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Abstract The existence and the basic features of ion-acoustic (IA) envelope solitons in a self-
gravitating degenerate quantum plasma system (SG-DQPS), containing inertial non-relativistically
degenerate light and heavy ion species as well as inertialess non-relativistically degenerate positron
and electron species, have been theoretically investigated by deriving the nonlinear Schrödinger
(NLS) equation. The NLS equation, which governs the dynamics of the IA waves, has disclosed
the modulationally stable and unstable regions for the IA waves. The unstable region allows to
generate bright envelope solitons which are modulationaly stable. It is found that the stability and
the growth rate are dependent on the plasma parameters (like, mass and number density of the
plasma species). The implications of our results in astronomical compact object (viz. white dwarfs,
neutron stars, and black holes, etc.) are briefly discussed.
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1 Introduction

The field of self-gravitating degenerate quantum plasma (DQP) physics is one of the current interesting
research field among the plasma physics community because of the painstaking observational evidence
which confirms the existence of such extreme plasma conditions in astronomical compact objects (viz.
white dwarfs, neutron stars, and black holes, etc. [1–5]) and potential applications in modern technology
(viz. metallic and semiconductor nano-structures, quantum x-ray free-electron lasers, nano-plasmonic
devices [6, 7], metallic nano-particles, spintronics [8], thin metal films, nano-tubes, quantum dots, and
quantum well [9], etc.). The number density of the plasma species is extremely high in self-gravitating
DQP system (SG-DQPS) (order of 1030 cm−3 in white dwarfs [2, 10] and order of 1036 cm−3 or even
more in neutron stars [2, 10]) which leads to generate a strong gravitational field inside the plasma
medium. Basically, the SG-DQPS contains degenerate inertial light (viz. 1

1H [11, 12] or 4
2He [1, 3] or

12
6C [2,4]) and heavy (viz. 56

26Fe [13] or 85
37Rb [14] or 96

42Mo [14]) ion species and inertialess degenerate
electron and positron species. Heisenberg’s uncertainty principle established the relationship between the
uncertainty to determine the position and momentum of a particle simultaneously, and mathematically it
can be expressed as, ∆x∆p ≥ ~/2 (where ∆x is the uncertainty in position of the particle and ∆p is the
uncertainty in momentum of the same particle, and ~ is the reduced Planck constant). This indicates that
the position of the plasma species are very certain (because of highly dense and compressed plasma species)
inside the plasma system but the momenta of the plasma species are extremely uncertain. Therefore
these plasma species with uncertain in momentum give rise to a very high pressure known as "degenerate
pressure". The expression for the degenerate pressure Pj (degenerate plasma particle species j) as a
function of number density (Nj) is given by [1, 3, 15]

Pj = KjN
γ
j , γ = 5

3 , Kj '
3
5
π~2

mj
, (1)

where j = e (p) for the electron (positron) species, and j = l (h) for the light (heavy) ion species,
respectively. The γ is the relativistic factor (γ = 5/3 stands for non-relativistic case and γ = 4/3 stands
for ultra-relativistic case) and mj is the mass. It is clear from (1) that the degenerate pressure Pj
is independent on thermal temperature but depends on degenerate particle number density Nj and
mass mj . Finally, the strong gravitational field (degenerate pressure) of the SG-DQPS wants to squeeze
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(stretch) the plasma system but they are counter-balanced to each other. During the last few years,
a large number of authors have studied the propagation of nonlinear waves in DQP by considering
self-gravitational or without self-gravitational field. Asaduzzaman et al. [16] have investigated the linear
and nonlinear propagation of self-gravitational perturbation mode in a SG-DQPS and found that self-
gravitational perturbation mode becomes unstable when the wavelength of the perturbation mode is
minimum. Mamun [17] examined the self-gravito shock structures in a SG-DQPS. Chowdhury et al. [18]
have studied the modulational instability (MI) of nucleus-acoustic waves in a DQP system and found that
the bright and dark envelope solitons are modulationally stable. But to the best of our knowledge, no
attempt has been made to study MI of the ion-acoustic waves (IAWs) by deriving a nonlinear Schrödinger
(NLS) equation and the formation of the envelope solitons in any kind of SG-DQPS. Therefore, in
the present work, a SG-DQPS (containing inertialess degenerate electron and positron species, inertial
degenerate light as well as heavy ion species) has been considered to obtain the conditions of MI of the
IAWs and the formation of the envelope solitons, and also to identify their basic features.

The rest of the manuscript is organized as follows. The basic governing equations for the dynamics of
the SG-DQPS are descried in Section 2. The derivation of the NLS equation is provided in Section 3.
The stability of the IAWs and envelope solitons are examined in Section 4. A brief discussion is finally
presented in Section 5.

2 Governing Equations

We consider a SG-DQPS containing inertialess degenerate electrons (mass me; number density Ne),
positrons (mass mp; number density Np), inertial degenerate light ions (mass ml; number density Nl),
and heavy ions (mass mh; number density Nh). The detail information about the light and heavy nuclei
is provided in Table 1. The nonlinear dynamics of the SG-DQPS is described by

∂Pe
∂X

= −meNe
∂φ̃

∂X
, (2)

∂Pp
∂X

= mpNp
∂φ̃

∂X
, (3)

∂Nl
∂T

+ ∂

∂X
(NlUl) = 0, (4)

∂Ul
∂T

+ Ul
∂Ul
∂X

= − ∂φ̃
∂X
− 1
mlNl

∂Pl
∂X

, (5)

∂2φ̃

∂X2 = 4πG(mlNl +mhNh +meNe +mpNp), (6)

where Pe, Pp, and Pl are the degenerate pressure of the degenerate electrons, positrons, and light ions,
respectively; X (T ) is the space (time) variable; Ul is the light ion fluid speed; φ̃ is the self-gravitational
potential; G is the universal gravitational constant. We consider the SG-DQPS in which the charge
densities of positive and negative plasma particle species fluctuate in such a way that the wave electric
field always remains constant. Now, the charge neutrality condition for the electrostatic wave potential is

Ne = Np + ZlNl + ZhNh, (7)

where Zl and Zh are the charge state of light and heavy ions, respectively. Here, it may be noted that the
effect of the electrostatic wave potential has been neglected. Now, we consider normalized variables, namely,
x = X/Lq, t = Tωjl, nl = Nl/nl0, ul = Ul/Cq, Cq =

√
π~n1/3

e0 /ml, φ = φ̃/C2
q , ω−1

jl = (4πGmlnl0)−1/2

(where nl0 and ne0 are the equilibrium number densities of the light ion and electron species, respectively).
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After normalization, equations (2)−(6) can be written as

∂φ

∂x
= −3

2α
2 ∂n

2/3
e

∂x
, (8)

∂φ

∂x
= 3

2σ
2
1σ

2/3
2

∂n
2/3
p

∂x
, (9)

∂nl
∂t

+ ∂

∂x
(nlul) = 0, (10)

∂ul
∂t

+ ul
∂ul
∂x

= −∂φ
∂x
− β

∂n
2/3
l

∂x
, (11)

∂2φ

∂x2 = γe(ne − 1)− γl(nl − 1) + γp(np − 1), (12)

where α = ml/me, σ1 = ml/mp, σ2 = np0/ne0, µ = ne0/nl0, β = (3/2)µ−2/3, λ = np0/nl0, γ =
Zlmh/Zhml (which is greater than 1 for any set of heavy and light ion species), γe = µ(1/α+ γ/Zl) (here,
1/α� γ/Zl, where 1/α varies from ∼ 10−4 to ∼ 10−3, and γ/Zl varies from ∼ 0.1 to 2.0, and this means
that γe ' µγ/Zl), γl = γ − 1, γp = λ(1/σ1 − γ/Zl). For inertialess degenerate electron and positron, the
number densities can be expressed as

ne =
(

1− 2φ
3α2

) 3
2

, (13)

np =
(

1 + 2φ

3σ2
1σ

2
3
2

) 3
2

. (14)

Table 1. The values of γ when 1
1H [11,12], 4

2He [1], and 12
6 C [2,4] are considered as the light ion species, and

56
26Fe [13], 85

37Rb [14], and 96
42Mo [14] are considered as the heavy ion species.

Light ion species Heavy ion
species

γ

56
26Fe [13] 2.16

1
1H [11,12] 85

37Rb [14] 2.30

96
42Mo [14] 2.28

56
26Fe [13] 1.08

4
2He [1] 85

37Rb [14] 1.15

96
42Mo [14] 1.14

56
26Fe [13] 1.08

12
6 C [2,4] 85

37Rb [14] 1.15

96
42Mo [14] 1.14

Now, we substitute equations (13) and (14) into (12) and extend the resulting equation up to third order
in φ, we get

∂2φ

∂x2 − γl + γlnl = γ1φ+ γ2φ
2 + γ3φ

3 + . . . , (15)
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where

γ1 =
(

γp

σ2
1σ

2/3
2
− γe
α2

)
, γ2 =

(
γe

6α4 + γp

6σ4
1σ

4/3
2

)
, γ3 =

(
γe

54α6 −
γp

54σ6
1σ

2
2

)
.

We note that the terms on the right hand side of (15) are the contribution of electron and positron species.
Thus, equations (10), (11), and (15) describe the dynamics of the gravitational envelop solitons in the
SG-DQPS under consideration.

3 Derivation of the NLS Equation

To investigate the MI of the IA waves in SG-DQPS, we will derive the NLS equation by employing the
reductive perturbation method [19,20]. So, we first introduce the stretched co-ordinates for independent
variables x and t in terms of ξ and τ as follows:

ξ = ε(x− vgt),
τ = ε2t,

}
(16)

where vg is the envelope group velocity and ε is a small dimensionless expansion parameter. Then we can
expand all dependent physical variables nl, ul, and φ in power series of ε as

nl = 1 +
∞∑
m=1

ε(m)
∞∑

l′=−∞
n

(m)
ll′ (ξ, τ) exp[il′(kx− wt)], (17)

ul =
∞∑
m=1

ε(m)
∞∑

l′=−∞
u

(m)
ll′ (ξ, τ) exp[il′(kx− wt)], (18)

φ =
∞∑
m=1

ε(m)
∞∑

l′=−∞
φ

(m)
l′ (ξ, τ) exp[il′(kx− wt)], (19)

where k (ω) is the real variable representing the fundamental carrier wave number (frequency). The
derivative operators in (10), (11), and (15) are regarded as

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2

∂

∂τ
, (20)

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
. (21)

Now, by substituting (17)−(21) into (10), (11), and(15) and collecting the different powers of ε. Now, the
first order (m = 1) reduced equations with l′ = 1 can be expressed as

n
(1)
l1 = k2

S
φ

(1)
1 , (22)

u
(1)
l1 = kω

S
φ

(1)
1 , (23)

where S = ω2 − β1k
2 and β1 = 2β/3. The compatibility condition of the system leads to the linear

dispersion relation as

ω2 = γlk
2

γ1 + k2 + β1k
2. (24)

The dispersion characteristics of the wave are depicted in Fig. 1 [obtained from equation (24)], which
indicates that (a) the angular wave frequency (ω) of the IAWs exponentially decreases with the increase
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Figure 1. The variation of ω with k for different values of µ; along with α = 3.67× 103, γ = 2.16, γ/Zl = 0.5,
σ1 = 3.68× 103, σ2 = 0.3, and λ = 0.2.
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Figure 2. The variation of P/Q with k for different values of µ; along with α = 3.67× 103, γ = 2.16, γ/Zl = 0.5,
σ1 = 3.68× 103, σ2 = 0.3, and λ = 0.2.

of k; (b) the value of ω increases with the increase of ne0 for the fixed value of nl0 (via µ = ne0/nl0). The
second order (m = 2) reduced equations with l′ = 1 are given by,

n
(2)
l1 = k2

S
φ

(2)
1 + 2ikω(kvg − ω)

S2
∂φ

(1)
1
∂ξ

, (25)

u
(2)
l1 = kω

S
φ

(2)
1 + i(ω2 + β1k

2)(kvg − ω)
S2

∂φ
(1)
1
∂ξ

, (26)

thus, the expression for vg is obtained as

vg = ∂ω

∂k
= γlω

2 − (ω2 − β1k
2)2

kωγl
. (27)

The amplitude of the second-order harmonics is found to be proportional to |φ(1)
1 |2

n
(2)
l2 = C1|φ(1)

1 |2,
u

(2)
l2 = C2|φ(1)

1 |2,
φ

(2)
2 = C3|φ(1)

1 |2,
n

(2)
l0 = C4|φ(1)

1 |2,
u

(2)
l0 = C5|φ(1)

1 |2,
φ

(2)
0 = C6|φ(1)

1 |2,


(28)
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where the coefficients are

C1 = 2C3k
2S2 + 3ω2k4

2S3 ,

C2 = C1ωS
2 − ωk4

kS2 ,

C3 = 3γlω2k4 − 2γ2S
3

2S3(γ1 + 4k2)− 2γlk2S2 ,

C4 = C6S
2 + k2ω2 + 2ωvgk3 − β2k

4

S2(v2
g − β1) ,

C5 = C4vgS
2 − 2ωk3

S2 , β2 = β/9,

C6 =
(k2ω2 + 2ωvgk3 − β2k

4)γl − 2γ2S
2(v2

g − β1)
γ1S2(v2

g − β1)− γlS2 .

Finally, by substituting all the (22)−(28) into the third order part (m = 3) and l′ = 1 and simplifying
them, we can obtain the following NLS equation:

i
∂Φ

∂τ
+ P

∂2Φ

∂ξ2 +Q|Φ|2Φ = 0, (29)

where Φ = φ
(1)
1 for simplicity. The coefficient of dispersion and nonlinear terms P and Q are given by

P = 4β1k
2ω3 + 2β1vgω

2k3 + vgβ
2
1k

5 − 4ωβ2
1k

4 − 3kvgω4

2γlk2ω2 , (30)

Q = S2[3γ3 + 2γ2(C3 + C6)− F1]
2γlωk2 , (31)

where F1 = (k2/S2)[2ωkγl(C2 + C5) + γlω
2(C1 + C4) + (γlβ3k

6/S2)], and β3 = 4β/81.

4 Stability Analysis and Envelope Solitons

Let us now analyse the MI of IAWs by considering the linear solution of the NLS equation (29) in the form
Φ = Φ̂ eiQ|Φ̂|

2τ + c. c (c. c denotes the complex conjugate), where Φ̂ = Φ̂0 + εΦ̂1 and Φ̂1 = Φ̂1,0e
i(k̃ξ−ω̃τ)+

c. c. Now, by substituting these values into (29), one readily obtains the following nonlinear dispersion
relation [18,21–25]

ω̃2 = P 2k̃2

(
k̃2 − 2|Φ̂0|2

P/Q

)
. (32)

Here, the perturbed wave number k̃ and the perturbed frequency ω̃ are different from the carrier wave
number k and frequency ω. It is observed from (32) that the IAWs will be modulationally stable (unstable)
in SG-DQPS for that range of values of k̃ in which P/Q is negative (positive), i.e., P/Q < 0 (P/Q > 0).
When P/Q→ ±∞, the corresponding value of k (= kc) is known as the critical or threshold wave number
(kc) for the onset of MI. The variation of P/Q with k for µ is shown in Fig. 2 and which clearly indicates
that (a) the IAWs are modulatonally stable (unstable) in SG-DQPS for small (long) wavelength; (b) the
kc increases with the increase of ne0 for constant value of nl0 (via µ = ne0/nl0). In the modulationally
unstable (P/Q > 0) region and under this condition k̃ < k̃c =

√
2|Φ̂0|2(Q/P ), the MI growth rate can be

written [from (32)] as

Γ = |P |k̃2

√
k̃2
c

k̃2
− 1. (33)
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Figure 3. The variation of Γ with k for different values of σ2; along with µ = 1.5, α = 3.67 × 103, γ = 2.16,
γ/Zl = 0.5, σ1 = 3.68× 103, λ = 0.2, k = 0.0004, and φ = 0.8.
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Figure 4. The variation of Γ with k for different values of γ; along with µ = 1.5, α = 3.67 × 103, γ/Zl = 0.5,
σ1 = 3.68× 103, σ2 = 0.3, λ = 0.2, k = 0.0004, and φ = 0.8.

The effect of σ2 and γ on the growth rate are presented in Figs. 3 and 4, where Γ is plotted against
k̃ and it is observed that (a) the growth rate (Γ ) increases with the increase in the value of positron
number density np0, but decreases with increase of the electron number density ne0 (via σ2 = np0/ne0);
(b) the maximum value of Γ increases (decreases) with the decrease of mh (ml) for the fixed value of Zl
and Zh (via γ = Zlmh/Zhml); (c) on the other hand, the maximum value of Γ increases (decreases) with
the decrease of Zl (Zh) for the fixed value of mh and ml (via γ = Zlmh/Zhml). So, the charge state and
mass of the light and heavy ion plays an opposite role to manifest the Γ in SG-DQPS. The physics of
this result is that the nonlinearity of the SG-DQPS increases (decreases) with the increase of the value of
ml or Zh (mh or Zl) which enhance (suppress) the maximum value of the Γ .

The self-gravitating bright envelop solitons are generated in the modulationally unstable region (when
P/Q > 0) and the solitonic solution of (29) for the self-gravitating bright envelope solitons can be written
as [18,21–24]

Φ(ξ, τ) =
[
ψ0 sech2

(
ξ − Uτ
W

)]1/2
× exp

[
i

2P

{
Uξ +

(
Ω0 −

U2

2

)
τ

}]
, (34)

where U is the propagation speed of the localized pulse, W is the pulse width which can be written as
W =

√
2|P/Q|/ψ0 (ψ0 is the constant amplitude), and Ω0 is the oscillating frequency for U = 0. The

self-gravitating bright envelop solitons which are obtained from the numerical analysis of (34), are depicted
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Figure 5. The variation of Re(Φ) with ξ for bright envelope solitons; along with µ = 1.5, α = 3.67× 103, γ = 2.16,
γ/Zl = 0.5, σ1 = 3.68× 103, σ2 = 0.3, λ = 0.2, U = 0.001, k = 0.0004, ψ0 = 0.005, τ = 0, Ω0 = 0.04.
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Figure 6. The variation of the |Φ| with ξ and τ for bright envelope solitons; along with µ = 1.5, α = 3.67× 103,
γ = 2.16, γ/Zl = 0.5, σ1 = 3.68× 103, σ2 = 0.3, λ = 0.2, U = 0.001, k = 0.0004, ψ0 = 0.005, τ = 0, Ω0 = 0.04.

in Figs. 5 and 6. The bright envelop solitons remain same as time (τ) passes, i.e., the self-gravitating
bright envelop solitons are modulationally stable (please see Fig. 6).

5 Discussion

In our above analysis, we have considered an unmagnetized realistic laboratory or astrophysical SG-
DQPS consisting of inertialess non-relativistically degenerate electron and positron species, inertial
non-relativistically degenerate light ion species as well as heavy ion species. The NLS equation has been
derived by employing the well-known reductive perturbation method, which governs the evolution of
nonlinear IAWs. The notable informations that have been found from our theoretical investigation, can
be pin-pointed as follows:

1. The angular wave frequency (ω) of the IAWs exponentially decreases with the increase of k. On
the other hand, the value of ω increases with the increase of ne0 for the fixed value of nl0 (via
µ = ne0/nl0).

2. The IAWs will be modulationally stable (unstable) for that range of values of k in which P/Q is
negative (positive), i.e., P/Q < 0 (P/Q > 0).

3. The growth rate (Γ ) increases with the increase in the value of positron number density np0, but
decreases with increase of the electron number density ne0 (via σ2 = np0/ne0). On the other hand,
the maximum value of Γ increases (decreases) with the decrease of mh (ml) for the fixed value of Zl
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and Zh (via γ = Zlmh/Zhml). Furthermore, the maximum value of Γ increases (decreases) with the
decrease of Zl (Zh) for the fixed value of mh and ml (via γ = Zlmh/Zhml).

4. The self-gravitating bright envelop solitons remain same (modulationally stable) as time passes.

The findings of this theoretical investigation may be useful for understanding the nonlinear structure
(bright envelope solitons) of a SG-DQPS in space (viz. neutron stars and white dwarf [1–5]).
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