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Abstract We apply the perturbative technique which was previously developed in cosmology to
now describe the gravitational field of a galaxy with arbitrary rotation curve. The rotation curve
fixes the background metric. We use a Schwarzschild background as starting point, however with
the correct physical coordinates. Then in the perturbation theory we find two classes of metric
perturbations, (i) stationary perturbations in a 3-dimensional vicinity of the central black hole and
(ii) non-stationary perturbations in an infinitely thin disk. Since the metric perturbations directly
give the matter density the theory explains the structure of disk galaxies with a bulge. As the
inverse of the standard procedure the theory predicts the matter distribution for a given rotation
curve. For small distances the rotation curve is Keplerian, so that the usual Schwarzschild metric
and the classical Solar System tests follow.
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1 Introduction

The existence of dark matter is one of the biggest open problems in physics. Until now all searches
with sensitive underground particle detectors give zero results. Then the dark matter hypothesis be-
comes more and more questionable. There exist various attempts of theories without dark matter, like
MOND and even modified gravity theories. Contrary to these we are going to propose a much more
conservative solution. We have no doubt in the validity of general relativity, because it is extremely well
founded theoretically [1] and experimentally. But some new concepts are needed, both physically and
mathematically.

In 2005 a conference with title “Island Universes, structure and evolution of disk galaxies” has taken
place in The Netherlands [2]. This notion was really prophetic because in this article we shall apply the
same mathematical technique which has been developed for cosmology in a series of papers [3-5], to now
describe the gravitational field in disk galaxies. The general idea goes back to the german philosopher
Immanuel Kant. In his book “Allgemeine Naturgeschichte und Theorie des Himmels” of 1755 he has
described the bound systems of fixed stars as “Welten und Weltordnungen”. The english name “island
universes” is more appropriate. It was introduced by H.D.Curtis in 1920 in the so-called great debate
over the size of the Universe Since clear observational evidence was lacking, Curtis has spoken of “the
island universe theory”. Now 100 years later we are going to give the theory a new meaning.

The technique goes as follows. To have more predictive power than standard theory, we start in
zeroth approximation from a vacuum solution of Einstein’s equation which is in agreement with the
most important measurable quantities, the Hubble diagram in cosmology and the rotation curve in case
of a galaxy. Then first order perturbation theory of this vacuum background leads to a finite mass
content. In cosmology this gives anisotropic dust and the isotropic cosmic microwave background. In
the galactic case we shall find a stationary bulge and a non-stationary infinitely thin disk. Even the
satellite galaxies in planes perpendicular to the disk are given by the perturbative method. This shows
that the inverse procedure of using the rotation curve to derive the matter distribution works well. At
large distances where the rotation curve differs from Kepler, Newtonian gravity definitely breaks down.
Then Einstein’s theory has to be used, irrespective of the velocities of the stars. Astronomers thinking
in terms of Newton’s theory miss the point that Einstein’s equations have solutions without material
sources which describe very physical gravitational fields. What has been done with Newton’s theory and
dark matter can be done in Einstein’s theory without dark matter and then even with more predictive
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power. Of course general relativity can only give the gravitational skeleton of a galaxy, the flesh (for
example the thickness of the disk) must come from other physical processes.

The paper is organized as follows. In the next section we introduce the vacuum background and
determine its rotation curve. This is already contained in ref.[1] and included here for completeness. In
sect.3 we calculate the metric perturbations by solving the perturbed Einstein’s equations δGµν = 8πδtµν .
Since we perturb the vacuum, the perturbed energy-momentum tensor δtµν is diagonal. Then putting
the non-diagonal elements of δGµν = 0, we obtain the two classes of perturbations. (i) Stationary
perturbations in a 3-dimensional vicinity of the central black hole and (ii) nonstationary perturbations
in an infinitely thin disk. This is the gravitational skeleton of a disk galaxy with a bulge (i) and disk in
the galactic plane. Obviously the infinitely thin disk gets broadened by various other processes. In sect.4
we discuss the corresponding matter density. Our conclusions are summarized in the last section.

2 Vacuum Background and Its Rotation Curve

The spherically symmetric cosmological background in [3-5] is given by the inner Schwarzschild solution
in suitable coordinates. Then we expect that the galactic background should be the outer Schwarzschild
solution in suitable coordinates. It is a general belief that coordinates are irrelevant in general relativity.
As far as mathematics is concerned this is true. However for the physics the right choice of coordinates
is terribly important. There is essentially only one correct set of coordinates, and which one that is, is
dictated by observations. For example, the astronomer can measure the radial distance r of a galaxy
from the earth. He then uses this measurement to determine the rotation curve of the galaxy. But with
a transformation r′ = f(r) one would lose the contact with the physical reality. After this warning we
write down the outer Schwarzschild metric in a slightly more general form

ds2 = gµνdxµdxν = eadt2 − ebdr2 − r2ec(dϑ2 + sin2 ϑdϕ2) (2.1)

where a(r), b(r) and c(r) are functions of r only. The presence of c(r) ̸≡ 0 is responsible for a nontrivial
rotation curve in the following. We assume that the astronomers correct their measurements for the
motion of the earth with respect to the center of the galaxy, so that we can choose the center of the
galaxy as origin of our coordinate system and the z-axis perpendicular to the galactic plane.

The covariant metric tensor corresponding to (2.1) is equal to

gµν = diag
(

e−a, −e−b, −e−c/r2, −e−c/(r2 sin2 ϑ)
)

(2.2)

and the nonzero Christoffel symbols are given by

Γ 0
10 = a′

2
, Γ 1

00 = a′

2
ea−b

Γ 1
11 = b′

2
, Γ 1

22 = −r2c′ + 2r

2
ec−b

Γ 1
33 = −r2c′ + 2r

2
ec−b sin2 ϑ

Γ 2
12 = c′

2
+ 1

r
, Γ 2

33 = − sin ϑ cos ϑ

Γ 3
13 = c′

2
+ 1

r
, Γ 3

23 = cot ϑ. (2.3)

To derive the rotation speed we must solve the geodesic equation

d2xµ

dτ2 + Γ µ
αβ

dxα

dτ

dxβ

dτ
= 0 (2.4)

where τ is an affine parameter. For motion in the galactic plane ϑ = π/2 we have the following three
differential equations:

d2t

dτ2 + a′ dt

dτ

dr

dτ
= 0 (2.5)
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d2r

dτ2 + a′

2
ea−b

( dt

dτ

)2
+b′

2

( dr

dτ

)2
−rec−b

(r

2
c′ + 1

)(dϕ

dτ

)2
= 0 (2.6)

d2ϕ

dτ2 +
(2

r
+ c′

) dr

dτ

dϕ

dτ
= 0. (2.7)

We want to find integrating factors for these three equations. Indeed multiplying (2.5) by exp a we get

d

dτ

(
ea dt

dτ

)
= 0

so that
ea dt

dτ
= const. = A

and
dt

dτ
= Ae−a. (2.8)

Equation (2.7) is multiplied by r2 which gives

d

dτ

(
r2 dϕ

dτ

)
+c′ dr

dτ
r2 dϕ

dτ
= 0.

Dividing this by r2dϕ/dτ leads to
d

dτ
log

(
r2 dϕ

dτ

)
+dc(r)

dτ
= 0.

After integration we obtain
log

(
r2 dϕ

dτ

)
= −c + const.

so that finally
dϕ

dτ
= J

r2 e−c. (2.9)

Here the integration constant is chosen in such a way that J reminds of the angular momentum in the
standard theory. Finally we substitute (2.8) and (2.9) into (2.6). The resulting equation can be written
in the form

d2r

dτ2 + b′

2

( dr

dτ

)2
+A2

2
a′e−a−b − J2

r3 e−b−c
(r

2
c′ + 1

)
= 0. (2.10)

Here multiplication by
2eb dr

dτ

yields the integrable equation

d

dτ

[
eb

( dr

dτ

)2]
+A2a′ dr

dτ
e−a − J2

r3 e−c dr

dτ
(rc′ + 2) = 0. (2.11)

After integration we have

eb
( dr

dτ

)2
−A2e−a + J2

r2 e−c = const. = B. (2.12)

The 3-velocity which is measured by the astronomers is equal to

V⃗ =
(dx1

dt
,

dx2

dt
,

dx3

dt

)
. (2.13)

Since we consider motion in the equatorial plane ϑ = π/2, only the first and third components are
different from zero. To eliminate the affine parameter τ in favor of the measured time t we multiply by
appropriate powers of

dτ

dt
= ea

A
. (2.14)
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Then from (2.12) we get

eb
(dr

dt

)2
= ea − J2

A2
e2a−c

r2 + B

A2 e2a. (2.15)

In the following we are interested in the square

V⃗ 2 = −g11

(dr

dt

)2
−g33

(dϕ

dt

)2
=

= eb
(dr

dt

)2
+ J2

A2r2 e2a−c. (2.16)

Inserting (2.15) the term with J2 drops out and we end up with the simple result

V⃗ 2 = ea + B

A2 e2a. (2.17)

The result (2.17) is not yet the desired rotation velocity because the integration constants A and B
must still be determined. To do so we specialize everything for circular motion r = const.. For dr/dt = 0
in (2.15) we get the equation

J2

A2
e−c

r2 − e−a − B

A2 = 0. (2.18)

A second equation is obtained by differentiating this equation with respect to r which is the stability
condition for the circular path:

−2 J2

A2
e−c

r3 − J2

A2
c′e−c

r2 + a′e−a = 0. (2.19)

This gives the following values for the integration constants

J2

A2 = a′r3

rc′ + 2
ec−a (2.20)

B

A2 = ra′

rc′ + 2
e−a − e−a. (2.21)

Here r now stands for the constant radius of the circular orbit. Now we are able to compute the circular
velocity squared from (2.17)

V⃗ 2
c ≡ w = ra′

rc′ + 2
ea. (2.22)

Next we turn to the solution of Einstein’s equation for our vacuum background. From the Christoffel
symbols (2.3) we can calculate the Ricci tensor. The non-vanishing components are the diagonal elements

Rtt = 1
2

ea−b(a′′ + 1
2

a′2 − 1
2

a′b′ + a′c′ + 2
r

a′) (2.23)

Rrr = −1
2

(a′′ + 2c′′) + b′

4
(a′ + 2c′ + 4

r
) − a′2

4
− c′2

2
− 2

r
c′ (2.24)

Rϑϑ = ec−b[−1 − r2

2
c′′ − r(2c′ + a′ − b′

2
) − r2

4
c′(a′ − b′ + 2c′)] + 1

Rϕϕ = sin2 ϑRϑϑ,

the prime always denotes d/dr. Let
Gµν = Rµν − 1

2
gµνR (2.25)

be the Einstein tensor then Einstein’s equations without matter can be reduced to the following three
differential equations

Gtt = ea−b
[
−c′′ − 3

4
c′2 + 1

2
b′c′ + 1

r
(b′ − 3c′)

]
+ 1

r2 (ea−c − ea−b) = 0 (2.26)
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Grr = 1
2

a′c′ + 1
r

(a′ + c′) + c′2

4
+ 1

r2

(
1 − eb−c

)
= 0 (2.27)

Gϑϑ = r2

2
ec−b

[
a′′ + c′′ − 1

r
(b′ − a′ − 2c′) + 1

2
(a′2 − a′b′ + a′c′ − b′c′ + c′2)

]
= 0. (2.28)

It is not hard to see that there are only two independent field equations. Indeed, using (2.27) b can
be expressed by a and c. Eliminating b in (2.26) and (2.28) there results one second order differential
equation for a and c:

c′′ = a′′

a′

(
c′ + 2

r

)
+ 4

r2 + a′c′ + c′2

2
+ 2

r
(a′ + c′). (2.29)

Introducing the new metric function
f(r) = c(r) + 2 log r

rc
(2.30)

where rc has been included for dimensional reasons, equation (2.29) assumes the simple form

f ′′

f ′ − a′′

a′ = a′ + f ′

2
. (2.31)

This can immediately by integrated

log f ′

a′ = a + f

2
+ const. (2.32)

On the other hand the circular velocity squared (2.22) now becomes

w(r) = a′

f ′ ea. (2.33)

Using this in (2.32) leads to
f = −2 log w

and
c = −2 log rw

rc
(2.34)

where (2.30) has been used. This gives us the metric function

ec = −gϑϑr−2 = r2
c

r2w2 . (2.35)

To get gtt we return to (2.32) which can be written as

Kaa′ea = f ′e−f/2. (2.36)

Here Ka is the integration constant in (2.32). From (2.22) we find

a′ea = w
(

c′ + 2
r

)
= d

dr
ea. (2.37)

Combining this with (2.34)

c′ = −2w′

w
− 2

r
we arrive at

d

dr
ea = −2w′.

This gives
gtt = ea = −2w + Ka. (2.38)

Finally gϑϑ or exp b follows from (2.27). Solving for exp b we have

eb = a′ec
(r2

2
c′ + r

)
+c′ec

(r2

4
c′ + r

)
+ec. (2.39)
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Substituting (2.38) and (2.34) we find

eb = r2
c

w′2

w3

( 1
w

− 1
w − Ka/2

)
.

We choose the integration constants Ka = 1 and rc = rs/2 where rs is the Schwarzschild radius

rs = 2MG (2.40)

and M the mass of the central black hole. Then we get

ec = r2
s

4r2w2 (2.41)

ea = −2w + 1 (2.42)

eb = r2
s

4
w′2

w4(1 − 2w)
. (2.43)

This is the desired background for arbitrary rotation curve. For

w = rs

2r
(2.44)

it reduces to the Schwarzschild solution

ds2 =
(

1 − rs

r

)
dt2 −

(
1 − rs

r

)−1
dr2 − r2(dϑ2 + sin2 ϑdϕ2). (2.45)

3 The Two Classes of Metric Perturbations

It is our aim to solve the linear perturbation equation of Einstein’s equation of the form

δGµν(g0αβ)(hϱσ) = 8πδtµν (3.1)

where hϱσ are the metric perturbations to be calculated. As in the cosmological calculation [4] we choose
the Regge-Wheeler gauge [6] where hµν is of the form

hµν =


−eaH2 ebH1 0 0
ebH1 −ebH0 0 0

0 0 r2ecK 0
0 0 0 r2ecK sin2 ϑ

 Y m
l (ϑ, ϕ). (3.2)

Here Y m
l denote the spherical harmonics, the functions H0, H1, H2 and K depend on t and r only beside

l, m. It was shown in [4] (equ.(2.13)) that the linear variation of the Einstein tensor can be obtained by
covariant differentiation as follows

2δGµν = −∇α∇αhµν + ∇νfµ + ∇µfν − 2Rβ
νανhα

β − ∇ν∇µhα
α+

−gµν(∇αfα − ∇β∇βhα
α) (3.3)

where
fµ = ∇αhµα. (3.4)

To determine the right side of the perturbed Einstein’s equation (3.1) we assume that the exact
energy-momentum tensor has the perfect fluid form

tµν = (ϱ + p)uµuν − pgµν (3.5)

where ϱ and p are density and pressure of the matter and uµ its 4-velocity. The vacuum as zeroth
approximation is given by ϱ0 = 0 = p0 and

u0µ = (ea/2, 0, 0, 0) (3.6)
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because of the normalization uµuµ = 1. The first order perturbation of the vacuum is then equal to

δtµν = (δϱ + δp)u0µu0ν − δpg0µν (3.7)

where g0µν is the unperturbed background metric (2.40-42). This yields the following diagonal tensor:

δtµν = diag(eaδϱ, ebδp, r2ecδp, r2ec sin2 ϑδp). (3.8)

The important point is that the off-diagonal elements vanish. Then the off-diagonal components of (3.1)
give linear homogeneous equations for the metric perturbations which we now study.

First we must compute
fµ = gνα(∂αhµν − Γ β

µαhβν − Γ β
ναhµβ). (3.9)

We obtain
f0 =

[
−∂1H1 − ∂0H2 − b′H1 − (c′ + 2

r
)H1

]
Y (3.10)

f1 =
[
eb−a∂0H1 + ∂1H0 + 2b′H0 + a′

2
(H0 + H2) + (c′ + 2

r
)(H0 − K)

]
Y (3.11)

f2 = −K∂2Y, f2 = −K∂3Y. (3.12)

We also need the background Riemann tensor, its nonzero components are equal to

R0
101 = 1

4
(−2a′′ − a′2 + a′b′)

R0
202 = −a′

4
(r2c′ + 2r)ec−b

R0
303 = −a′

4
(r2c′ + 2r)ec−b sin2 ϑ (3.13)

R1
212 = ec−b

[
(r2c′ + 2r)

(b′

4
− c′

4
+ 1

2r

)
−rš

2
c′′ − rc′ − 1

]
R1

313 = ec−b
[
(r2c′ + 2r)

(b′

4
− c′

4
+ 1

2r

)
−rš

2
c′′ − rc′ − 1

]
sin2 ϑ

R3
232 = 1 + b′

2

(c′

2
+ 1

r

)
.

Now the simplest computation is δG23. Here only the terms

−∇3∇2hα
α = (−∂3∂2 + cot ϑ∂3)(H0 − H2 − 2K)Y (3.14)

and ∇3f2, ∇2f3 contribute in (3.3), so that we obtain

2δG23 = (cot ϑ∂3 − ∂3∂2)(H0 − H2)Y = 0.

We assume l > 1 in the following. Then this yields the first relation

H0(t, r) = H2(t, r) (3.15)

which will be used at various places in order to simplify the equations.
For δG13 we need

∇α∇αh13 = −2Γ σ
α1∂αhσ3 − 2Γ σ

α3∂αhσ1

=
[
−(c′ + 2

r
)r2ec(K + H0) sin2 ϑ

]
∂3Y. (3.16)

Here it is important to note that h13 has to be understood as the tensor hµν where µ = 1 and ν = 3 is
taken after applying the covariant derivatives not before (this would give h13 = 0). The other terms
which contribute are

∇3f1 = ∂3f1 − Γ 3
13f3 =
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=
[
eb−a∂0H1 + ∂1H0 + 2

(
b′ + c′

2
+ 1

r

)
H0 + a′

2
(H2 − H0) −

(c′

2
+ 1

r

)
K

]
∂3Y (3.17)

and
∇1f3 = ∂1f3 − Γ 3

13f3 =
[
−∂1K +

(c′

2
+ 1

r

)
K

]
∂3Y.

This finally yields

2δG13 =
[
eb−a∂0H1 + ∂1H0 − ∂1K + H0

(
2b′ − a′

2

)
+H2

a′

2
− K

(
c′ + 2

r

)]
∂3Y = 0. (3.18)

This is a first equation for the metric perturbations.
The calculation of δG12 is quite similar with one very important difference. In

∇α∇αh12 =
[
−(c′ + 2

r
)r2ec(K + H0)

]
∂2Y + cot ϑ

(c′

2
+ 1

r

)
(2K + H0)

]
Y (3.19)

there is an additional term proportional to cot ϑ. It comes from

g33h22(Γ 2
33Γ 2

21 + Γ 3
13Γ 2

33). (3.20)

As a consequence the final result differs from (3.18)

2δG12 =
[
eb−a∂0H1 + ∂1H2 − ∂1K + 2b′H2 − K

(
c′ + 2

r

)]
∂2Y −

− cot ϑ
(c′

2
+ 1

r

)
(H2 + 2K)Y = 0. (3.21)

For a nontrivial solution for the metric perturbations the last term must vanish in addition to the first.
There are two possibilities for this: (i) H2 = −2K or (ii) ϑ = π/2. The first will give the bulge, the
second gives the disk in the equatorial plane.

The next off-diagonal element is δG03. Here we have

∇α∇αh03 = −2Γ 1
33∂3h01

and
∇3f0 = ∂3f0, ∇0f3 = ∂0f3 = −∂0K∂3Y. (3.22)

This gives the final result

2δG03 = (−∂0H2 + ∂0K − ∂1H1 − b′H1 + 2∂0K)∂3Y = 0. (3.23)

This is a second equation for the metric perturbations. Again the calculation of δG02 is quite similar,
but with an additional term in

∇α∇αh02 = −2Γ 1
22∂2h01 + g33Γ 2

33Γ 1
22h01 =

= −(c′ + 2
r

)H1∂2Y + cot ϑH1

(c′

2
+ 1

r

)
Y. (3.24)

Then the final result is

2δG02 = (−∂0H2 + ∂0K − ∂1H1 − b′H1)∂2Y − cot ϑH1

(c′

2
+ 1

r

)
Y = 0. (3.25)

Again the last term proportional to cot ϑ must vanish separately. Consequently in the bulge case (i) we
must have H1 = 0 or we are in the disk (ii) with ϑ = π/2.

The most complicated off-diagonal component is δG01 which gives us a third equation for the metric
perturbations without additional terms. The details are shown in the appendix. The final result is a
second order equation:

2δG01 =
[
2∂1∂0K + (2b′ + c′ + 2

r
)∂0H2 − (a′ + c′ + 2

r
)∂0K+
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+a′ − b′

2
∂1H1 + g1(r)H1

]
Y = 0 (3.26)

where the function g1(r) is given in the appendix (A.8).
The three differential equations (3.18), (3.23) and (3.26) in (t, r) can be easily integrated in the bulge

case (i) where
H1 = 0, H2 = −2K = H0. (3.27)

Indeed equation (3.23) becomes ∂0K = 0 that means the metric perturbation is stationary. Then
equ.(3.26) is identically zero, but equ.(3.18) gives

3K ′ + (4b′ + c′ + 2
r

)K = 0 (3.28)

with the solution
K(r) = C0r−2/3 exp −(4

3
b + c

3
) (3.29)

where C0 is a constant of integration. We shall discuss this further in the next section. In the disk (ii)
no stationary solution is possible. Indeed, if all temporal derivatives in (3.23) and (3.26) are set = 0, one
gets a contradiction between these two equations for H1 different from zero.

4 Matter Density

The matter density follows from the diagonal component

2δG00 = −∇α∇αh00 + 2∇0f0 − 2Rβ
0α0hα

β − ∇0∇0hα
α−

−g00(∇αfα − ∇β∇βhα
α). (4.1)

In calculating
∇α∇αh00 = gµν∂µ∂νh00 − 4Γ σ

α0∂αhσ0 − gαβΓ ϱ
αβ∂ϱh00+

+2gαβhσ0(−∂βΓ σ
0α + Γ ϱ

αβΓ σ
ϱ0 + Γ ϱ

0βΓ σ
αϱ) + 2gαβhϱσΓ ϱ

β0Γ σ
α0 (4.2)

the angular derivatives in the first term are transformed by means of the basic relation for spherical
harmonics

(∂2
2 + cot ϑ∂2 + 1

sin2 ϑ
∂2

3)Y m
l = −l(l + 1)Y m

l . (4.3)

Then we obtain

∇α∇αh00 = −∂2
0H2 + ea−b[∂2

1H2 + (2a′′ − a′2)H2] − l(l + 1)
r2 ea−cH2−

−2a′∂0H1 + ea−b∂1H2

(a′ − b′

2
+ c′ + 2

r

)
. (4.4)

Another long computation is the last term in (4.1). It is equal to

∇αfα − ∇β∇βhα
α = e−a∂2

0(2K − H2) − 2e−a∂0∂1H1 − e−b∂2
1(H2 + 2K)+

+ l(l + 1)
r2 e−cK + e−a∂0H1

(a′

2
− 3

2
b′ − 2c′ − 4

r

)
−

−e−b∂1H2

(3
2

a′ + 3
2

b′ + 2c′ + 4
r

)
+e−b∂1K(b′ − a′ − c′ − 2

r
)+

+e−bH2

[(b′ − a′

2
− c′ − 2

r

)(
a′ + 2b′ + c′ + 2

r

)
−a′′ − 2b′′ − c′′ + 2

r2

]
+e−bK

[
−

(b′ − a′

2
− c′ − 2

r

)(
c′ + 2

r

)
+c′′ − 2

r2

]
. (4.5)
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There are three contributions from the Riemann tensor: R1
010, R2

020 and R3
030. Putting everything together

we finally get the desired matter density from

16πeaδϱ = 2δG00 = 2ea−b∂2
1K − ea−c l(l + 1)

r2 K − a′∂1H1+

+∂0H1(3
2

a′ − b′

2
) + ∂1H2ea−b(2b′ + c′ + 2

r
) + ea−b∂1K(c′ + 2

r
− b′)+

+H2ea−b
[ l(l + 1)

r2 − 4a′′ − 2b′′ − c′′ − 3
2

a′2 − 2a′b′ + b′2 − a′(c′ + 2
r2

)
−

−2a′2 − a′b′

2
+ b′2 +

(
c′ + 2

r

)(
−3

2
a′ − 3

2
b′

)
−

(
c′ + 2

r

)2
+ 2

r2

]
+

+Kea−b
[(

c′ + 2
r

)(5
2

a′ − b′

2

)
+

(
c′ + 2

2

)2
+c′′ − 2

r2

]
. (4.6)

The other diagonal components give the pressure according to (3.8), but since it is not easily measurable
we do not compute it here.

To calculate the mass density profile the metric perturbations K,H1 and H2 are now needed. These
are known in the bulge (3.29), if we know the circular velocity squared w(r) in (2.41-43). In the core
near the central black hole we may assume the Schwarzschild value (2.44)

w(r) = rs

2r

because it is used if one determines the mass of the black hole. Then from (3.29) and (2.41-43) we find

K = C1
w6

w′8/3 (1 − 2w)4/3 = C2r−2/3
(

1 − rs

r

)4/3
. (4.7)

Here C1 and C2 are constants of integration which contain the Schwarzschild radius rs. For the moment
it is sufficient to expand the results for r large compared to rs and calculate the leading order. Then we
have K ∝ r−2/3 and all terms in (4.6) go with the same power of r, namely

δϱ(r) ∝ r−8/3. (4.8)

If one tries to test this result against observations one should keep in mind that this is the gravitational
density profile. It may be changed by other physical processes.

In the disk the integration of the three evolution equations (3.18), (3.23) and (3.26) is more compli-
cated because of the time dependence. Since the time only appears in derivatives we go over to Fourier
transformed quantities

K̂(ω, r) = (2π)−1/2
∫

K(t, r)e−iωtdt (4.9)

and similarly for H1 and H2 and we omit the hats in the following. Then each derivative ∂0 gives a factor
iω. The three equations now become

∂1H1 = iω(K − H2) − b′H1 (4.10)

∂1((H2 − K) + 2b′H2 − K(c′ + 2
r

) + iωeb−aH1 = 0 (4.17)

2iω∂1K + (2b′ + c′ + 2
r

)iωH2 − (a′ + c′ + 2
r

)iωK+

a′ − b′

2
∂1H1 + g1(r)H1 = 0. (4.18)

To get completely real equations we divide by iω and introduce the new metric function

H3(ω, r) = H1

iω
. (4.19)
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Then we obtain the following first order ordinary differential equations

∂1H3 = K − H2 − b′H3 (4.20)

2∂1K = K
(a′ + b′

2
+ c′ + 2

r

)
+H2

(a′

2
− 5

2
b′ − c′ − 2

r

)
+

+H3

(
b′ a′ − b′

2
− g1(r)

)
(4.21)

∂1H2 − ∂1K = ω2H3eb−a − 2b′H2 + K(c′ + 2
r

). (4.22)

If the rotation curve in the disk is known, on can determine the metric functions a, b and c from (2.41-
43). Then these equations can be numerically integrated by any ODE-solver. This yields the metric
perturbations and by (4.6) the matter density in Fourier transformed form.

5 Conclusions

In standard theories of galaxies one assumes some matter distribution, typically with a disk, a bulge
and a halo of hypothetical dark matter. Then one calculates the rotation curves by means of Newtonian
gravity, saying that the velocities of the stars are small so that the relativistic theory is not needed.
However, to understand the nontrivial rotation curves there are two possibilities: Either there is dark
matter and Newton is right - or Newton is wrong. Since direct searches for dark matter have been negative
we advocate the second possibility. But different from the MOND paradigm we fully believe in general
relativity as the correct gravity theory on all scales. After all it would be curious if this beautiful theory
would only be needed to calculate small corrections to Newton apart from singular phenomena as black
holes and the early universe.

Our main conclusion is that general relativity is strongly at work in galaxies. In contrast to standard
theory we do not start from some matter distribution, but from the observed rotation curves. They
provide the gravitational background of the galaxy and the perturbed Einstein’s equations then give the
matter density. In this way the structure of disk galaxies is derived from the theory, not assumed. A
last highlight can be added. The Milky Way and other galaxies are surrounded by satellite galaxies [7]
which are located in planes ϕ = const. perpendicular to the disk. Applying our perturbation theory to
those planes we find non-zero solutions for the metric perturbations and, hence, for the matter density.
So even this detail is correctly described by galactic general relativity. The standard dark matter theory
is in difficulty here [7].
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Appendix

Here we calculate

2δG01 = ∇1f0 + ∇0f1 − 2gσαRϱ
0σ1hϱα − ∇1∇0hα

α − ∇α∇αh01. (A.1)

First we compute
∇α∇αh01 = gµν∂µ∂νh01 − 2Γ σ

α0∂αhσ1 − 2Γ σ
α1∂αhσ0+
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+gαβhσ1(−∂βΓ σ
0α + Γ ϱ

αβΓ σ
ϱ0 + Γ ϱ

0βΓ σ
αϱ). (A.3)

The second order differential operator is equal to[
e−a∂2

0 − e−b∂2
1 − e−c

r2 ∂2
ϑ − e−c

r2 sin2 ϑ
∂2ϕ

]
h01 =

=
[
e−a∂2

0 − e−b∂2
1

]
h01 + e−c l(l + 1)

r2 ebH1Y m
l (ϑ, ϕ) (A.4)

where we have transformed the angular derivatives by means of the identity (4.3). The term with cot ϑ
drops out so that the final result is proportional to Y :

∇α∇αh01 =
[(

e−a∂2
0 − e−b∂2

1 − e−c l(l + 1)
r2

)
ebH1 + ∂1H1(a′

2
+ 3

2
b′ − c′ − 2

r
)+

+2a′∂0H2 + H1

(a′′ + b′′

2
+ a′2 + b′2 − a′b′ + a′c′

2
− b′c′

2
+ a′ − b′

r

)]
Y. (A.5)

Next we compute

∇1f0 = ∂1f0 − Γ 0
01f0 =

[
−∂1∂0H2 − ∂2

1H1 + ∂1H1

(a′

2
− b′ − c′ − 2

r

)
+

+a′

2
∂0H2 + H1

(
−b′′ − c′′ + a′b′

2
+ a′c′

2
+ a′

r
+ 2

r

)]
Y (A.6)

and
∇0f1 = ∂0f1 − Γ 0

01f0 =

=
[
eb−a∂2

0H1 + ∂0∂1H0 + 2b′∂0H0 + a′∂0H2 + ∂0H0

(a′

2
+ c′ + 2

r

)
+a′

2
∂1H1−

−(c′ + 2
r

)∂0K + a′

2

(
b′ + c′ + 2

r

)
H1

]
Y. (A.7)

From the Riemann tensor we obtain

g11R0
101 = e−b

(a′b′

4
− a′′

2
− a′2

4

)
times −2h01. Finally

∇1∇0hα
α = ∂1∂0hα

α − Γ 0
01∂9hα

α = −2∂1∂0K + a′∂0K.

Inserting everything into (A.1) we get the equation (3.26) with

g1(r) = a′′ − b′′

2
− c′′ − a′2

2
+ 3

2
a′b′ + b′c′

2
+ a′

2

(
c′ + 2

r

)
+ 2

r2 − eb−c l(l + 1)
r2

]
. (A.8)
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