this result has substantial consequences for the contribution of photons to the cosmic energy-momentum
tensor in the present days of the universe. In the following article we want to analyse deeper whether
these most relevant implications are only due to the particle view which was applied to photons by [12],
or whether these results also find their support when taking as alternative a wave-view to the cosmic
CMB photons.

2 Energy Representation based on Electromagnetic Wave Modes

First we want to put the question here whether or not photons with no rest mass can at all be sources of
genuine gravitational fields and not only can react to rest-mass induced, existing gravitational fields. We
agree and acknowledge the fact that photons themselves are affected by the latter gravitational fields,
like those e.g. of stellar masses, leading to the well known photon deflections predicted by Einstein or to
Moessbauer‘s photon energy increases in gravitational fields (see [13]). But what will happen in case that
the stellar mass is constituted by an ambimatter star (i.e. equal numbers of baryons and anti-baryons)
when these baryons and antibaryons - completely annihilate into photons, i.e. convert baryonic into
photonic forms of energy? Do photons attract photons? Do they constitute the same gravitational field as
did the baryons before? Since the annihilation process conserves the energy, this would mean in case the
originating photons would be impeded in leaving the star, if e.g. it were a "black star", would this "black
star" then still produce the same gravitational field and thus still enforce a single photon outside of the
Schwartzschild sphere to experience the same deflection as before annihilation?

If, for instance, two single photons would come close enough to each other, would they gravitationally
interact with each other due to their mere energy representations? And if at all, how would they do
it? Would it lead to mutual deflections of the respective photons, kicking the two photons into new
propagation directions? If this latter would be the case, then on the long run cosmic photons could not be
considered to be "freely" propagating objects, but objects gravitationally mutually interacting with each
other. On the other hand, photons are objects propagating with the velocity of light. If they would create
at their light-like propagation gravitational fields by emitting gravitational waves, then these fields would
appear strongly asymmetric and due to the resulting action aberration would mean that photons can
only gravitationally interact with photons propagating just opposite to them, because the action angle
for particles moving with a velocity v = c (i.e. photons) becomes 180 degrees. (see [14]).

Photons, in order to mutually change their energy by mutual gravitational interactions should, however,
approach each other to distances smaller than:
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G

r
· (hν
c2 )2 ≈ hν (1)

leading to the requirement

r ≈ G(hν)/c4 (2)

which e.g. for a photon with energy hν = 1KeV leads to the requirement: r(1KeV ) ≈ 10−58cm.
Since these are rather exotic requirements, one could, in order to perhaps gain more credit for

these considerations, look at these things with an alternative view: Photons can be easily handled with
the standards of gravitation theory, if they can be considered not as light-velocity-fast moving energy
quantities, but as standing energy representations in 3D-space. In this respect we would like to remind the
reader that photons are representations of electromagnetic waves propagating with the velocity of light.
Only when two of these electromagnetic waves with identical wavelength and the appropriate phase shift
are interfering with each other, then so-called standing waves will result from that and the non-propagating
relevant field energy is deposited in the consecutive bulges of this interference pattern. In this form of a
locally standing energy, the waves could easily be considered as standard sources of gravitational fields.
Completely standing waves, however, can only occur, if the interfering counter-propagating waves allover
have the correct phase shift of χ = π. Within a closed cavity this can be achieved, if waves are reflected
at the cavity borders with a phase change of ∆χ = π (i.e. total reflection at the border!). Under such
conditions counter-propagating waves would store and localize their energy in the bulges of the wave
interference patterns, i.e. the wave energy distribution would be stationary and spatially discretized.

In a homogeneous universe obeying the "cosmological principle", discretized energy depositions should,
however, not be allowed (i.e. no priorities to special 3D-places!), and thus cosmic radiation fields should
have homogeneously distributed energy knots and bulges in order to guarantee a cosmologically relevant
homogeneous energy deposition. This means energy bulges in their modes along the direction of the wave
propagation should be equally distributed, established by a homogeneous phase distribution of such waves
(i.e. all phases χ of such a wave mode must be equally probable!). To take care of this "cosmologically"
required fact one needs to introduce as energy density the integral of the spectral energy distribution
uλ(χ) over all phases χ with equal phase probability. This then leads to the result :

ūλ = 〈E(λ)2〉χ = (4/3)E2(λ) (3)

In addition, the magnetic energy contribution to the electric energy part does not represent an
additional problem concerning phase distributions. This is because it is shown in text book literature
on electromagnetic vacuum waves that the linearly polarized electromagnetic wave with k = kz;E =
Ey;B = Bx, to fulfill Maxwell‘s equations, has no phase shift for instance between the Ey-component
and the Bx-component of the same electromagnetic wave mode.

On the other hand, to require total reflection of electromagnetic wave modes at the border of the
cosmic cavity system would force to also consider the action of a wave pressure on such border surfaces.
It may perhaps even simply be a request of the cosmological principle that due to the required symmetry
in the existing modes for each mode naturally a corresponding counter-mode should be existing whatever
is its generator. One could as well subdivide the universe into many sub-universes repeating each other in
all dimensions. Hence considering the border of such a sub-universe as reflector of the considered wave
modes, one would have a corresponding reflection of identical modes on the outside of this sub-universe.
Under these conditions one can see that the pressure of the reflected wave modes cancels and does not
need to be taken into account.

Furthermore it also would not fulfill and correspond to the cosmological principle to only consider
linearly polarized Ey-waves prefering the y-direction. This means that as the relevant cosmic electro-
magnetic waves one should expect to have the Ey−waves compensated by an adequate appearance of
Ex−waves to not allow for any preferred polarization direction. This means that in connection with the
above mentioned energy density for the linearly polarized mode for the cosmic system one should expect
to get a factor "2" yielding the complete energy density by

ūλ = 〈Ex(λ)2〉χ + 〈Ey(λ)2〉χ = (8/3)E2(λ) (4)
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3 Cosmic Redshift of Wave Modes

Now the additional question may be put, how much the monochromatic wave would recognize that the
reflecting border is moving apart with the Hubble expansion of the universe? Since the waves propagate
in the co-moving cosmological rest frame, one can conclude that wavelengths due to the interaction with
expanding borders of the propagation box are subject to the Hubble expansion. Over one wavelength λ,
this Hubble expansion leads to a specific wavelength expansion given by

λ̇ = H · λ (5)

This means that the relative wavelength change per time is given by

λ̇/λ = H(t) (6)

correspondingly leading to the following wavelength λ(t) as function of cosmic time:

λ(t) = λ(t0) exp[
∫ t

t0

H(t)dt] (7)

This also means that the wavelength change per wavelength would be dλ
dt = λ

c λ̇ = H λ2

c meaning that
during one crossover through the dimension S of the universe this would result to a wavelength change
per crossover time by

∆λS = S

c
Hλ = SH

λ

c
(8)

The change of the mode wavelength derived with the upper formula (8) means that, taken this together
with the result of the section before, not only the power of the mode E2

0(λ) decreases with the cosmic
scale according to (1/S(t)), but also this reduced power at a later cosmic time is transported to another,
namely larger wavelength λ(t) ≥ λ(t0) which in view of the upper result and the fact that the Hubble
parameter is defined by H(t) = Ṡ(t)/S(t) can simply be given by the following formula

λ(t) = λ(t0) exp[
∫ t

t0

Ṡ(t)
S(t)dt]

= λ(t0) exp[
∫ t

t0

d ln(S(t))
dt

dt] = λ(t0) S(t)
S(t0) (9)

This result is consistent with the classic present-day interpretation of cosmic photon redshifts, however,
its derivation and its physical interpretation is different. The change of the mode wavelength derived with
the upper formula then means that, taken this together with the result of the section before, not only the
power of the mode E2

0(λ) decreases with the cosmic scale according to (1/S(t)), but also this reduced
power at a later cosmic time is replaced to an other, namely larger wavelength λ(t) = λ(t0) · [S(t)/S(t0)] ,
implying a corresponding spectral energy shift in an existing cosmic radiation field.

4 The Energy of Cosmic Electromagnetic Wave Modes

In this section we consider cosmic photons represented by mono-directional, finite 1-D wave modes
extended over a total cosmic length extension of S, equal to the scale of the universe. We assume a
one-dimensional (+z)-directed, y-linear polarized, electromagnetic, mono-chromatic wave with an electric
field given by

E(z, λ) = Ey(λ) cos[z/λ] (10)

where Ey(λ) denotes the E-field amplitude of the mode with wavelength λ, propagating into the z-direction
over a monodirectional dimension S of the universe, till it is reflected at the outer (+z)-border of the
universe, producing via phase change by π a wave knot there and a counter-propagating antiwave in the
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opposite (−z)-direction. This reflected wave interferes with the primary wave to produce a standing wave
between the two opposite (+z/− z) - borders of the universe.

The electromagnetic energy density of this wave at a location z is given by:

uy(λ) = E2
y(λ) cos2[z/λ] (11)

Let the number n of consecutive wavelengths λ fitting into the length S be:

n = S

λ
(12)

Then the electromagnetic energy Ξy(λ) contained within the full extension S of this standing wave
(i.e. cosmic energy column density of the wave mode) is given by:

Ξy(λ) = E2
y

∫ S=nλ

0
cos2[z/λ]dz

= nE2
y

∫ λ

0
cos2[z/λ]dz = n

1
2E

2
yλ = 1

2E
2
yS (13)

Assuming that this quantity, due to loss-free radiation propagation (i.e neither cosmic radiation
absorbers nor emitters since we only consider freely propagating CMB radiation here), is conserved in the
expanding universe, Ξy(λ) = const., then would mean that the following scaling has to be expected

E2
y(λ)/E2

y0(λ) = S0/S (14)

with S(t) and S0(t0) the cosmic scale parameters at cosmic times t and t0.
Thinking now of an isotropic radiation field of such monochromatic λ waves with E(x, λ) = E(y, λ) =

E(z, λ) does then mean that the total energy column density Ξ(λ) of such a 3D-mode thus is given by
the superposition of the three spatial modes and thus given by

Ξ(λ) =
3∑
i=1

Ξi(λ) = 1
2S ·

3∑
i=1

E2
i0(λ) (15)

which thus, perhaps surprisingly, means that also for an isotropic radiation field the associated monochro-
matic wave energy density u(λ) in that case drops off according to

u(λ)/u0 = E2(λ)/E2
0(λ) = S0/S (16)

This result must be valid for any wavelength λ and one could think that the total electromagnetic
energy density uem of all wave modes with arbitrary wavelength λ would be:

uem(S) =
∑
λ

u(λ) =
∑
λ

E2(λ)

= S0

S

∑
λ

E2
0(λ) = S0

S

∫ ∞
0

dE2
0(λ)
dλ

dλ (17)

with a spectral wavelength distribution dE2
0(λ)/dλ described e.g. by a Planck curve for a given temperature

T0 at a scale parameter S0.
At this point we must remind the reader that the above derivation is correct, though the total energy

of each wave mode with wavelength λ is argued as pointed out to be conserved. However, it also turned
out in section 3 that the wavelength spread dλ, like λ itself, increases proportional to S. That means,
while the averaged energy density u(λ) of a wave mode itself decreases with 1/S and at the same time
its wavelength increases proportional to S during the expansion of the universe, the total amount of
energy of this cosmic wave mode (= cosmic energy column density Ξ(λ)) remains unchanged, but being
distributed over an enlarged wavelength interval placed at an enlarged wavelength λ.
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Or saying it in a different form: All the wave modes keep their total amount of energy constant despite
the change of their associated wavelengths, and thus the total electromagnetic energy represented by
them is constant within the increasing cosmic volume. Since the volume increases with S3, this then
evidently means, that the total electromagnetic energy density [uem] must scale with S−3: (the latter
quantity must be distinguished from uem(S) in Eq. (17)!)

[uem(S)] = [uem,0] S
3
0
S3 (18)

Here the factor [uem,0] represents the total electromagnetic energy density at the reference time t0 =
tr , or for the scale Sr, of recombination,

[uem,0] = [uem(Sr)] =
∫ ∞

0

dE2
0(λ)
dλ

dλ (19)

where the integral is carried out over the associated Planck distribution at recombination time with
temperature Tr ≈ 3000K. This integral as is well known results in

[uem,0] = [uem(Sr)] = σsbT
4
r (20)

with σsb being the so-called Stefan-Boltzmann constant.
Using Eq. (18) one can then state that the final result of the above considerations culminates in

stating that the electromagnetic energy density in an expanding universe must follow the law:

[uem(S)] = S3
0
S3σsbT

4
r (21)

Interestingly enough, this result is identical with the earlier finding by Fahr & Heyl (2017) where the
free propagation of light from the recombination period onwards has been investigated on the basis of a
"particle point of view", i.e. a cosmic photon view. So this makes evident that we obtain full conciliation
between cosmic photon and wavemode views.

5 Conclusions

The above presented wavemode model is able to combine mode energy conservation with the empirical
fact of cosmological photon redshift by delivering the following results:

– it solves the always as "mystic" considered problem as to where the energy of redshifted photons
has gone: namely No-where!, but this energy is still and always there. The whole energy is just
redistributed along an increasingly elongated wave mode

– it is conciliatory with the generally accepted assumption that the wavelengths of freely propagating
photons in an expanding universe increase with cosmic expansion scale S as shown in section (3).

– it is conciliatory with the general expectation that the energy density of CMB photons scales with
1/S4, since this is what in fact the observer with a present-day spectrometer sees.

– it also confirms - now regarding wavemodes from a photon view - the recently published idea of [12]
that photons in their peculiar photon rest frame do not suffer from the expansion of the universe.

– and it supports the idea in the above mentioned paper that the total electromagnetic energy density
at present times, which is roughly by a factor z = 1100 higher than in the standard model (S−3

instead of S−4), is comparable with the energy density of matter and can therefore explain a certain
amount of "Dark Matter".

Finally, it is worth to mention that the concept of an "energy conserving redshift" can also be applied
to photons when regarded as finite wave packets with length L = cτ . Here, τ is equal to (1/ν) or the
lifetime e.g. of an atomic electron transition. Also in the wave packet-view the length of the wave packet
L = nλ and thus λ increases according to S/S0 while the total energy of the wave packet remains constant
and is just distributed along the "stretched" finite wave mode.
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