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Abstract This paper designs the recursive least-squares (RLS) Wiener finite impulse response
(FIR) predictor and filter, based on the innovation approach, in linear discrete-time stochastic
systems. It is assumed that the signal is observed with additive white noise and the signal process
is uncorrelated with the observation noise process. This paper also presents the recursive algorithms
for the estimation error variance functions of the proposed RLS Wiener FIR predictor and filter. A
numerical simulation example shows the estimation characteristics of the RLS Wiener FIR predictor
and filter. Specifically, the estimation characteristics of the proposed RLS Wiener FIR filter and
predictor are compared with those of the existing RLS Wiener FIR filter and the RLS Wiener
predictor, derived based on the existing RLS Wiener filter, respectively.
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1 Introduction

In [1], the finite impulse response (FIR) filter and smoother are proposed, given continuous time-invariant
state-space models. The FIR estimation algorithms calculate the Riccati-type differential equations on a
finite interval. In comparison with the conventional recursive filter which necessitates observed value at
each time increasingly, the FIR filter has the property of improving filter divergence due to modeling
errors and the signals in systems under sudden changes [2], [3]. Jazwinski [2] and Schweppe [4] devise the
FIR filter, given discrete-time state-space models without input noise. Bruckstein and Kailath [5] present
the recursive FIR filter, provided that the state-space models with input noise in both continuous-time
and discrete-time stochastic systems. In [6]-[8], receding horizon Kalman FIR filtering algorithms are
proposed in continuous-time and discrete-time stochastic systems. Also, the H2 FIR smoother [9] and
the H∞ FIR smoother [10] are presented, given discrete-time state-space models. Alternatively to the
Kalman estimator, which necessitates the state-space model, the filter, the fixed-point smoother [11] and
the fixed-lag smoother [12] are proposed, under the condition that the covariance information of the signal
and observation noise processes is given, in linear continuous-time stochastic systems. In [11] and [12], the
auto-covariance function of the signal process is expressed in the form of the semi-degenerate kernel. In
[13], the recursive least-squares (RLS) Wiener FIR filtering algorithm is presented in linear discrete-time
stochastic systems. In [14], by using the covariance information, the RLS-FIR filter is designed in linear
continuous-time stochastic systems. In [14], the auto-covariance function of the signal process is expressed
in the form of the semi-degenerate kernel. Also, in linear discrete-time stochastic systems, the RLS Wiener
FIR fixed-lag smoothing and filtering algorithms [15] are proposed. In [15], the typos in the RLS Wiener
FIR filtering algorithm [13] are corrected. In [16], the RLS-FIR smoother is presented in estimating the
signal at each start time of the finite interval in linear continuous-time stochastic systems. Here, the
auto-covariance function of the signal process is expressed in the semi-degenerate kernel form.

In comparison with the Kalman estimators, the RLS Wiener estimators do not necessitate the
information of the input noise variance and the input matrix in the state-space model. The RLS Wiener
estimators do not bring unnecessary estimation errors caused by the approximations of the input noise
variance and the input matrix. In the estimation problems, the filtering, smoothing and prediction
algorithms are interesting [17]. Compared with the RLS Wiener estimators, by using updated observed
values, the RLS Wiener FIR estimators calculate the estimates of the signal recursively in terms of
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observed values in the finite interval. This paper, in particular, focuses on the new designs of the RLS
Wiener FIR predictor and filter, based on the innovation approach, in linear discrete-time stochastic
systems. Specifically, this paper newly derives the RLS Wiener FIR filtering and prediction algorithms
which have feasible estimation characteristics and reduce the computation times in comparison with the
existing RLS Wiener FIR filter [15] and the RLS Wiener FIR predictor, obtained based on the RLS
Wiener filter in [15], respectively. It is assumed that the signal process is uncorrelated with the observation
noise process. In accordance with the stability of the proposed RLS Wiener FIR predictor and filter, this
paper also presents the recursive algorithms for the estimation error variance functions of the RLS Wiener
FIR predictor and filter.

Section 3 presents the RLS Wiener FIR prediction and filtering algorithms in Theorem 1. Section 4
discusses on the stability of the proposed RLS Wiener FIR predictor and filter based on the prediction
and filtering error variance functions. Section 5 shows a numerical simulation example of the proposed
RLS Wiener FIR predictor and filter. The estimation characteristics of the proposed RLS Wiener FIR
filter and predictor are compared with those of the existing RLS Wiener FIR filter [15] and the RLS
Wiener predictor, derived based on the RLS Wiener filter in [15].

Section 2 introduces the preliminary formulation on the FIR prediction and filtering problems based
on the innovation approach.

2 RLS Wiener Prediction and Filtering Problems

Let the time-invariant state equation and the observation equation be represented by

x(k + 1) = Φx(k) + w(k),
y(k) = z(k) + υ(k), z(k) = Hx(k), (1)

in linear discrete-time stochastic systems. Here, k ∈ R denotes time, x(k) ∈ RN is the state vector,
w(k) ∈ RN is white input noise, y(k) ∈ RM is the observed value, Φ ∈ RN×N is the state-transition
matrix, H ∈ RM×N is the observation matrix, z(k) ∈ RM is the signal vector and υ (k) ∈ RM is white
observation noise. Let the auto-covariance functions of w(k) and υ(k) be given by

E
[
w (k)wT (s)

]
= QδK (k − s) , Q > 0,

E
[
υ (k) υT (s)

]
= RδK (k − s) , R > 0. (2)

Here, δK(·) denotes the Kronecker δ function. It is assumed that the signal and observation noise are
mutually independent stochastic processes with zero means.

Let K(k, s) represent the auto-covariance function of the state vector and let K(k, s) be expressed in
the semi-degenerate kernel form [15] of

K (k, s) =
{
α (k)βT (s) , 0 ≤ s ≤ k,
β (k)αT (s) , 0 ≤ k ≤ s,

α (k) = Φk, βT (k) = Φ−kK (k, k) .
(3)

Here, α(k) and β(s) are bounded square matrices of order N .
Let a m-step ahead FIR prediction estimate x̂(k +m|k − L+ 1, k) of the state vector x(k +m) be

given by

x̂ (k +m|k − L+ 1, k) =
k∑

i=k−L+1
g(k, i)ν(i),

ν(i) = y (i)−HΦx̂f (i− 1|i− 1− L+ 1, i− 1) ,
(4)

as a linear transformation of the innovation process ν(i), k − L+ 1 ≤ i ≤ k, of finite interval L. Here,
g(k, i) is referred to as the impulse response function and let x̂f (i− 1|i− 1− L+ 1, i− 1) represent the
FIR filtering estimate of x(i− 1). By introducing an impulse response function gf (k, i), the FIR filtering
estimate x̂f (k|k − L+ 1, k) of x(k) is expressed as

x̂f (k|k − L+ 1, k) =
k∑

i=k−L+1
gf (k, i) ν (i) (5)
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based on the innovation process ν(i), k − L+ 1 ≤ i ≤ k.
The impulse response function, which minimizes the mean-square value of the FIR prediction error

x(k +m)− x̂(k +m|k − L+ 1, k),

J = E[‖x(k +m)− x̂(k +m|k − L+ 1, k)‖2], (6)

satisfies

E
[
x (k +m) νT (s)

]
=

k∑
i=k−L+1

g (k, i)E
[
ν (i) νT (s)

]
dτ (7)

by an orthogonal projection lemma [17]

x (k +m)− x̂ (k +m|k − L+ 1, k)⊥ν (s) , k − L+ 1 ≤ s ≤ k. (8)

Here, “⊥” denotes the notation of the orthogonality. From (1), (2) and (8), the impulse response function
g(k, s), for the linear RLS Wiener FIR prediction estimate, satisfies

g (k, s)Λ (s) = K (k +m, s)HT −
s−1∑

i=s−1−L+1
g(k, i)Λ(i)gTf (s− 1, i)ΦTHT . (9)

Here,Λ(s) is the auto-variance function of the innovation process and is given by Λ(s) = E[ν (s) νT (s)].
Similarly to the derivation of (9), the impulse response function gf (k, s), which yields the RLS Wiener
FIR filtering estimate in (5), satisfies

gf (k, s)Λ (s) = K (k, s)HT −
s−1∑

i=s−1−L+1
gf (k, i)Λ(i)gTf (s− 1, i)ΦTHT . (10)

Based on the preliminary formulation on the RLS Wiener FIR prediction and filtering problems, the
RLS Wiener FIR prediction and filtering algorithms are proposed in section 3.

3 RLS Wiener FIR Prediction and Filtering Algorithms

Starting with (9) and (10) for the optimal impulse response functions, we derive the RLS Wiener FIR
prediction and filtering algorithms for the signal based on the invariant imbedding method [15], [16].
Theorem 1 presents the RLS Wiener FIR prediction and filtering algorithms.

Theorem 1 Let the state equation and the observation equation be given by (1) in linear time-invariant
stochastic systems. Let the auto-covariance function of the state vector x(k) be given by (3) in the
semi-degenerate kernel form. Then the algorithms for the RLS Wiener FIR prediction and filtering
estimates consist of (11)-(17).

m-step ahead RLS Wiener FIR prediction estimate of the signal z(k +m): ẑ(k +m|k − L+ 1, k)

ẑ(k +m|k − L+ 1, k) = Hx̂(k +m|k − L+ 1, k) (11)

m-step ahead RLS Wiener FIR prediction estimate of the state vector x(k+m): x̂(k+m|k−L+ 1, k)

x̂(k +m|k − L+ 1, k) = Φmx̂f (k|k − L+ 1, k) (12)

RLS Wiener FIR filtering estimate of the signal z(k): ẑ(k|k − L+ 1, k)

ẑ(k|k − L+ 1, k) = Hx̂f (k|k − L+ 1, k) (13)

RLS Wiener FIR filtering estimate of the state vector x(k): x̂f (k|k − L+ 1, k)

x̂f (k|k − L+ 1, k) = Φx̂f (k − 1|k − 1− L+ 1, k − 1)
+gf (k, k) (y (k)−HΦx̂f (k − 1|k − 1− L+ 1, k − 1))
−ΦLgf (k − L, k − L) (y (k − L)−HΦx̂f (k − L− 1|k − L− 1− L+ 1, k − L− 1))

(14)
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(Initial condition of x̂f (k|k − L+ 1, k) at k = L: ˆ̄xf (L|1, L) )

Filter gain: gf (k, k)

gf (k, k) = (K (k, k)HT − ΦS (k − 1)ΦTHT )Λ−1(k) (15)

Variance function of the innovation process ν(k): Λ(k)

Λ(k) = (HK (k, k)HT +R−HΦS (k − 1)ΦTHT ) (16)
Variance function of the filtering estimate x̂f (k, k): S(k)

S (k) = ΦS (k − 1)ΦT + gf (k, k)Λ(k)gTf (k, k)
−ΦLgf (k − L, k − L)Λ(k − L)gTf (k − L, k − L) (ΦT )L (17)

(Initial condition of S(k) at k = L: S̄(L))

Initial conditions ˆ̄xf (L|1, L) and S̄(L), required in the difference equations (14) and (17) respectively
for the RLS Wiener FIR filtering estimate x̂f (k|k − L+ 1, k) and the variance function of the filtering
estimate x̂f (k, k), S(k), are calculated by (18)-(20) recursively.

Filtering estimate of x(L): ˆ̄xf (L|1, L)

ˆ̄xf (L|1, L) = Φˆ̄xf (L− 1|1, L− 1) + ḡf (L,L)
(
y (L)−HΦˆ̄xf (L− 1|1, L− 1)

)
,

ˆ̄xf (0|1, 0) = 0 (18)

Filter gain: ḡf (L,L)

ḡf (L,L) = (K (L,L)HT − ΦS̄ (L− 1)ΦTHT )Λ̄−1 (L) ,
Λ̄(L) =HK(L,L)HT +R−HΦS̄(L− 1)ΦTHT

(19)

Variance function of the filtering estimate ˆ̄xf (L|1, L): S̄ (L)

S̄ (L) = ΦS̄ (L− 1)ΦT + ḡf (L,L) Λ̄ (L) ḡTf (L,L) ,
S̄ (0) = 0 (20)

Proof of Theorem 1 is deferred to the Appendix.
It is seen, based on the RLS Wiener FIR filter [15], that the m-step ahead RLS Wiener prediction

estimates of the signal z(k) and the state vector x(k) are calculated by (11) and (12). Here, the filtering
estimate of the state vector x(k) by the RLS Wiener FIR filter in [15] is substituted into x̂f (k|k−L+ 1, k)
in (12).

The number of the difference equations included in the current RLS Wiener FIR filter is N(N+1)/2+N
in comparison with 5N2 + 2N in the RLS Wiener FIR filter [15]. As for the calculations of the initial
conditions, the proposed RLS Wiener FIR filtering algorithm includes N(N+1)/2+N difference equations
against 6N2 + 2N in [15]. Hence, in the calculations of the estimates, the proposed RLS Wiener FIR
filter and predictor need less computation times than the RLS Wiener FIR filter in [15] and the RLS
Wiener FIR predictor, obtained based on the RLS Wiener FIR filter in [15], respectively.

Section 4 presents the algorithms for the estimation error variance functions of the proposed RLS
Wiener FIR predictor and filter.

4 Estimation Error Variance Functions of RLS Wiener FIR Predictor and
Filter

By referring to Theorem 1, the estimation error variance function Pz̃(k+m) of the proposed RLS Wiener
FIR predictor is formulated as follows.

Pz̃ (k +m) = E[(z(k +m)− ẑ(k +m|k − L+ 1, k))(z(k +m)− ẑ(k +m|k − L+ 1, k))T ]
= HK(k +m, k +m)HT −HE

[
x̂(k +m|k − L+ 1, k)x̂T (k +m|k − L+ 1, k)

]
HT

= HK(k +m, k +m)HT −HΦmE
[
x̂(k|k − L+ 1, k)x̂T (k|k − L+ 1, k)

]
(ΦT )mHT

= HK(k +m, k +m)HT −HΦmS(k)(ΦT )mHT
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Here, the auto-variance function S(k) of the filtering estimate x̂(k|k − L + 1, k) is calculated by (17)
recursively. The auto-variance function Pẑ(k + m) of the RLS Wiener FIR prediction estimate ẑ(k +
m|k − L + 1, k) is given byHΦmS(k)(ΦT )mHT . Since the RLS Wiener FIR prediction error variance
function Pz̃(k +m) is the positive semi-definite matrix, it is seen that Pẑ(k +m) is upper bounded by
HK(k +m, k +m)HT and lower bounded by the zero matrix as

0 ≤ P ẑ (k +m) ≤ HK(k +m, k +m)HT , Pẑ(k +m) = HΦmS(k)(ΦT )mHT . (21)

(21) indicates that the proposed RLS Wiener FIR predictor is stable, provided that the function HK(k +
m, k+m)HT is bounded. Similarly to the RLS Wiener FIR prediction error variance function Pz̃(k+m),
from the RLS Wiener FIR filtering error variance function Pz̃(k), given by HK(k, k)HT −HS(k)HT ,
the auto-variance function Pẑ(k) of the RLS Wiener FIR filtering estimate ẑ(k|k − L + 1, k) is upper
bounded by HK(k, k)HT and lower bounded by the zero matrix as

0 ≤ P ẑ (k) ≤ HK(k, k)HT , Pẑ (k) = HS(k)HT . (22)

(22) indicates that the proposed RLS Wiener FIR filter is stable, under the condition that the function
HK(k, k)HT is bounded.

Section 5 shows a numerical simulation example of the proposed RLS Wiener FIR prediction and
filtering algorithms.

5 A Numerical Simulation Example

Let a scalar observation equation be given by

y (k) = z(k) + v(k), z(k) = Hx(k). (23)

Here, H represents the observation vector and x(k) represents the state vector. Let the observation
noise v(k) be a zero-mean white Gaussian process with the variance R, N(0, R). Let the auto-covariance
function of the signal z(k) be given by

Kz (k, s) = HΦk−sK(s, s)HT , 0 ≤ s ≤ k, (24)

where K(s, s) = K(0) represents the variance of the state vector x(s) in wide-sense stationary stochastic
systems and Φ represents the system matrix.

Let us consider the signal z(k), which is generated by the second-order autoregressive (AR) model.

z (k + 1) = −a1z (k)− a2z (k − 1) + w (k) , E [w (k)w (s)] = σ2δK (k − s) ,
a1 = −0.1, a2 = −0.8, σ = 0.5. (25)

Here, the state-space model for z(k) is given by

z (k) = Hx (k) = x1 (k) , H = [1 0] , x (k) =
[
x1(k)
x2(k)

]
,[

x1(k + 1)
x2(k + 1)

]
=
[

0 1
−a2 −a1

] [
x1(k)
x2(k)

]
+
[

0
1

]
w (k) .

(26)

In this case, the auto-covariance function Kz(·) of the signal z(k) is given by [18]

Kz (0) = σ2,

Kz(m) = σ2 α1(α2
2−1)αm

1
(α2−α1)(α2α1+1) −

α2(α2
1−1)αm

2
(α2−α1)(α2α1+1) , 0 < m,

α1, α2=−a1±
√
a2

1−4a2
2 .

(27)

Hence, with regards to the calculations of the RLS Wiener FIR prediction and filtering algorithms, the
necessary quantities are as follows.

K (k, k) =
[
Kz(0) Kz(1)
Kz(1) Kz(0)

]
, H = [1 0] , Φ =

[
0 1
−a2 −a1

]
,Kz (0) = 0.25, Kz (1) = 0.125. (28)
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If we substitute (28) into the RLS Wiener FIR prediction and filtering algorithms of Theorem 1, we
can calculate the prediction and filtering estimates recursively. Fig.1 illustrates the signal z(k) and the
RLS Wiener FIR one-step ahead prediction estimate ẑ(k+1|k−L+1, k) vs. k, 30 < k < 200, for the finite
interval L = 30 and the white Gaussian observation noise N(0, 0.12). Fig.2 illustrates the mean-square
values (MSVs) of the one-step ahead prediction errors z(k+ 1)− ẑ(k+ 1|k−L+ 1, k) by the RLS Wiener
FIR predictor vs. the finite interval L for the white Gaussian observation noises N(0, 0.12), N(0, 0.32),
N(0, 0.52) and N(0, 0.72). For the finite interval L, less than or equal to L = 90, as L becomes large,
the MSVs by the RLS Wiener FIR predictor decrease. At around L = 90, the MSV has the smallest
value for the respective observation noise. Here, the MSV of the RLS Wiener FIR prediction errors is

calculated by
L+299∑
k=L

(z (k + 1)− ẑ(k + 1|k − L+ 1, k)2/300. Fig.3 illustrates the MSVs of the prediction

errors z(k+m)− ẑ(k+m|k−L+1, k), L = 50, vs. the prediction step m, 1 ≤ m ≤ 5, by the proposed RLS
Wiener FIR predictor and the MSVs of the filtering errors z(k)− ẑ(k|k − L+ 1, k), in the case of m = 0,
by the proposed RLS Wiener FIR filter for the white Gaussian observation noises N(0, 0.12), N(0, 0.32),
N(0, 0.52) and N(0, 0.72). In Fig.3, as the prediction step increases, the prediction accuracy is degraded for
each observation noise. Fig.4 illustrates the MSVs of the prediction errors z(k+m)− ẑ(k+m|k−L+ 1, k),
L = 100, vs. the prediction step m, 1 ≤ m ≤ 5, by the proposed RLS Wiener FIR predictor and the
MSVs of the filtering errors z(k)− ẑ(k|k − L+ 1, k), in the case of m = 0, by the proposed RLS Wiener
FIR filter for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72). In
Fig.4, as the prediction step increases, the prediction accuracy is degraded for each observation noise.
From Fig.3 and Fig.4, it is seen that the prediction accuracy for the finite interval L = 100 is superior to
the case of L = 50. Fig.5 illustrates the MSVs of the filtering errors z(k)− ẑ(k|k − L+ 1, k) vs. the finite
interval L by the proposed RLS Wiener FIR filter for the white Gaussian observation noises N(0, 0.12),
N(0, 0.32), N(0, 0.52) and N(0, 0.72). Here, the MSV of the RLS Wiener filtering errors is calculated by
L+299∑
k=L

(z (k)− ẑ(k|k − L+ 1, k)2/300. In Fig.5, as the finite interval L increases, the filtering accuracy is

improved for each observation noise. At around L = 90, the MSV has the smallest value for the respective
observation noise. Fig.6 illustrates the MSVs of the filtering errors z(k)− ẑ(k|k − L+ 1, k) vs. the finite
interval L by the RLS Wiener FIR filter in [15] for the white Gaussian observation noises N(0, 0.12),
N(0, 0.32), N(0, 0.52) and N(0, 0.72). In Fig.6, the MSV for the observation noise N(0, 0.32) shows abrupt
increase at the finite interval L = 30. In Fig.5 and Fig.6, the MSVs of the filtering errors at around
L = 90 are almost same. From Fig.5, the proposed RLS Wiener FIR filter shows smooth decrease of
the MSV of the filtering errors as the finite interval L increases in comparison with Fig.6. This shows
that the proposed RLS Wiener FIR filter has the feasible estimation property. Fig.7 shows the MSVs of
the one-step ahead prediction errors z(k + 1)− ẑ(k + 1|k − L+ 1, k) by the RLS Wiener FIR predictor,
obtained based on the RLS Wiener FIR filter in [15], vs. the finite interval L for the white Gaussian
observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72). In Fig.7, the MSV for the observation
noise N(0, 0.32) shows abrupt increase at the finite interval L = 30. In Fig.2 and Fig.7, the MSVs of the
prediction errors at around L = 90 are almost same. From Fig.2, the proposed RLS Wiener FIR predictor
shows smooth decrease of the MSV of the prediction errors as the finite interval L increases in comparison
with Fig.7. This shows that the proposed RLS Wiener FIR predictor has the feasible estimation property.

6 Conclusions

This paper has proposed the RLS Wiener FIR predictor and filter, based on the innovation approach, in
linear discrete-time stochastic systems. This paper also has presented the recursive algorithms for the
estimation error variance functions of the proposed RLS Wiener FIR predictor and filter. A numerical
simulation example has shown the estimation characteristics of the proposed RLS Wiener FIR predictor
and filter. From Fig.2 and Fig.5, at around the finite interval L = 90, the MSVs of the one-step ahead
prediction and filtering errors have the smallest values for the respective observation noise. Specifically,
from Fig.5 and Fig.6, the proposed RLS Wiener FIR filter has the feasible estimation property. Also,
from Fig.2 and Fig.7, the proposed RLS Wiener FIR predictor shows the feasible estimation property.

Furthermore, the number of the difference equations included in the current RLS Wiener FIR filter is
N(N+1)/2+N in comparison with 5N2 +2N in the RLS Wiener FIR filter [15]. As for the calculations of
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Figure 1. Signal z(k) and the RLS Wiener FIR one-step ahead prediction estimate ẑ(k + 1|k − L + 1, k) vs. k,
30 < k < 200, for the finite interval L = 30 and the white Gaussian observation noise N(0, 0.12).

10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Finite interval L

M
S
V
s
 
o
f
 
p
r
e
d
i
c
t
i
o
n
 
e
r
r
o
r
s

(a)

(b)

(c)

(d)

(a) FIR predictor for N(0,0.01).

(b) FIR predictor for N(0,0.09).

(c) FIR predictor for N(0,0.25).

(d) FIR predictor for N(0,0.49).

Figure 2. Mean-square values of the one-step ahead prediction errors z(k + 1)− ẑ(k + 1|k−L + 1, k) by the RLS
Wiener FIR predictor vs. the finite interval L for the white Gaussian observation noises N(0, 0.12), N(0, 0.32),
N(0, 0.52) and N(0, 0.72).

Frontiers in Signal Processing, Vol. 1, No. 2, October 2017 55

Copyright © 2017 Isaac Scientific Publishing FSP



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prediction step m

M
S
V
s
 
o
f
 
f
i
l
t
e
r
i
n
g
 
a
n
d
 
p
r
e
d
i
c
t
i
o
n
 
e
r
r
o
r
s

(a)

(b)

(c)

(d)

(a) FIR predictor for N(0,0.01).

(b) FIR predictor for N(0,0.09).

(c) FIR predictor for N(0,0.25).

(d) FIR predictor for N(0,0.49).

Figure 3. Mean-square values of the prediction errors z(k + m)− ẑ(k + m|k − L + 1, k), L = 50, by the proposed
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the MSV of the filtering errors z(k)− ẑ(k|k − L + 1, k), in the case of m = 0, by the proposed RLS Wiener FIR
filter for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72).
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(c) FIR predictor for N(0,0.25).

(d) FIR predictor for N(0,0.49).

Figure 4. Mean-square values of the prediction errors z(k + m) − ẑ(k + m|k − L + 1, k), L = 100, vs. the
prediction step m, 1 ≤ m ≤ 5, by the proposed RLS Wiener FIR predictor and the MSV of the filtering errors
z(k) − ẑ(k|k − L, k), in the case of m = 0, by the proposed RLS Wiener FIR filter for the white Gaussian
observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72).
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(d) FIR filter for N(0,0.49).

Figure 5. Mean-square values of the filtering errors z(k)− ẑ(k|k−L+1, k) vs. the finite interval L by the proposed
RLS Wiener FIR filter for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72).
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(a) FIR filter for N(0,0.01).

(b) FIR filter for N(0,0.09).

(c) FIR filter for N(0,0.25).

(d) FIR filter for N(0,0.49).

Figure 6. Mean-square values of the filtering errors z(k)− ẑ(k|k − L, k) vs. the finite interval L by the existing
RLS Wiener FIR filter in [15] for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and
N(0, 0.72).
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(a) FIR predictor for N(0,0.01).

(b) FIR predictor for N(0,0.09).

(c) FIR predictor for N(0,0.25).

(d) FIR predictor for N(0,0.49).

Figure 7. Mean-square values of the one-step ahead prediction errors z(k + 1)− ẑ(k + 1|k−L + 1, k) by the RLS
Wiener FIR predictor, obtained based on the RLS Wiener FIR filter in [15], vs. the finite interval L for the white
Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and N(0, 0.72).

the initial conditions, the proposed RLS Wiener FIR filter includes N(N + 1)/2 +N number of difference
equations against 6N2 + 2N in the RLS Wiener FIR filter in [15]. Hence, in the proposed RLS Wiener
FIR filter and predictor, the computation times of the estimates are reduced in comparison with the RLS
Wiener FIR filter in [15] and the RLS Wiener predictor, obtained from the RLS Wiener FIR filter in [15],
respectively.
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Appendix: Proof of Theorem 1

From the auto-covariance function (3) of the signal in the semi-degenerate kernel form, (9) is rewritten as

g (k, s)Λ (s) = α
(
k +m)βT (s

)
HT −

s−1∑
i=s−1−L+1

g(k, i)Λ(i)gTf (s− 1, i)ΦTHT . (A-1)

Let us introduce the function J (s), which satisfies

J (s)Λ (s) = βT (s)HT −
s−1∑

i=s−1−L+1
J(i)Λ(i)gTf (s− 1, i)ΦTHT . (A-2)

From (A-1) and (A-2), the impulse response function g (k, s) is given by

g (k, s) = α(k +m)J(s). (A-3)

Similarly, from (10), the impulse response function gf (k, s) is given by

gf (k, s) = α (k) J(s). (A-4)

By introducing a function

r (k) =
k∑

i=k−L+1
J(i)Λ(i)JT (i), (A-5)

J(k) satisfies
J(k) = (βT (k)HT − r(k − 1)αT (k − 1)ΦTHT )Λ−1(k). (A-6)

From (A-5), the difference equation for r(k) is written as

r(k) = r(k − 1) + J(k)Λ(k)JT (k)− J(k − L)Λ(k − L)JT (k − L). (A-7)

From (5) and (A-4), the filtering estimate is given by

x̂f (k|k − L+ 1, k) = α(k)e(k). (A-8)

Here, the function e(k) satisfies

e(k) =
k∑

i=k−L+1
J(i)ν(i). (A-9)

From (A-9), the difference equation for e(k) is given by

e(k) = e(k − 1) + J(k)(y(k)−HΦx̂f (k − 1|k − 1− L+ 1, k − 1))
−J(k − L)(y(k − L)−HΦx̂f (k − L− 1|k − L− 1− L+ 1, k − L− 1)). (A-10)
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From the auto-variance function of the innovation process ν(s), Λ(s) = E[ν(s)νT (s)], Λ(k) is expanded
as follows.

Λ(k) = E[ν(k)νT (k)]
= E[(y(k)−HΦx̂f (k − 1|k − 1− L+ 1, k − 1))(y(k)−HΦx̂f (k − 1|k − 1− L+ 1, k − 1))T ]
= K(k, k) +R−HΦE[x̂f (k − 1|k − 1− L+ 1, k − 1)x̂Tf (k − 1|k − 1− L+ 1, k − 1)]ΦTHT

= K(k, k) +R−HΦS(k − 1)ΦTHT

(A-11)

Here, we put the auto-variance function S(k) of the filtering estimate x̂f (k|k − L + 1, k) as S(k) =
E[x̂f (k|k − L + 1, k)x̂Tf (k|k − L + 1, k)]. From (5), (A-4) and (A-5), the function S(k) is expanded as
follows.

S(k) = E[x̂f (k|k − L+ 1, k)x̂Tf (k|k − L+ 1, k)]

=
k∑

i=k−L+1
gf (k, i)E[ν(i)νT (i)]gTf (k, i)

=
k∑

i=k−L+1
gf (k, i)Λ(i)gTf (k, i)

= α(k)
k∑

i=k−L+1
J(i)Λ(i)JT (i)αT (k)

= α(k)r(k)αT (k)

(A-12)

By substituting (A-7) into (A-12), from (3) and (A-4), the difference equation for S(k) is developed as
follows.

S(k) = α(k)(r(k − 1) + J(k)Λ(k)JT (k)− J(k − L)Λ(k − L)JT (k − L))αT (k)
= ΦS(k − 1)ΦT + gf (k, k)Λ(k)gTf (k, k)
−ΦLgf (k − L, k − L)Λ(k − L)gTf (k − L, k − L)(ΦT )L

(A-13)

From (A-8) and (A-10), the difference equation for the filtering estimate is derived as follows.

x̂f (k|k − L+ 1, k) = Φx̂f (k − 1|k − L, k − 1)
+gf (k, k)(y(k)−HΦx̂f (k − 1|k − 1− L+ 1, k − 1))
−ΦLgf (k − L, k − L)(y(k − L)−HΦx̂f (k − L− 1|k − L− 1− L+ 1, k − L− 1))

(A-14)

From (A-4) and (A-6), the filter gain gf (k, k) is obtained as

gf (k, k) = (K(k, k)HT − ΦS(k − 1)ΦTHT )Λ−1(k). (A-15)

From (4), (5), (A-3) and (A-4), the m-step ahead prediction estimate x̂(k +m|k − L+ 1, k) is related to
the filtering estimate x̂f (k|k − L+ 1, k) as

x̂(k +m|k − L+ 1, k) = Φmx̂f (k|k − L+ 1, k). (A-16)
Now, from (5), the initial condition on the difference equation (14) for the FIR filtering estimate

x̂f (k|k − L+ 1, k) at k = L, x̂f (L|1, L), is expressed as

x̂f (L|1, L) =
L∑
i=1

gf (L, i)ν̄(i),

ν̄(i) = y(L)−HΦˆ̄xf (L− 1|1, L− 1).
(A-17)

We denote the initial conditions x̂f (L, 1, L) as ˆ̄xf (L, 1, L) and gf (L, s) as ḡf (L, s) respectively. From
(A-4), ḡf (L, s) satisfies

ḡf (L, s) = α(L)J̄(s). (A-18)
Here, from (A-2), J̄(s) satisfies

J̄(s)Λ̄(s) = βT (s)HT −
s−1∑
i=1

J̄(i)
_
Λ(i)ḡTf (s− 1, i)ΦTHT . (A-19)
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From (A-17) and (A-18), the filtering estimate ˆ̄xf (L|1, L) is given by

ˆ̄xf (L|1, L) = α(L)
L∑
i=1

_
J(i)ν̄(i)

= α(L)e(L).
(A-20)

Here, the function e(L) is introduced.

e(L) =
L∑
i=1

_
J(i)ν̄(i) (A-21)

From (A-21), it follows that

e(L) = e(L− 1) +
_
J(L)(y(L)−HΦˆ̄xf (L− 1|1, L− 1)). (A-22)

Substituting (A-22) into (A-20) and using (A-18), we have

ˆ̄xf (L|1, L) = α(L)e(L)
= Φˆ̄xf (L− 1|1, L− 1) + α(L)

_
J(L)(y(L)−HΦˆ̄xf (L− 1|1, L− 1))

= Φˆ̄xf (L− 1|1, L− 1) + ḡf (L,L)(y(L)−HΦˆ̄xf (L− 1|1, L− 1)),
ˆ̄xf (0|1, 0) = 0.

(A-23)

From (A-18) and (A-19), the filter gain g ḡf (L,L) is formulated as

ḡf (L,L) = (K(L,L)HT − α(L)
L−1∑
i=1

J̄(i)Λ̄(i)ḡTf (L− 1, i)ΦTHT )Λ̄−1(L)

= (K(L,L)HT − ΦL
L−1∑
i=1

J̄(i)Λ̄(i)J̄T (i)(ΦT )LHT )Λ̄−1(L)

= (K(L,L)HT − ΦLr(L− 1)(ΦT )LHT )Λ̄−1(L)
= (K(L,L)HT − ΦS̄(L− 1)ΦTHT )Λ̄−1(L).

(A-24)

Here, we introduced the function r(L) and S̄(L), which are given by

r(L) =
L∑
i=1

J̄(i)Λ̄(i)J̄T (i),

S̄(L) = ΦLr(L)(ΦT )L.
(A-25)

The difference equation for r(L) is developed as

r(L) = r(L− 1) + J̄(L)Λ̄(L)J̄T (L), r(0) = 0. (A-26)

Substituting (A-26) into S̄(L) = ΦLr(L)(ΦT )L, we have the difference equation for
_
S(L) as follows.

S̄(L) = ΦS̄(L− 1)ΦT + ḡf (L,L)Λ̄(L)ḡTf (L,L), S̄(0) = 0 (A-27)

Finally, from the auto-variance function of the innovation process ν̄(L), Λ̄(L) = E[ν̄(L)ν̄T (L)], Λ̄(L)
is expanded as follows.

Λ̄(L) = E[ν̄(L)ν̄T (L)]
= E[(y(L)−HΦˆ̄xf (L− 1|1, L− 1))(y(k)−HΦˆ̄xf (L− 1|1, L− 1))T ]
= HK(L,L)HT +R−HΦE[ˆ̄xf (L− 1|1, L− 1)ˆ̄xTf (L− 1|1, L− 1)]ΦTHT

= HK(L,L)HT +R−HΦS̄(L− 1)ΦTHT

(A-28)

(Q.E.D.)
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