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Abstract In this paper, we derive and simplify some important equations and relations for a
relativistic evolving star with spherical symmetry, and then give some simple analysis for their
properties and implications. In the light-cone coordinate system, these equations and relations
have a normal and neat form which is much more accessible than the usual Einstein field equation.
The dynamics for the evolving star is reduced to a standard first order hyperbolic partial differential
equation system of (ρ, v), which can be analyzed and solved by characteristic method. So they may
be helpful to understand the nature of an evolving star and the collapsing process of gravitation.
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1 Introduction

In general relativity, we have some typical exact solutions such as the Schwarzschild, Curzon and Kerr
metrics and some of their extensions to the electrovacuum solutions such as the Reissner-Nordström and
Kerr-Newman metrics [1,2,3,4,5,6]. These solutions shed some lights on the nature of space-time and
stars.

For a static and spherically symmetrical space-time with perfect fluid source, the line element is given
by

ds2 = B(r)dt 2 − A(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

we have a number of exact solutions[7,8,9] and generating method[10]. In these solutions mass density ρ
and pressure P are usually expressed as the functions of (A, B) and their derivatives. In such expressions
the properties of the equation of state(EOS) is quite ambiguous, and then most of the solutions are
unrealistic in physics.

In fact, the static asymptotically flat space-time with spherical symmetry can be solved by the
following procedure. The dynamics for the space-time with perfect fluid can be reduced to the following
initial problem of an ordinary differential equation system[11],

M ′(r) = 4πGρr2, M(0) = 0, (2)

ρ′(r) = − (ρ + P )(4πGPr3 + M)
C2

s (r − 2M)r
, ρ(0) = ρ0, (3)

in which P = P (ρ) is the EOS of the fluid, M(r) is the total mass within the ball of radial coordinate r,
Cs =

√
P ′(ρ) is the velocity of sound in the fluid. For any given ρ0 > 0 we get a unique solution. The

metric components are given by

A =
(

1 − 2M

r

)−1

, B = exp

(
−
∫ R

r

2(4πGPr3 + M)
r(r − 2M)

dr

)
, (4)

where R < ∞ is the radius of the star. ρ(r) = P (r) = 0 in the region r ≥ R.
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For any suitable EOS P = P (ρ), the solution of (2) and (3) can be easily solved numerically. By
practical calculation, we find that if the EOS satisfying the following increasing and causal conditions

0 < Cs =

√
∂P

∂ρ
≤

√
3

3
, P →

{
P0ργ , (γ > 1, ρ → 0),
1
3 ρ, (ρ → ∞), (5)

then the EOS is compatible with space-time and all solutions of (2) and (3) are singularity-free. That
is, we always have 0 ≤ ρ ≤ ρ0 and Rs = 2M(R) < R. The condition γ > 1 is necessary, which is caused
by inertia of particles and leads to the finite radius of the star R < ∞ due to Cs → 0 in (3). The above
conclusion can be concretely checked by the following model EOS.

P = C2
0 ρ1+n

k + ρn
, (0 < C0 ≤

√
3

3
, k > 0, n > 0). (6)

The star becomes larger as k → 0 or n → 0.
However, for an evolutional star, a complete dynamical analysis includes the hydrodynamics of matter,

which is too complicated to be solved. In this paper, we consider the simplest case, that is, a star evolves
with spherical symmetry. We derive and simplify the dynamical equations in detail, and some simple
analysis is given. The results may be helpful to understand the nature of a star and to do further
researches.

2 Dynamics for an Evolving Star

The line element in the space-time generated by an evolving star with spherical symmetry is generally
given by[11]

ds2 = u2dt̃ 2 − (vdt̃ − wdr)2 − r2(dθ2 + sin2 θdφ2). (7)

Here we take the light velocity c = 1 as unit of speed. For a normal star, (u, v, w) are continuous functions
of (t, r) with suitable smoothness. The null geodesic along the radius is described by

(u + v)dt̃ − wdr = 0.

Assume the solution is f(t̃, r) = C, where C is a constant. Making light-cone coordinate transformation
t = T (f(t̃, r)), where T (f) is any smooth function satisfying ∂f T∂

t̃
f > 0, then we get the line element

equivalent to (7) as follows[6,12,13,14,15],

ds2 = abdt2 + 2
√

bdtdr − r2(dθ2 + sin2 θdφ2), (8)

where (a, b) are continuous functions of (t, r) with suitable smoothness until the star becomes singular.
(8) is similar to the ‘Eddington - Finkelstein coordinates’. In this coordinate system, the field equations
have very simple form, and some of them are integrable. However, the time coordinate t is different from
the usual definition, which should be kept in mind. The usual definition is given by δτ ,

δτ =
(√

abdt + 1√
a

dr

)
c−2,

because in this time we have standard form

ds2 = c2δτ2 − a−1dr2 − r2(dθ2 + sin2 θdφ2).

For the external Schwarzschild solution, in coordinate system (8), we have solution[6]

b = 1, a = 1 − Rs

r
, (for r ≥ R > Rs), (9)
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where R = R(t) and Rs are respectively the stellar radius and Schwarzschild radius

Rs ≡ 8πG

∫ R(t)

0
ρgravr2dr, (10)

in which ρgrav is the total gravitational mass-energy density including influences of pressure and momen-
tum. The definition of ρgrav is given below, and we find Rs is a constant.

Denote the 4-vector speed of the fluid by

Uµ = {U, V, 0, 0}, Uµ = {abU +
√

bV,
√

bU, 0, 0},

which satisfies the line element equation

1 = gµνUµUν =
(

abU + 2
√

bV
)

U.

For the perfect fluid model, the nonzero components of the energy-momentum tensor Tµν = (ρ +
P )UµUν − Pgµν are given by

Ttt = b(ρ + P )
(

a
√

bU + V
)2

− abP,

Ttr = b(ρ + P )
(

a
√

bU + V
)

U −
√

bP = Trt,

Trr = b(ρ + P ) U2, Tθθ = Pr2, Tφφ = Pr2 sin2 θ,

where P = P (ρ) is a given EOS which should satisfy increasing and causal conditions (5).
The nonzero components of Einstein tensor are given by

Gtt = −1
r

(√
b∂ta − ab∂ra

)
− 1

r2 ab(1 − a),

Gtr = 1
r

√
b∂ra − 1

r2

√
b(1 − a) = Grt, Grr = −∂rb

ra
,

Gθθ =
(

a

r

(
∂rb

2b
+ ∂ra

a

)
− 1 − a

r2 + R
2

)
r2, Gφφ = Gθθ sin2 θ,

where the scalar curvature R depends on the second order derivatives of the metric functions (b, a). But
it is not used in the following discussion, because the related equations are not independent, which can
be derived from other equations.

By detailed calculations, we find only the following 3 equations are independent ones in the Einstein
equation Gµν = −8πGTµν ,

∂rb = 8πGr(ρ + P )b2U2, (11)
∂ta = 8πG(ρ + P )rV

√
b(a + V 2), (12)

∂ra = −4πGr
(
(ρ − P ) + (ρ + P )abU2)+ 1 − a

r
. (13)

By (9), (10) and (12), we learn ∂ta = 0 if r > R, so Rs is conserved for an evolving star.
Among the energy-momentum conservation law T µν

;ν = 0, only the continuity equation UµT µν
;ν = 0 is

independent, so we get

Uµ∂µρ + (ρ + P )Uµ
;µ = 0. (14)

Equations (11)-(14) combined with EOS P = P (ρ) form a closed system. The boundary conditions for
asymptotic flat space-time are given by

at r = 0 : a = 1, ∂ra = 0, V = 0; (15)

at r = R : b = 1, a = 1 − Rs

R
, ρ = 0. (16)

Together with initial values {ρ(0, r), V (0, r)}, (11)-(16) has a unique solution.
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3 Simplification of the Equations

The equations derived above have a weakness, that is, the geometrical variables (a, b) and mechanical
variables (ρ, V ) couple each other in a complicated manner, which increases the difficulties for discussion.
Besides, the physical meaning of (U, V ) is unclear, which is quite different from the usual definition dr

dt .
To simplify the relations, we introduce the following transformation

U =

√
1 − v

ab(1 + v)
, V =

√
a v√

1 − v2
, (17)

where the speed |v| < 1 is approximately the usual definition. Define an auxiliary energy function by

F ≡ (ρ + P )abU2 = (ρ + P )1 − v

1 + v
. (18)

For a static star, we have F = ρ+P . Substituting (17) and (18) into (11)-(13), we get simplified relations

∂ra = −8πGr
ρ − Pv

1 + v
+ 1 − a

r
,

∂rb = 8πGr(ρ + P ) b(1 − v)
a(1 + v)

,

∂ta = 8πGr(ρ + P ) a
√

b v

1 − v2 ,

Obviously, the geometrical variables (a, b) are separated from mechanical ones (ρ, P, v). The solutions
can be formally expressed by

a = 1 − 8πG

r

∫ r

0

ρ − Pv

1 + v
r2dr, (19)

b = exp

(
−8πG

∫ R

r

(ρ + P ) (1 − v)r
(1 + v)a

dr

)
, (20)

and

a = a(0, r) exp

(
8πG

∫ t

0
(ρ + P )

√
b vr

1 − v2 dt

)
, (21)

By (13), (18) and (19), for an evolving star, we have

ρgrav = 1
2

(ρ − P + F ) = ρ − Pv

1 + v
. (22)

For any ρ(., r) ∈ L∞([0, ∞)), we have a(·, r) ∈ C0([0, ∞)), and it has a positive minimum amin > 0.
b(·, r) ∈ C1([0, R]) is a monotonic increasing function of r. For a normal star, the variables have the
following range of value,

0 < b ≤ 1, 0 < a ≤ 1, 0 ≤ ρ < ∞. (23)

Simplifying (14) and the consistent equation of (12) and (13) ∂tra = ∂rta, we get the dynamical
equation for (ρ, v), which is a first order hyperbolic differential equation system,

(1 − C2
s ) ∂tρ

a
√

b
+ (v + C2

s ) ∂rρ

1 − v
+ (ρ + P ) ∂rv

(1 − v)2

= (ρ + P )
a(1 − v)

(
4πGr(ρv − P ) − 1

2r
[1 − a + (1 + 3a)v]

)
, (24)

(1 − C2
s ) ∂tv

a
√

b
+ (1 + v)2C2

s

∂rρ

ρ + P
+ (v + C2

s ) ∂rv

1 − v

= 1 + v

a

(
4πGr(C2

s ρv − P ) − 1
2r

[1 − a + (1 + 3a)C2
s v]
)

. (25)
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The characteristic speeds are given by

V1 = a
√

b(v + Cs)
(1 − Cs)(1 − v)

, V2 = a
√

b(v − Cs)
(1 + Cs)(1 − v)

. (26)

The disturbance of the solution (ρ, v) propagates at such speed dr
dt = Vk.

Substituting (19) and (20) into (24) and (25), we get closed equations for (ρ, v), which include all
information for an evolving star. Combining (24) and (25) with initial and boundary conditions, we have
a unique solution. The numerical solution can be easily solved by method of characteristics.

4 Analysis for the Solutions

Since the dynamical equations (24) and (25) are quite complicated, and the rigorous solution is absent.
So we can only qualitatively analyze some asymptotic properties of the solutions, and shed some lights
on the behavior of an evolving star.

Obviously, when ρ < ∞, the star is normal and the space-time should be singularity-free. ρ → ∞ is
a necessary condition for the space-time becoming singular, and a → 0 or b → 0 is the signal that the
space-time becomes singular.

In (21), a(0, r) is determined by the initial distribution ρ(0, r)grav via (19), so we have a > 0. If
ρ → ∞, we have P → C2

0 ρ. So according to (20), b(t, 0) → +0 only if ρ(t, r) ≥ ρ0(t)r−2, (r → 0). This
can be checked as follows. For the critical initial distribution

ρ → ρ0

r2 , P → C2
0 ρ → ρ0C2

0
r2 , (r → 0). (27)

When r → +0, we have (a → 1, v → 0). For any given r0 satisfying 0 < r0 − r ≪ R, by (20), we have
estimation

b(t, r) = exp

(
−8πG(

∫ R

r0

+
∫ r0

r

)(ρ + P ) (1 − v)r
(1 + v)a

dr

)

→ A1(t, r0) exp
(

−8πG
(
1 + C2

0
) ∫ r0

r

ρ0

r
dr

)
= A2(t, r0)r8πGρ0(1+C2

0) → 0, (r → 0), (28)

in which all 0 < Ak < ∞ are independent of r. (28) means the space-time itself becomes singular.
However, for ρ(t, r) → ρ0(t)r−n, (0 < n < 2), we still have b > 0, and the space-time is still measurable,
although the curvature becomes singular.

In the case of a star with extreme high temperature and pressure, the EOS of the fluid becomes
simpler. We have the following approximations,

P =̇C2
0 ρ, C0 ≤

√
3

3
. (29)

Noticing v(t, 0) = 0, by (19), (20) and (21), near the center r = 0, we have

|v| ≪ 1, b=̇b0(t), a=̇1. (30)

Substituting (29) and (30) into (24) and (25), we have the simplified dynamical equations which hold
near the center of a star,

∂rw = ∂ηw + w
(
1 + C−2

0
)

∂ηv + 4πG
(
1 + C2

0
)

r, (31)

∂rv = ∂ηv + w−1 (1 + C2
0
)−1

∂ηw − 2v

r
, (32)

where dη ≡
√

b0dt and w ≡ ρ−1. Since we have not made approximation for ρ, so (31) and (32) are valid
for all range value of ρ.
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(31) and (32) has a static solution

v = 0, ρ = 1
w

= 1
C + 2πG (1 + C2

0 ) r2 , (33)

where C ≥ 0 is a constant. Even for (31) and (32) with constant characteristic speeds, we can hardly
find a rigorous evolving solution. However, (31) is integrable under some ansatz. If we set v = f(t + r)r,
in this case we have

1
ρ

= w =
(

1
ρ0(η + r)

+ 4πGC2
0

f ′(η + r)

)
exp

(
−1 + C2

0
2C2

0
η(η + 2r)f ′(η + r)

)
− 4πGC2

0
f ′(η + r)

. (34)

Of course, under such ansatz, (32) is not strictly satisfied in general. For reasonable function f(t + r),
(34) can display local evolving trend of mass density ρ as (r → 0, η → 0).

5 Discussion and Conclusion

We derived the dynamics for an evolving star in the light-cone coordinate system. Under some transfor-
mation of variables, the equations and relations of dynamics have simple and neat form, which is much
more accessible than the usual field equations. The final dynamical equation is reduced to a standard
first order hyperbolic system (24) and (25), which can be discussed by method of characteristics.

The singularity analysis for an evolving star is equivalent to discuss the singularity of equation (31)
and (32) near the center r → +0. This is almost a linear first order hyperbolic system with constant
characteristic speed. The analysis shows that, it is the EOS of matter and the initial distribution of mass
density and speed rather than the total mass-energy to decide the fate of an evolving star.
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