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Abstract We study the scalar field equation and Maxwell equations in the nonstandard back-
ground previously investigated. We separate the angular dependence by expanding in spherical
harmonics and solve the radial wave equations exactly by separating the variables t and r. We
obtain electric and magnetic multipole radiation as in vacuum without gravitation, but the fre-
quencies get redshifted. The exact results are essential for understanding the Planckian character
of CMB properly.
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1 Introduction

In standard cosmology radiation is important at early times only. If dark matter does not exist the
situation is quite different. The reason is that the energy density of radiation grows rapidly with the
forth power of the temperature ∝ T 4, while for non-relativistic matter it varies only linearly ∝ T . To get
some numbers we take the present baryon density of 0.04 times the critical density. This gives an energy
density

nBmB = 3.31 × 10−10 erg
cm3 . (1.1)

The same energy density produced by radiation requires a temperature

TR =
(nBmB

aB

)1/4
(1.2)

where aB is the Stefan-Boltzmann radiation constant. For the value (1.1) we obtain TR = 14.5oK. This
surprisingly small temperature shows that in cosmology without dark matter electromagnetic radiation
is the most important player beside gravity.

If the energy density of matter and radiation is small compared to the critical density then a good
starting point for cosmology is a vacuum solution of Einstein’s equation. Assuming spherical symmetry
this solution is the inner Schwarzschild solution in Lemaître coordinates as a consequence of Birkhoff’s
theorem. Matter is then treated as anisotropic perturbation away from this nonstandard background.
This was investigated in two papers [1], [2] with the following results. The anisotropic perturbations
with spherical harmonic order l > 1 come from pressure-less dust, but the isotropic perturbations l = 0
could not be calculated. Of course one immediately presumes that the latter is due to CMB. To test
this conjecture we must study Maxwell equations in the nonstandard background which is the purpose
of this article.

The paper is organized as follows. As warming up we first consider a scalar field in the nonstandard
background. Here the angular variables can be trivially separated by means of scalar spherical harmonics.
In sect.3 we turn to Maxwell equations which are transformed in a similar way as in Minkowski space.
Then in sect.4 and 5 the angular dependence is separated by using vector spherical harmonics and the
radial wave equations are solved. In the last section the physics of the multipole radiation is discussed.
We conclude that Planck’s radiation law for CMB is a consequence of the constancy of the density of
photon states under the cosmic expansion. Together with the redshift of frequencies or temperature, the
phase velocity of light is changed by the factor (1 + z).
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2 Real Scalar Field in Nonstandard Background

We choose spherical comoving coordinates t, r, ϑ, ϕ. Then the line element of the nonstandard background
reads [1]

ds2 = dt2 − X(t)2dr2 − R(t)2(dϑ2 + sin2 ϑ dϕ2). (2.1)

with
Ṙ(t) = X(t). (2.2)

The corresponding metric tensor is equal to

gµν = diag(1, −X2(t), −R2(t), −R2(t) sin2 ϑ). (2.3)

We first consider a real massive scalar field in this background which satisfies the Laplace-Beltrami
equation

⊓⊔gφ = 1
√

g

∂

∂xα

(√
ggαβ ∂φ

∂xβ

)
= −m2φ. (2.4)

This can be considered as a model of the matter in the otherwise empty universe. Since
√

g = XR2 sin ϑ (2.5)

the field equation becomes

1
XR2 sin ϑ

[
∂0(XR2 sin ϑ∂0φ) − ∂1

(R2 sin ϑ

X
∂1φ

)
−

−∂2(X sin ϑ∂2φ) − ∂3

( X

sin ϑ
∂3φ

)]
=

= 1
XR2 ∂t(XR2∂tφ) − 1

X2 ∂2
r φ−

− 1
R2 sin ϑ

∂ϑ(sin ϑ∂ϑφ) − 1
R2 sin2 ϑ

∂2
ϕφ = −m2φ. (2.6)

The terms with angular derivatives in (2.6) are equal to

− 1
R2

[
∂2

ϑφ + cot ϑ∂ϑφ + 1
sin2 ϑ

∂2
ϕφ

]
= L⃗2φ

R2

where L⃗2 is the square of the angular momentum operator. Consequently the angular variables can be
separated by means of spherical harmonics Y m

l (ϑ, ϕ) which satisfy[
∂2

ϑ + cot ϑ∂ϑ + 1
sin2 ϑ

∂2
ϕ

]
Y m

l = −l(l + 1)Y m
l (ϑ, ϕ). (2.7)

Then writing the scalar field in the form

φ = f(t, r)Y m
l (ϑ, ϕ) (2.8)

there remains the radial equation

1
XR2 ∂t(XR2∂tf) − 1

X2 ∂2
r f + l(l + 1)

R2 f = −m2φ (2.9)

to be solved. Since the radial variable r appears only in the derivative it can also be separated by means
of the product form

f(t, r) = f0(t)f1(r)

which yields
X

R2f0
∂t(XR2∂tf0) + l(l + 1)X2

R2 + m2X2 = ∂2
r f1

f1
= λ. (2.10)
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Here the left side depends only on t and the right side only on r, so both sides are constant = λ. We first
assume a positive constant λ = µ2. Then we have

f1(r) = e−µr (2.11)

with positive µ for a bounded solution. For a negative λ = −k2 we get oscillating solutions

f1(r) = sin kr or cos kr. (2.12)

The remaining nontrivial equation for f0(t) is

∂t(XR2∂tf0) + l(l + 1)Xf0 + m2 R2

X
f0 = λ

R2

X
f0. (2.13)

The left-hand side is a self-adjoint second order differential operator [8]. With suitable boundary con-
ditions, equation (2.13) can be considered as a self-adjoint eigenvalue problem with eigenvalue λ. The
spectrum is real and consists of a negative continuous spectrum λ = −k2 and possible discrete positive
eigenvalues λ = µ2. It follows from the completeness and expansion theorems [8] that any L2-function
F (t) can be represented as a wave-packet of eigen-solutions. To see this explicitly let us consider the
functions X(t) and R(t) in (2.13) in more detail.

The t-dependence of X(t) and R(t) is most conveniently given in parametric form [1]

t = TL(w − sin w cos w) (2.14)

X(t) = | cot w| = Ṙ (2.15)

R(t) = TL sin2 w

where π/2 < w < π and TL is of the order of the Hubble time. We are particularly interested in the
behavior of the solution near the Big Bang w = π/2. Therefore we set

w = π

2
+ τ

so that
X(t) = | tan τ | = τ + O(τ3), R(t) = TL(1 + O(τ2)) (2.16)

∂t = 1
2TL

∂τ (2.17)

and we study the behavior for τ → 0.
For small τ and positive λ = µ2 equation (2.13) is of the form

τ2∂2
τ f0 + τ∂τ f0 + 4[l(l + 1) + T 2

Lm2]τ2f0 = 4T 2
Lµ2f0. (2.18)

The solution is given by Bessel functions. For later use we note the following differential equation ([4],
equ.9.1.53)

τ2ÿ + (1 − 2p)τ ẏ + (λ2q2τ2q + p2 − ν2q2)y = 0 (2.19)

with the solutions
y = τpZν(λτ q) (2.20)

where Zν are Bessel functions. It follows that the solution of (2.18) is of the form

f0 = Zν(2
√

l(l + 1) + m2T 2
Lτ) (2.21)

with
ν = 2TLµ. (2.22)

Now we consider the second possibility of a negative constant λ = −k2 in (2.10) which corresponds
to the continuous spectrum. Then we get the oscillating solutions (2.12) which describe propagating
wave modes. The corresponding time depending equation (2.18) leads to Bessel functions with purely
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imaginary indices. This case has nicely been treated by Matyshev and Fohtung [9]. The real solution can
be written in the form

f0(τ) = A(τ) cos(2TLk log τ) + B(τ) sin(2TLk log τ) (2.23)

where
A(τ) = a0 + a2τ2 + . . . (2.24)

B(τ) = b0 + b2τ2 + . . . (2.25)

are converging power series. The most important property of of the solution (2.23) is the possibility to
get any singular behavior ∝ t−n by forming wave packets. To see this let us consider the integral

∞∫
0

dk h(k) sin(k2TL log τ) = 1
τn

. (2.26)

With the new variable ξ = 2TL log τ we have
∞∫

0

h(k) sin kξ dk = exp −
( nξ

2TL

)
. (2.27)

By inverting the Fourier integral we find

h(k) = 2
π

∞∫
0

sin kξe−nξ/2TLdξ = 2
π

k

k2 + (n/2TL)2 . (2.28)

To understand which solution is the physical one we consider the energy-momentum tensor of the
massless scalar field

Tαβ = ∂αφ∂βφ − 1
2

gαβ(∂νφ∂νφ − m2φ2). (2.29)

We know from the first order perturbation theory of the nonstandard background [1] that the energy
density T00 must diverge as τ−1 for τ → 0. This implies that

φ ∝ τ1/2. (2.30)

Now, in case of the discrete spectrum, ν in (2.22) must be equal to 1/2 because the Bessel function Jν(τ)
goes as τν for τ → 0. Then we conclude from (2.22)

µ = 1
4TL

. (2.31)

That means the radial variation (2.11) of the scalar field is of the scale of the present universe at early
times. This is in sharp contrast to standard cosmology where the early universe is small. It has the
consequence that the pressure T11 is completely negligible in agreement with first order perturbation
theory. Such a solution could describe some matter distribution in the universe.

3 Maxwell Equations in Nonstandard Background

Let F µν be the antisymmetric electromagnetic field tensor then the Maxwell equations in the presence
of gravity are

∇µF µν = 0 (3.1)

∇αFβγ + ∇βFγα + ∇γFαβ = 0 (3.2)

where ∇µ denotes the covariant derivatives with respect to the metric gµν (2.3). The first equation (3.1)
is the inhomogeneous Maxwell equation, we have assumed zero sources because we are not interested in

46 Advances in Astrophysics, Vol. 5, No. 2, May 2020

AdAp Copyright © 2020 Isaac Scientific Publishing



the generation of the radiation. The second equation (3.2) is the homogeneous equation. It is well known
that due to the antisymmetry of F the covariant derivatives can be replaced by partial derivatives as
follows [3]

∂µ(√gF µν) = 0 (3.3)

∂αFβγ + ∂βFγα + ∂γFαβ = 0. (3.4)

To solve these equations the 4 × 4 field tensor is expressed by 3-vectors E⃗ and B⃗ which are the electric
and magnetic field strength, respectively. In rectangular Cartesian coordinates x̃µ this form is given by
[4]

F̃ µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (3.5)

Since we are calculating in spherical polar coordinates xµ = (t, r, ϑ, ϕ) throughout, this tensor must be
transformed according to

F αβ = F̃ µν ∂xα

∂x̃µ

∂xβ

∂x̃ν
. (3.6)

The transformation matrix herein is equal to

∂xα

∂x̃µ
=


1 0 0 0
0 sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

0 cos ϑ cos ϕ
r

cos ϑ sin ϕ
r − sin ϑ

r

0 − sin ϕ
r sin ϑ

cos ϕ
r sin ϑ 0

 . (3.7)

Then introducing the standard polar components

Er = Ex sin ϑ cos ϕ + Ey sin ϑ sin ϕ + Ez cos ϑ

Eϑ = 1
r

(Ex cos ϑ cos ϕ + Ey cos ϑ sin ϕ − Ez3
sin ϑ) (3.8)

Eϕ = 1
r sin ϑ

(Ey cos ϕ − Ex sin ϕ)

and similarly for B⃗ we obtain

F αβ =


0 −Er −Eϑ −Eϕ

Er 0 −Bϕ sin ϑ Bϑ

sin ϑ

Eϑ Bϕ sin ϑ 0 − Br

r2 sin ϑ

Eϕ − Bϑ

sin ϑ
Br

r2 sin ϑ 0

 . (3.9)

The field tensor (3.9) is not yet the best form for the nonstandard background. Since we want to use
the usual 3-dimensional differential operators curl and div we introduce additional factors r2 into (3.9).
This causes a slight modification of the meaning of electric and magnetic field strength E⃗ and B⃗ only.
We shall calculate with the following final form of F :

F αβ =


0 −r2Er −r2Eϑ −r2Eϕ

r2Er 0 −r2Bϕ sin ϑ r2 Bϑ

sin ϑ

r2Eϑ r2Bϕ sin ϑ 0 − Br

sin ϑ

r2Eϕ − r2Bϑ

sin ϑ
Br

sin ϑ 0

 . (3.10)

We first consider the inhomogeneous equations (3.3). The zeroth component ν = 0 gives

∂r(XR2 sin ϑr2Er) + r2∂ϑ(XR2 sin ϑEϑ) + r2XR2 sin ϑ∂ϕEϕ = 0.
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After dividing by r2XR2 sin ϑ we get

1
r2 ∂r(r2E) + ∂ϑEϑ + cot ϑEϑ + ∂ϕEϕ = 0. (3.11)

According to equ.(A.23) in the Appendix this is just the initial condition

divE⃗ = 0. (3.12)

In the same way for ν = 1, 2, 3 we obtain the r, ϑ and ϕ components of the 3-vector equation

∂t(XR2E⃗) = curl(XR2B⃗). (3.13)

Here the time dependent factors XR2 do not drop out.
The homogeneous equations (3.4) are more complicated. We first list the field tensor with lower

indices:
F01 = X2r2Er, F02 = R2r2Eϑ, F03 = R2r2 sin2 ϑEϕ

F12 = −X2R2r2 sin ϑBϕ, F23 = −R4Br sin ϑ (3.14)

F13 = X2R2r2 sin ϑBϑ.

Now we write down the equation
∂1F23 + ∂2F31 + ∂3F12 = 0

without time derivative. After dividing by r2 sin ϑ we arrive at

1
r2 ∂r(R4Br) + 1

sin ϑ
∂ϑ(sin ϑX2R2Bϑ) + ∂ϕ(X2R2Bϕ) = 0. (3.15)

This is the divergence div⃗b = 0 of a new 3-vector with components

br = R4

r2 Br, bϑ = X2R2Bϑ, bϕ = X2R2Bϕ. (3.16)

This vector also appears in the other three equations which are of the form

∂t⃗b = −curle⃗ (3.17)

where e⃗ is a new electric vector with components

er = X2r2Er, eϑ = R2Eϑ, eϕ = R2Eϕ. (3.18)

Equation (3.17) is a modified form of the induction law.
The problem now is to solve the coupled equations (3.13) and (3.17). In vacuum this can be done

by separating the angular variables by means of vector spherical harmonics. The standard reference for
vector spherical harmonics is [5]. Unfortunately these authors use a convention which does not agree
with tensor calculus. For example their contravariant and covariant polar components are the same. We
therefore had to re-derive all formulas for spherical components, the results are given in the appendix.
As in the vacuum without gravity there exist two classes of solutions, the so-called electric and magnetic
multipoles [6].

4 Electric Multipole Solution

As in the vacuum case without gravity [6] we try a solution of the form

B⃗ = g(t, r)
r

Y⃗
(0)

lm (ϑ, ϕ) (4.1)

E⃗ = f1(t, r)Y⃗ (1)
lm (ϑ, ϕ) + f2(t, r)Y⃗ (−1)

lm (ϑ, ϕ). (4.2)
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A glance to the formulas (A.10) of the appendix shows that the inhomogeneous equation (3.13) is satisfied
if the following two radial differential equations

1
XR2 ∂t(XR2f1) = i

r
∂rg (4.3)

1
XR2 ∂t(XR2f2) = i

r2

√
l(l + 1)g (4.4)

are fulfilled. The physical solutions of Maxwell equations must be real. But we work with complex
spherical harmonics in (4.1-2) which is the usual convention. This leads to some imaginary factors in
the equations. At the end we can always take real and imaginary parts in (4.1-2) to obtain real physical
solutions.

For the homogeneous equation (3.17) we must calculate all three components separately. The r-
component is simple because Y⃗ (0) has no r-component. Then there is no time derivative and we get
divE⃗ = 0. For the ϑ-component we obtain

∂t

(
X2R2 g

r
Y⃗ (0)ϑ

)
= − 1

r2 sin ϑ
[∂ϕ(X2r2Er) − ∂r(r2 sin2 ϑR2Eϕ] (4.5)

The derivative ∂ϕ gives a factor im from the spherical harmonics. Then applying the formulas in the
appendix, all terms have a factor m which drops out.

Multiplying the resulting equation by
√

l(l + 1)r2 sin ϑ/Y m
l (ϑ, ϕ) we get

∂t(X2R2g) = ir2X2
√

l(l + 1)f2 − iR2∂r(rf1). (4.6)

The same equation follows from the ϕ-component of equ.(3.17). This proves that the angular dependence
can indeed be separated by means of vector spherical harmonics.

Now the three coupled first order differential equation (4.3), (4.4) and (4.6) for f1, f2 and g(t, r) must
be solved. By suitable multiplication we write the equations as follows

1
XR2 ∂t(XR2rf1) = i∂rg (4.7)

1
XR2 ∂t(XR2r2f2) = i

√
l(l + 1)rg (4.8)

1
R2 ∂t(XR2g) − i

X2

R2

√
l(l + 1)r2f2 = −i∂r(rf1). (4.9)

Now we can separate the variables t and r by means of the product ansatz

rf1 = u0(t)u1(r), r2f2 = v0(t)v1(r) (4.10)

g = w0(t)w1(r). (4.11)

Then equ.(4.7) becomes
1

XR2
∂t(XR2u0)

w0(t)
= i

∂rw1(r)
u1(r)

= λ1. (4.12)

Here the left side depends on t only and the right side on r. Consequently both sides are constant, this
constant of integration is λ1. Equ.(4.8) is treated in the same way with the result

1
XR2

∂t(XR2v0)
w0(t)

= i
√

l(l + 1)w1(r)
v1(r)

= λ2 (4.13)

with a second constant of integration.
The third equation (4.9) assumes the following form

1
R2 ∂t(X2R2w0)w1(r) − i

X2

R2

√
l(l + 1)v0(t)v1(r) = −i∂ru1(r)u0(t).
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To separate the variables we substitute

w1(r) = − iλ2√
l(l + 1)

v1 (4.14)

from (4.13) herein and get

−iλ2√
l(l + 1)

1
R2u0

∂t(X2R2w0) − i
X2

R2

√
l(l + 1) v0

u0 = −i
∂ru1(r)
v1(r)

= −iλ3. (4.15)

We first integrate the r-dependence. Combining (4.12), (4.14) and (4.15) we get a second order
equation for u1:

∂2
r u1 = λu1 (4.16)

with
λ = λ1λ3

λ2

√
l(l + 1) = −k2. (4.17)

We only consider the negative continuous spectrum which gives real oscillating radiative solutions again

u1(r) = sin kr or cos kr. (4.18)

A solution from the discrete spectrum is unphysical in the Maxwell case because a log-range cosmic
electric field does not exist.

The time dependence is more complicated. From (4.12) and (4.13) we conclude

u0 = λ1

λ2
v0. (4.19)

Using this in (4.15) we find

∂t(X2R2w0) =
[λ3

λ2

√
l(l + 1)R2 − l(l + 1)X2

λ1

]
u0. (4.20)

On the other hand by differentiating (4.12) we have

λ1∂t(X2R2w0) = ∂t(X∂t(XR2u0)). (4.21)

This allows to eliminate w0 in (4.20) and gives the following second order equation

(X∂t)2ũ0 + l(l + 1)
R2 X2ũ0 = −k2ũ0 (4.22)

where we have introduced
ũ0 = XR2u0 (4.23)

and k2 is given by (4.17).
The equation (4.22) can be transformed into a 1-dimensional Schrödinger equation by introducing

the variable

ϱ(t) =
t∫

dt′

X(t′)
. (4.24)

Then we have
X∂t = X

dϱ

dt

d

dϱ
= d

dϱ
(4.25)

so that
d2ũ0

dϱ2 + l(l + 1)
R2 X2ũ0 = −k2ũ0. (4.26)

For l = 0 we obtain the exact solution

ũ0 = sin kϱ or cos kϱ. (4.27)
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As we show in the last section this is also a good approximation for l > 0 if k is big. We also shall see
that the frequency in (4.27) gets redshifted due to (4.24).

Finally, the magnetic function g can be calculated from (4.12)

w0(t) = 1
λ1XR2 ∂t(XR2u0) (4.28)

w1(r) = −iλ1

∫
u1(r)dr = iλ1

cos kr

k
, (4.29)

so that
g = w0(t)w1(r) = i

XR2 ∂t(XR2u0)cos kr

k
(4.30)

where the integration constant λ1 drops out. The second electric function f2 follows from (4.19) and
(4.14)

r2f2 = v0(t)v1(r) = −
√

l(l + 1)u0(t)cos kr

k
. (4.31)

Again the integration constants λ1, λ2 cancel.

5 Magnetic Multipole Solutions

In these solutions the role of E⃗ and B⃗ is interchanged. We start from the ansatz

E⃗ = f(t, r)
r

Y⃗
(0)

lm (ϑ, ϕ) (5.1)

B⃗ = −1
r

(
g1(t, r)Y⃗ (1)

lm (ϑ, ϕ) + g2(t, r)Y⃗ (−1)
lm (ϑ, ϕ)

)
. (5.2)

The minus sign gives a different parity of the solution. Using the formulas in the Appendix it is easy to
see that the angular dependence can again be separated. From the inhomogeneous Maxwell equation we
get the following differential equation

1
XR2 ∂t(XR2f) = −i∂rg1 + i

r

√
l(l + 1)g2. (5.3)

The r-component of the homogeneous equation gives

∂t(R4g2) = irR2
√

l(l + 1)f (5.4)

and the ϑ and ϕ-components both yield the equation

∂0(X2R2g1) = i

r
R2∂r(rf). (5.5)

Note that the relation divE⃗ = 0 follows from (5.1) due to (A.7) in the appendix.
To separate the t and r dependence we write

rf = u2(t)u3(r) (5.6)

g1 = v2(t)v3(r), g2 = w2(t)w3(r). (5.7)

Then from equ.(5.4) we obtain

1
R2u2

∂t(R4w2) = i
√

l(l + 1) u3

w3
= λ4 (5.8)

and equ.(5.5) gives
1

R2u2
∂t(X2R2v2) = i

r

∂ru3

v3
= λ5 (5.9)
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Equation (5.3) reads

1
XR2 ∂t(XR2u2)u3(r) = −irv2(t)∂rv3(r) + i

√
l(l + 1)w2w3. (5.10)

Here we substitute u3 by w3 using (5.8) and then we can separate the variables

1
v2

( λ4√
l(l + 1)

∂t(XR2u2)
XR2 +

√
l(l + 1)w2

)
= r

w3
∂rv3 = λ6. (5.11)

Again we first solve the r-dependence which now is more complicated. Combining (5.8) and (5.11)
we find

∂rv3 = i
λ6

λ4r

√
l(l + 1)u3. (5.12)

On the other hand differentiating (5.9) we obtain

∂rv3 = i

λ5
∂r(1

r
∂ru3) = i

λ6

λ4r

√
l(l + 1)u3. (5.13)

Then we arrive at the final second order equation

∂r

(1
r

∂ru3

)
= −k2 u3

r
(5.14)

where
k2 = −λ5λ6

λ4

√
l(l + 1). (5.15)

The solution is given by the Bessel function of the first kind

u3 = rJ1(kr). (5.16)

To calculate the t-dependence we proceed as in the electric multipole case. From (5.8) and (5.9) we
obtain

v2 = λ5

λ4

R2

X2 w2. (5.17)

This is substituted into (5.11) yielding

λ4√
l(l + 1)

∂t(XR2u2)
XR2 +

√
l(l + 1)w2 = λ5λ6

λ4

R2

X2 w2.

Here u2 can be eliminated by means of (5.11). Then we end up with the following second order equation
for

w̃2 = R4w2 (5.18)

∂t(X∂tw̃2 + l(l + 1)
R2 Xw̃2 = −k2

X
w̃2. (5.19)

This agrees with (4.22).
After solving (5.19) for w̃2 all functions can be calculated. The final results are

rf = i

λ4R2 ∂tw̃2rJ1(kr) (5.20)

g1 = R2

λ4X2 w2ikJ0(kr) (5.21)

g2 = i

λ4

√
l(l + 1)w2(t)rJ1(kr). (5.22)

Here the constant of integration λ4 does not drop out, however it can be absorbed by a renormalization
of the magnetic solution.
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6 Discussion

First we discuss the simple solution (4.18), (4.27)

rf1(t, r) = sin kr sin kϱ(t). (6.1)

The wavelength λ is conventionally defined by

k = 2π

λ
(6.2)

and it remains constant along the light path by (6.1). The time-dependent factor in (6.1) defines the
frequency ω(t) according to

ω(t) = d

dt
(kϱ(t) = k

X(t)
= 2π

λX(t)
. (6.3)

This frequency changes with time. If we compare the frequencies at time of emission with time of
observation we get the redshift z

1 + z = ωem

ωobs
= X(tobs)

X(tem)
(6.4)

in agreement with previous results [1]. The phase velocity of the radiation is equal to

c = ωλ

2π
= 1

X(t)
, (6.5)

so it is changed by the cosmic gravitational field. The result (6.5) is also equal to dr/dt on the radial
null geodesic. This cosmic variation of the light speed is embarrassing many people, because the same
result follows in standard FLRW cosmology.

The results (6.3-5) can also be written as

ν(t)
c(t)

= 1
λ

= const. (6.6)

independent of t. This is important for understanding CMB properly. The black-body spectral energy
density is given by Planck’s radiation law

u(ν, T ) = 8π

c3 ν2 hν

exp(hν/kBT ) − 1
(6.7)

where the factor in front is the density of photon states

dN = 8π

c3 ν2dν (6.8)

and the fraction is the corresponding mean energy of the states at temperature T . By (6.4) we have

νem = (1 + z)νobs (6.9)

which in the exponential yieds
νem

Tem
= (1 + z)νobs

Tem
≡ νobs

Tobs
(6.10)

so that
Tobs = Tem

1 + z
. (6.11)

According to (6.6) there is no further change of the ν3 factor in Planck’s law (6.7). The reason is that
the density of states (6.8) does not change, because the 3-dimensional wave vectors k⃗ do not change as
in (6.2). Only the energies hν get redshifted. If one puts the light speed c = 1 one misses the point. A
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factor c0 in the metric (2.1) would change the unit of time, but this factor then appears in (6.5) and all
conclusions remain valid.

In the magnetic multipole radiation the r-dependence (5.16) is now given by

u3 = rJ1(kr) = r

√
2

πkr
cos(kr − 3π/4)(1 + O(kr)−1). (6.12)

Here we have kr ≫ 1 because the wavelength of CMB is very small compared with cosmic distances.
Therefore we can use the asymptotic expression for the Bessel function [7].

Now let us discuss higher multipoles l > 0, in fact the lowest multipole is dipole radiation l = 1.
Until now the explicit time-dependence of X(t), R(t) was not used, so that the separation of Maxwell
equations by means of vector spherical harmonics is generally true. But now we restrict to the nonstandard
background. We write (4.26) as a quantum mechanical Schrödinger equation

d2u

dϱ2 + (k2 − V )u = 0 (6.13)

where
V = −l(l + 1)X2

R2 = −l(l + 1)TL − R

R3 . (6.14)

To get the potential V as a function of ϱ (4.24) we use the parametric representation (2.14-15)

R(w) = TL sin2 w (6.15)

X(w) = − cot w (6.16)

dt

dw
= 2TL sin2 w. (6.17)

This gives

ϱ =
t∫

dt

− cot w
= 2TL

w∫
sin2 w′

− cot w′ dw′ =

= TL(2 log cos w + sin2 w). (6.18)

Substituting w by R (6.9) we arrive at

ϱ = R + TL log
(

1 − R

TL

)
. (6.19)

This together with (6.14) yields the potential V (ϱ). The Big Bang corresponds to R = TL, that is
ϱ = −∞, where the potential vanishes. For R → 0 we have ϱ → 0 and a strong singularity ≈ ϱ−3 in the
potential (6.14). This is the end of the Universe at t = πTL [1].

For cosmology it is sufficient to solve equ.(6.13) in the short-wave (WKB) approximation, that means
for big k. To do so we assume the solution of the form

u = exp
(

ik

ϱ∫
s(ϱ′)dϱ′

)
. (6.20)

Then (6.13) goes over into the following first order Riccati equation for s(ϱ)

iks′ +2 (1 − s2) − V = 0. (6.21)

Here we substitute the power series

s =
∞∑

n=0

sn(ϱ)
kn

(6.22)
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and compare the powers of k. From O(k2) we get s0 = ±1, O(k) gives s1 = 0 and O(k0) yields

s2 = − V

2s0
. (6.23)

With s0 = 1 we finally obtain
ϱ∫

s = ϱ − 1
2k2

ϱ∫
V (ϱ′)dϱ′. (6.24)

The leading contribution ϱ is our simple result (6.1). The next order gives a correction to the redshift
which, however, is small O(k−2).

Appendix

Let e⃗x, e⃗y, e⃗z be Cartesian unit vectors and

e⃗0 = e⃗z, e⃗1 = − e⃗x + ie⃗y√
2

, e⃗−1 = e⃗x − ie⃗y√
2

. (A.1)

The vector spherical harmonics are defined by

Y⃗ L
JM (ϑ, ϕ) =

∑
m,q

Y m
L (ϑ, ϕ)e⃗q(Lm1q|L1JM)

= (−)L+1+M
√

2J + 1
∑
m,q

Y m
L e⃗q

(
L 1 J
m q −M

)
(A.2)

where the Clebsch-Gordon coefficients or Wigner’s 3j-symbols for spin 1 appear. For electromagnetic
radiation the following linear combinations are most useful:

Y⃗
(0)

JM = Y⃗ J
JM (A.3)

Y⃗
(1)

JM =
√

J + 1
2J + 1

Y⃗ J−1
JM +

√
J

2J + 1
Y⃗ J+1

JM (A.4)

Y⃗
(−1)

JM =
√

J

2J + 1
Y⃗ J−1

JM −
√

J + 1
2J + 1

Y⃗ J+1
JM . (A.5)

Y⃗ (−1) is parallel to the radial unit vector n⃗ = x⃗/r, the other two are perpendicular to n⃗.
The 3-dimensional differential operators div and curl operate as follows

div[f(r)Y⃗ (1)
JM (ϑ, ϕ)] = −

√
J(J + 1)f(r)

r
Y M

J (ϑ, ϕ) (A.6)

div[f(r)Y⃗ (0)
JM (ϑ, ϕ)] = 0 (A.7)

div[f(r)Y⃗ (−1)
JM (ϑ, ϕ)] = (∂r + 2

r
)f(r)Y M

J (ϑ, ϕ) (A.8)

and
curl[f(r)Y⃗ (1)

JM (ϑ, ϕ)] = i(∂r + 1
r

)f(r)Y⃗ (0)
JM (ϑ, ϕ) (A.9)

curl[f(r)Y⃗ (0)
JM (ϑ, ϕ)] = i(∂r + 1

r
)f(r)Y⃗ (1)

JM (ϑ, ϕ) + i
√

J(J + 1)f

r
Y⃗

(−1)
JM (A.10)

curl[f(r)Y⃗ (−1)
JM (ϑ, ϕ)] = −i

√
J(J + 1)f

r
Y⃗

(0)
JM (A.11)

We do not use the nabla notation ∇ because it is reserved for the 4-dimensional covariant derivatives.
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So far all formulas agree with ref.[5], the differences now appear when we use spherical polar coordi-
nates. The transformation of coordinates must be carried out according to tensor calculus as described
in sect.3. Then covariant and contravariant polar components are different. So we have the following
contravariant components

(gradf)r = ∂rf, (gradf)ϑ = 1
r2 ∂ϑf (A.12)

(gradf)ϕ = 1
r2 sin2 ϑ

∂ϕf (A.13)

and
(curlA⃗)r = 1

sin ϑ
[∂ϑ(sin2 ϑAϕ) − ∂ϕAϑ] (A.20)

(curlA⃗)ϑ = 1
r2 sin ϑ

[∂ϕAr − sin2 ϑ∂r(r2Aϕ)] (A.21)

(curlA⃗)ϕ = 1
r2 sin ϑ

[∂r(r2Aϑ) − ∂ϑAr]. (A.22)

We also note
divA⃗ = 1

r2 ∂r(r2Ar) + 1
sin ϑ

∂ϑ(sin ϑAϑ) + ∂ϕAϕ. (A.23)

To apply these formulas we need the polar components of the vector spherical harmonics:

Y⃗
(1)r

JM = 0, Y⃗
(1)ϑ

JM = ∂ϑY M
J

r
√

J(J + 1)
(A.24)

Y⃗
(1)ϕ

JM = iMY M
J

r sin2 ϑ
√

J(J + 1)
(A.25)

Y⃗
(0)r

JM = 0, Y⃗
(0)ϑ

JM = − MY M
J

r sin ϑ
√

J(J + 1)
(A.26)

Y⃗
(0)ϕ

JM = −i∂ϑY M
J

r sin ϑ
√

J(J + 1)
(A.27)

Y⃗
(−1)r

JM = Y M
J (ϑ, ϕ), Y⃗

(−1)ϑ
JM = 0 = Y⃗

(−1)ϕ
JM . (A.28)

For completeness we list the polar components of the 3-dimensional vector product:

(⃗a × b⃗)r = r2 sin ϑ(aϑbϕ − aϕbϑ) (A.29)

(⃗a × b⃗)ϑ = sin ϑ(aϕbr − arbϕ) (A.30)

(⃗a × b⃗)ϕ = 1
sin ϑ

(arbϑ − aϑbr). (A.31)
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