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Abstract The basic features of linear and nonlinear quantum electron-acoustic (QEA) waves in a
degenerate quantum plasma (containing non-relativistically degenerate electrons, superthermal or
κ-distributed electrons, and stationary ions) are theoretically investigated. The nonlinear Schödinger
(NLS) equation is derived by employing the reductive perturbation method. The stationary solitonic
solution of the NLS equation is obtained, and examined analytically as well as numerically to
identify the basic features of the QEA envelope solitons. It has been found that the effects of the
degeneracy and exchange/Bohm potentials of cold electrons, and superthermality of hot electrons
significantly modify the basic properties of linear and nonlinear QEA waves. It is observed that
the QEA waves are modulationally unstable for k < kc, where kc is the maximum (critical) value
of the QEA wave number k below which the QEA waves are modulationally unstable), and that
for k < kc the solution of the NLS equation gives rise to the bright envelope solitons, which are
found to be localized in both spatial (ξ) and time (τ) axes. It is also observed that as the spectral
index κ is increased, the critical value of the wave number (amplitude of the QEA envelope bright
solitons) decreases (increases). The implications of our results should be useful in understanding
the localized electrostatic perturbation in solid density plasma produced by irradiating metals by
intense laser, semiconductor devices, microelectronics, etc.

Keywords: Electron-acoustic wave, modulation instability, quantum plasma, exchange potential,
Bohm potential

1 Introduction

The signature of electron-acoustic (EA) waves was first observed in the laboratory experiment of Derfler
and Simonen [1]. This led Watanabe and Taniuti [2] to consider a plasma containing electron species
of two distinct temperatures and ions, and led to predict theoretically the existence of the EA waves
[3] in which the restoring force (inertia) is provided by hot electron-temperatre (cold electron mass).
The EA wave frequency (ω), in fact, satisfies the condition ωpi � ω ≤ ωpc, where ωpi (ωpc) is the
ion (cold electron) plasma frequency. This means that in the EA waves ions are reasonably assumed
to be stationary, and to maintain only the neutralizing background. The dispersion relation for the
long-wavelength (in comparision with the hot electron Debye length) EA waves is [3] ω ' kCe, where
k is the wave number, and Ce = (nc0Th/nh0me)1/2 [where nc0 (nh0) being the unperturbed cold (hot)
electron number density, Th being the hot electron temperature in units of the Boltzmann constant, me

being the cold electron mass] is the electron-acoustic speed. The long wavelength EA waves are also
detected in space plasma environments [4,5,6]. The conditions for the existence of the linear EA waves
and their dispersion properties are now well-understood from both theoretical [2,3] and experimental [1,7]
points of view. The basic properties of the nonlinear EA waves, particularly EA solitons in electron-ion
plasmas have been investigated by several authors [8,9,10,11].

The nonlinear structures in degenerate plasmas have also received a renewed interest in understanding
the localized electrostatic disturbances not only in astrophysical environments (such as neutron stars,
white dwarfs, magnetars, etc. [12,13,14,15]), but also in laboratory devices (viz. solid density plasma
produced by irradiating metals by intense laser, semiconductor devices, microelectronics, carbon nanotubes,
quantum dots, and quantum wells, etc. [16,17,18,19]). Recent investigations [20,21,22,23] based on quantum
hydrodynamic (QHD) model show a number of significant differences in nonlinear features of quantum
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plasmas from those in classical electron-ion plasmas. The QHD model is a useful approximation to study
the short-scale nonlinear structures in dense (degenerate) quantum plasmas [24,25], where the effects of
degenerate (instead of thermal) pressure, exchange correlation potential, and Bohm potential can be
included.

Recently, Zhenni et. al. [26] have studied EA solitary waves or shortly EA solitons in magnetized
quantum plasma with relativistic electrons, while Chandra and Ghosh [27] have studied the modulational
instability of the EA waves in relativistically degenerate quantum plasmas. However, they have not
considered the exchange correlation and Bohm potentials in their investigation. Therefore, in our present
work, we investigate linear and nonlinear propagation of the quantum EA (QEA) waves to include the
effects of superthermality [28] of hot electron component, and quantum effects due to the degenerate
particle pressure, exchange correlation and Bohm potentials of cold electron component. We also study
the amplitude modulation of the slow evolution of the QEA envelope solitions (QEAESs) by deriving a
nonlinear Schrödinger (NLS) equation by taking these effects into account.

The manuscript is organized as follows. The basic equations governing the plasma system under
consideration are provided in Sec. II. The NLS equation for the nonlinear propagation of the EA waves is
derived by applying the reductive perturbation technique, and their linear as well as nonlinear properties
are examined in Sec. III. A brief discussion is presented in Sec. IV.

2 Governing Equations

We consider a three-component plasma system containing cold quantum electron fluid with Fermi energy
EF [24,25], inertialess, superthermal [8,9] or hot electron component, and uniformly distributed stationary
ions [10]. Thus, at equilibrium we have nc0 + nh0 = ni0, where ns0 is the equilibrium number density of
plasma species s (s = c for cold electron species, s = h for hot electron species, and s = i for stationary
ion species). The dynamics of the QEA waves in such a three-component quantum plasma system is
governed by the following set of QHD equations [24,25,29,30,31]:

∂nc
∂t

+ ∂

∂x
(ncvc) = 0, (1)

∂vc
∂t

+ vc
∂vc
∂x

= − e

me

∂φ

∂x
− 1
me

∂VDB
∂x

− 1
me

∂Vxc
∂x

, (2)

∂2φ

∂x2 = 4πe (nc + nh − ni0) , (3)

where nc (vc) is the number density (fluid speed) of the cold electron species; φ is the electrostatic wave
potential; −e (me) is the electron charge (mass); x (t) is the spatial (time) variable and

VDB = Pc
nc

+ VB , (4)

in which Pc is the non-relativistically degenerate cold electron pressure, and is given by [30]

Pc = h̄2π2/3

5me
n5/3
c , (5)

with h̄ being the Planck constant divided by 2π; VB is the Bohm potential, and is given by [20,29]

VB = h̄2

2me

(
1
√
nc

∂2√nc
∂x2

)
, (6)

which is due to the tunneling effect of the cold electrons; and Vxc is the exchange-correlation potential,
and is given by [29,31]

Vxc = −0.985e2n1/3
c

[
1 + 0.624

aBn
1/3
c

ln
(

1 + aBn
1/3
c

)]
, (7)
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with aB = 18.37h̄2/mpe
2. We note that the exchange-correlation potential can be separated into two

terms, namely the Hartree term due to the electrostatic potential of the total cold electron number density
and the cold electron exchange-correlation potential term [29,31].

The hot electron species is assumed to be superthermal (κ distributed). Thus, the number density
(nh) of the hot electron species is given by [8,9,11,28]

nh = nh0

[
1− eφ

kBTh
(
κ− 3

2
)]−κ+1/2

, (8)

where Th is hot electron temperature, and κ is the spectral index measuring the deviation from the
thermal equilibrium, and its value is κ > 3/2 for superthermal electrons [8,9,11].

We now normalize all the variables as follows: X = x/λD, T = tωpc, V = vc/Ce, Φ = eφ/EF , N =
nc/nc0, where Ce = (EF /me)1/2, ωpc = (4πe2nc0/me)1/2, λD = Ce/ωpc, and EF = h̄2(3π2nc0)2/3/2me.
Thus, (1)-(3) can be written in the normalized form as

∂N

∂T
+ V

∂N

∂X
+N

∂V

∂X
= 0, (9)

∂V

∂T
+ V

∂V

∂X
= α

∂Φ

∂X
− ∂ΨDB

∂X
+ µN−1 ∂

3N

∂X3 , (10)

∂2Φ

∂X2 − δΦ− νΦ
2 = N − 1, (11)

where ΨDB = 3(σN2/3 + 2βN1/3)/2, σ = h̄2(πnc0)2/3/m2
eC

2
e , β = (0.33e2n

1/3
c0 /meC

2
e )[1 + 0.625/(1 +

18.37aBn1/3
pc0)], µ = (h̄ωpc/2meC

2
e )2, δ = αEF (κ+1/2)/kBTh(κ−3/2), ν = αδEF (κ+1/2)/kBTh(κ−3/2),

and α = nh0/nc0.

3 Nonlinear Schrödinger Equation

To derive the NLS equation for slow evolution of the QEA waves by the reductive perturbation method
[32], we first introduce the stretched coordinates:

ξ = ε(X − v0T ),
τ = ε2T,

}
(12)

and expand the dependent variables N , V , and Φ:

N = 1 +
∞∑
n=1

εn
∞∑

l=−∞
N

(n)
l (ξ, τ) eil(kX−ωT ), (13)

V =
∞∑
n=1

εn
∞∑

l=−∞
V

(n)
l (ξ, τ) eil(kX−ωT ), (14)

Φ =
∞∑
n=1

εn
∞∑

l=−∞
Φ

(n)
l (ξ, τ) eil(kX−ωT ), (15)

where v0 is the group velocity of the QEA waves (to be determined later), ε is an expansion parameter
(0 < ε < 1), ω (k) is the angular frequency (wave number) of the carrier QEA waves. The quantities
N

(n)
l (ξ, τ), V (n)

l (ξ, τ), and Φ(n)
l (ξ, τ) are the l-th harmonic of the n-th order slowly varying dependent

variables, and these satisfy the reality condition A(n)
l ≡ A(n)∗

l , in which ∗ denotes the complex conjugate
of the quantity involved.

Now, substituting (12)- (15) into (9)-(11), and performing few steps of straight forward mathematics,
we can obtain the 1st harmonic of the 1st order (l = 1 and n = 1) reduced equations, which allow us to
express the linear dispersion for the QEA waves as

ω2 = k2
(
σ + β + k2µ+ α

k2 + δ

)
. (16)
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We note here that the parameters σ, β, and µ account for the quantum effects due to the degenerate
particle pressure, particle exchange-correlation potential, and the Bohm potential, respectively, on the
linear dispersion relation for the QEA waves. So, k2σ = TDP , k2β = TXP , and k4µ = TBP represent the
quantum effects due to the degenerate particle pressure, particle exchange-correlation potential, and the
Bohm potential, respectively. We have shown how these quantum effects (represented by TDP , TXP , and
TBP ) vary with the carrier QEA wavenumber k (please see Figure 1). It should be mentioned here that
in the classical limit, these three terms are absent (σ = β = µ = 0) and the classical dispersion relation of
the electron-acoustic wave becomes ω2 = k2α/

(
k2 + δ

)
.

The relative contribution of the three quantum terms in the linear dispersion relation is displayed in
figure 1, where the solid (dotted) curve shows how the effect of electron degenerate pressure (particle
exchange potential) varies with k, and the dashed curve show how the effect of Bohm potential varies
with k. It is observed from figure 1 that the effect of the electron degenerate pressure is more significant
than that of both exchange-correlation and Bohm potentials. It is further observed from figure 1 that
the effect of the exchange-correlation (Bohm) potential is more significant for the smaller (larger) values
of the carrier wavenumber k. We have graphically shown the effects of superthermality (represented by
spectral index κ) and number density of hot electrons (represented by the parameter α) on the dispersion
(ω vs. k) curves. These are depicted in figures 2 and 3. They indicate that as κ (α) increases, the group
velocity v0 increases for lower (higher) values of κ (α), and becomes very sharp at the low value ranges of
κ and α.

It is obvious from figures 2 and 3 that for long wavelength limit (which corresponds to a very low
k-value range) the angular frequency ω linearly increases with k, and for short wavelength limit (which
corresponds to a very high k-value range) it is independent of k (saturated region). This is usual dispersion
properties of any kind of acoustic-type of waves. It is observed from figure 2 (figure 3) that as we increase
κ (α), the ω vs. k curve is shifted up (down) to ω− axis, and the saturation region is reached for higher
values of κ and α.

Now, following the same procedure, from the first harmonic of the second order quantities (n = 2 and
l = 1), and from (16), we can express v0 as

v0 =
(

1
a1ω + a2k

)[
ωa2 − kb1 + 2k

(
ω2 − k2b0

)]
, (17)

where a1 = −k2α/
(
ω2 − k2b0

)
, a2 = ωa1/k, b0 = σ+β+ k2µ, and b1 = α+ a1b0. It should be mentioned

here that in our present investigation we are interested in the low-frequency, long wavelength QEA waves.
We have graphically shown the effects of superthermality (represented by the spectral index κ) and hot
electron number density (represented by the parameter α) on v0 vs. k curves. The results are depicted in
figures 4 and 5. Now, from the 2nd harmonic of the second order (l = 2 and n = 2) reduced equations,
we can express Φ(2)

2 in terms of Φ(1)
1 Φ

(1)
1 , which arises from the nonlinear self-interaction. Similarly, from

the zeroth harmonic of the third order (l = 0 and n = 3) reduced equations, we can express Φ(2)
0 in terms

of
∣∣∣Φ(1)

1

∣∣∣2. We finally substitute Φ(2)
2 and Φ(2)

0 into the 1st harmonic l = 1 of 3rd order (n = 3) reduced
equations to obtain the following NLS equation for the slow evolution of the QEA waves in the form

i
∂a

∂τ
+ P

∂2a

∂ξ2 +Q|a|2a = 0, (18)

where a ≡ Φ(1)
1 , and the dispersion and nonlinear coefficients P and Q are

P =
[
−k

2α

a1
+ ωf1 + kf2

]
[ωa1 + ka2]−1

, (19)

Q =
[

2k2αν

a1
f0 + ωg1 + kg2

]
[ωa1 + ka2]−1

, (20)

in which f0, f1, f2, g1, and g2 are listed in the Appendix. The signs of P/Q determine whether the slowly
varying wave amplitude is modulationally stable or not. If P/Q < 0, the wave amplitude is modulationally
stable, and the corresponding solution of the NLS equation is called a dark soliton [33]. On the other
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Figure 1. The variation of the quantum terms TDP , TXP , and TBP with the QEA wavenumber k for nc0 = 1028

cm−3, κ = 1.6, and α = 0.8. The solid curve is for TDP , the dotted curve is for TXP , and the dashed curve is for
TBP .

Figure 2. The dispersion (ω vs. k) curves of the QEA waves for nc0 = 1028 cm−3, α = 0.8, κ = 1.6 (solid curve),
κ = 2 (dotted curve), and κ = 50 (dashed curve).
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Figure 3. The dispersion (ω vs. k) curves of the QEA waves for nc0 = 1028 cm−3, κ = 2, α = 0.4 (solid curve),
α = 0.6 (dotted curve), and α = 0.8 (dashed curve).

Figure 4. The variation of the QEA wave group velocity v0 with the QEA wave number k for nc0 = 1028 cm−3,
α = 0.8, κ = 1.6 (solid curve), κ = 2 (curve), and κ = 50 (dashed curve).
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Figure 5. The variation of the QEA wave group velocity v0 with the QEA wavenumber k for nc0 = 1028 cm−3

and κ = 2, α = 0.4 (solid curve), α = 0.6 (dotted curve), and α = 0.8 (dashed curve).

Figure 6. The variation of the ratio P/Q with k for nc0 = 1028 cm−3, α = 0.8, κ = 1.7 (sold curve), κ = 1.8
(dotted curve), and κ = (dashed curve)
.
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Figure 7. The variation of the ratio P/Q with k for nc0 = 1028 cm−3, κ = 2, α = 0.4 (solid curve), α = 0.6
(dotted curve), and α = 0.8 (dashed curve).

Figure 8. The time dependent envelope solitonic profiles of |a|2 for nc0 = 1028 cm−3, α = 0.6, and κ = 1.8.
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Figure 9. The envelope solitonic profiles of |a|2 for τ = 0, nc0 = 1028 cm−3, α = 0.8, κ = 1.6 (solid curve), κ = 1.8
(dotted curve), and κ = 2 (dashed curve).

Figure 10. The envelope solitonic profiles of |a|2 for τ = 0, nc0 = 1028 cm−3, κ = 2, α = 0.4 (solid curve), α = 0.6
(dotted curve), and α = 0.8 (dashed curve).
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hand, if P/Q > 0, the wave amplitude becomes modulationally unstable, and the solution of the NLS
equation in this case is called a bright soliton [33]. We have graphically shown how P/Q varies with k for
different values of κ and α. These are dipicted in figures 6 and 7. It is observed from figures 6 and 7 that
P/Q is positive for lower values of the carrier wavenumber K, and it (P/Q) changes sign from positive to
negative after a certain carrier wavenumber k = kc, known as the critical wavenumber. They indicate
that the long wavelength QEA waves (i.e. for lower values of k, i.e. k < kc) are modulationally unstable,
and the corresponding solution of the NLS equation gives rise to the bright solitons. On the otherhand,
the short wavelength QEA waves (i.e. for higher values of k, i.e. k > kc) becomes modulationally stable,
and the corresponding solution of the NLS equation gives rise to the dark solitons. It is also clear from
figures 6 and 7 that the critical wavenumber kc decreases (increases) as we increase the spectral index
κ (α). We are interested in the solution corresponding to the bright solitons (i.e. P/Q > 0) of the NLS
equation, (18), which is given by [34,35]:

a(ξ, τ) = a0

(√
P

Q

)
exp [iPτ(τ)], (21)

where a0(x, τ) =
√

2[(4 + i16Pτ)/(1 + 16P 2τ2 + 4ξ2)− 1]. The solution (21) predicts the concentration
of the QEA wave in a small region due to the nonlinear properties of the plasma, and it is able to
concentrate a significant amount of the wave energy into a relatively small area in space [34]. We have
graphically shown the time dependent bright (envelope) solitons, i. e. the variation of a ∗ a = |a|2 with
the position (ξ) and time (τ). This is displayed in figure 8 which shows how the QEA envelope solitonic
profile evolve with time. This surface plot indicates that the QEA waves are localized in both ξ and τ
axes. This feature means that the nonlinear QEA waves can also concentrate the energy of the plasma
system in a small region [36]. The width of the localized structures gets flattened along the τ axis. On the
other hand, the stationary envelope solitonic profiles for different values of κ and α are shown in figures
9 and 10, respectively. It is obvious from figures 9 and 10 that as we increase the value of κ or α, the
amplitude of the QEA envelope solitons increases, but their width remains unchanged.

4 Discussion

We have considered a three-component degenerate quantum plasma (DQP) system containing cold quantum
electron fluid [24,25], inertialess, superthermal [8,9] electrons, and uniformly distributed stationary ions
[10] to identify the effects of suprathermality [28] of hot electron component, the degenerate cold electron
pressure, cold electron exchange correlation potential, and Bohm potential of cold electron component
on the linear and nonlinear properties of the QEA waves. We have derived the NLS equation by the
reductive perturbation method, and have obtained its solitonic solution to find the basic features of the
QEA envelope solitons. The results, which have been found from this theoretical investigation, can be
pinpointed as follows:

1. The quantum effect due to the degenerate electron pressure of the cold electron species dominates
over that due to the particle exchange-correlation potential or the Bohm potential on the dispersion
properties of the long wavelength QEA waves. However, as the wavelength of the QEA waves is
decreased, the effect of the Bohm potential overtakes that of the exchange-correlation potential.

2. It is found that for a long wavelength limit (which corresponds to a very low k-value range) the
angular frequency ω linearly increases with k, and for a short wavelength limit (which corresponds to
a very high k-value range) it is independent of k (saturated region). This is usual dispersion properties
of any kind of acoustic-type of waves. It is also observed that as we increase κ (α), the ω vs. k curve
is shifted up (down) to ω− axis, and the saturation region is reached for higher values of κ and α.

3. The long wavelength QEA waves (satisfying k < kc) are modulationally unstable, and the correspond-
ing solution of the NLS equation gives rise to the bright solitons, where kc is the minimum value of
k above which the QEA waves are modulationally stable. On the otherhand, the short wavelength
QEA waves (satifying k > kc) becomes modulationally stable, the corresponding solution of the NLS
equation gives rise to the dark solitons. It is observed that kc is decreased as the spectral index κ is
increased, and that it is independent of α.
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4. It is seen that as κ (α) increases, the group velocity v0 increases for lower (higher) values of κ (α),
and becomes very sharp at the low value ranges of κ and α.

5. It is observed that the QEA waves are localized (as bright envelope solitons) in both ξ and τ axes,
and that as the value of κ or α is increased, the amplitude of the QEA envelope solitons increases,
but their width remains unchanged. This feature means that the nonlinear waves can concentrate the
energy of the plasma system in its small region [36].

We note that to avoid some additional mathematical complexities, and to identify some basic features
of electron-acoustic solitary structures directly, we have considered one dimensional (1D) planar geometry.
However, for 3D planar and nonplanar (spherical and cylindrical) geometries, which are appropriate
for more realistic space and laboratory plasma situations, one can obtain 3D electron-acoustic solitary
structures exhibiting similar features if the plasma medium is homogeneous and isotropic in all aspects.
It may be added here that to identify the effects of 3D planar and nonplanar (spherical and cylindrical)
geometries, inhomogeneity in plasma density and presence of uniform or non-uniform magnetic field on
the basic features of the electron-acoustic solitary structures are also problems of great importance, but
beyond the scope of our present work.

To conclude, we stress that our present investigation on the QEA waves and associated instability
and nonlinear structures in a DQP (containing cold quantum electron fluid [24,25] with Fermi energy
EF , inertialess, superthermal [8,9] electron component and uniformly distributed stationary ions [10]) is
expected to help us to understand the nonlinear structures in astrophysical plasmas, for example, white
dwarf, neutron stars, etc., where matters under extreme conditions are assumed to exist and also in
laboratory solid density plasmas produced by irradiating metals by intense laser light where degeneracy
as well as relativistic effects become important. We also suggest to perform a laboratory solid density
plasma experiment based on the parameters used in our numerical analysis, which may be able to identify
the basic features of linear and nonlinear QEA waves predicted in our present investigation.
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Appendix

The notations f0, f1, f2, g1, and g2 appearing in (19) and (20) are listed as follows:

f0 = [k(X2 − ωa1a2)− νΩ]X1 + [2νV0 − Y2]Y1,

f1 = v0a6 − a8,

f2 = v0a8 − (σ + β + 3k2µ)a6 + 3kµa1,

g1 = −k[a1(a17 + a24) + a2(a16 + a23)],
g2 = k[−a2(a17 + a24) + a1g21 + k2µa1g22],
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where

X1 = [−k2α+ (4k2 + δ)Ω]−1,

X2 = k(Xσa
2
1 − a2

2)/2,
Y1 = [(σ + β − v2

0)δ + α]−1,

Y2 = Xσa
2
1 + a2

2 + 2v0a1a2,

Xσ = (σ + 2β)/3 + k2µ,

Ω = ω2 − k2b1,

V0 = σ + β − v2
0 ,

g21 = (σ + 2(a16 + a23)/3,
g22 = 7a16 + a23,

b1 = σ + β + 4k2µ2,

a3 = v0a1 − a2,

a4 = v0a2 + α− a1(σ + β + 3k2µ2),
a6 = (ωa3 + ka4)/(ω2 − k2b0),
a8 = (ω6 − a3)/k,
a9 = −2a1a2,

a10 = 2βa2
1/3 + k2µa2

1,

a11 = −k2α/(ω2 − k2b1),
a12 = (ωa9 − ka10)/(ω2 − k2b1),
a13 = ωa11/k,

a14 = ω(a12 − a2
1)/k,

a15 = −(a12 + ν/(4k2 + δ + a11),
a16 = a11a15 + a12,

a17 = a13a15 + a14,

a18 = 2a1a2,

a19 = −a2
2 + (σ + 2β + k2µ)/3a2

1,

a20 = α/V0,

a21 = (a19 − v0a18)/V0,

a22 = (2ν − a21)/(δ + a20),
a23 = a20a22 + a21,

a24 = a24 = v0a23 − a18.
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