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Abstract. This paper discusses integrating multiple remotely sensed measurements, spatiotemporal 
databases, coastal hydrological modeling, and geospatial information analysis to study the impact of 
water level changes on the shoreline geometry in order to support coastal geospatial information 
systems and decision making. Different shorelines are generated using a CTM and a WSM. The CTM 
is generated using multiple remotely sensed datasets and spatiotemporal databases, while the WSM is 
provided using a coastal hydrological model. Two shoreline generalization schemes are implemented 
to simplify the shoreline geometry. Experiments for estimating the shoreline geometry at different 
water levels were performed using each generalization scheme. The relationship between the shoreline 
geometry and the water levels was studied. High correlation between water level changes and the 
changes in the shoreline geometry was observed. The proposed algorithm can be used in creating or 
updating coastal geospatial databases, managing the dynamic natural of shorelines, and making 
scientific decisions in coastal environments. 
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1   Introduction 

Shorelines are recognized as unique features on Earth. They are one of 27 global “geo-indicators” 
referred to by the International Union of Geological Science [1]. Despite their complexity, shorelines are 
widely used by the coastal and marine community. Shorelines are required to produce nautical charts, to 
define legal boundaries, and to derive offshore territorial limits. In addition, shorelines are crucial for 
many coastal applications including coastal development, coastal environmental protection, and coastal 
resource management and decision-making.  

Shorelines have never been stable in terms of their long-term and short-term positions. Shoreline 
changes are usually caused either by natural processes or human activities. The natural processes may 
be phenomena such as waves, wind, currents, storms and erosion. The human activities affecting the 
shorelines are, for example, land reclamation, recreation beaches, land-use of the coastal zones, and 
structures built along the shorelines. In a Geographic Information System (GIS) it is so far impossible to 
depict the dynamic characteristics of the shoreline. In practice, instantaneous shorelines cannot be 
directly used for shoreline mapping and navigation, nor can they be employed for quantifying shoreline 
changes. A shoreline that is defined based on a stable vertical datum can be treated as a reference 
shoreline and used to differentiate shoreline changes. Such a shoreline is called a tide-coordinated 
shoreline that is the linear intersection between the coastal land and a desired water level. 

The National Ocean Service (NOS) is responsible for the delineation of accurate tide-coordinated 
shorelines. These shorelines are defined when the water level coincides with either one of two standard 
tidal datum: Mean High Water (MHW) or Mean Lower Low Water (MLLW). The delineation process is 
accomplished by aerial photogrammetric surveys of the coast that are tide coordinated, i.e., timed to 
coincide closely with the time of MHW or MLLW. This process is expensive and needs special logistics 
and complicated processing procedures.  

Conventionally, shoreline mapping is carried out using filed surveying methods, such as plane tables, 
alidades, theodolites, and electronic positioning methods. In addition, current and historical aerial 
photographs have been used widely in shoreline mapping and change detection [2]. Since the late 1930's, 
National Geodetic Science (NGS) has been using georeferenced, high-resolution aerial photographs for 
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monitoring shoreline recession rates, beach changes, bluff tipping over, and relevant coastal changes [3]. 
Aerial images were used in [4] and [5] for analyzing shoreline positional changes. Satellite-imaging 
systems have also been utilized for monitoring coastal dynamics [6], [7], and [8]. In addition, other 
studies have integrated both historical aerial photographs and recent satellite imagery in 
assessing changes in areas neighbouring water bodies [9].  

Active remote sensing sensors, including light detection and ranging (LIDAR) and synthetic aperture 
radar (SAR), have also been investigated and evaluated. For example, LIght Detection And Ranging 
(LIDAR) datasets have been employed in shoreline mapping and change detection activities [10] and 
[11]. Other remote sensing technologies, such as Synthetic Aperture Radar (SAR), have also been used 
for similar applications [12]. Integrating active and optical remote sensing datasets provides reliable and 
automatic solutions for coastal mapping and change detection, [13] and [14].  

Changes in water levels have vital impact on shoreline geometry [15] and [16]. As water level rises, the 
shoreline responds by flooding or eroding. This can result in loss of land, increased vulnerability to 
flooding, accelerated erosion along the shore, and habitat loss. The water level of Lake Erie, for example, 
is continuously exhibiting natural fluctuation including: long-term, seasonal, and daily changes as a 
result of the complex interaction between climate, wind, precipitation, bathymetry, and water surface 
[17]. For Lake Erie, a wide range of recorded lake levels (6.2 ft), with a maximum of 574.3 ft in June 
1986 and a minimum of 568.1 ft in February 1936 has been observed [18]. The lake is a very dynamic 
waterbody and the shoreline is eroding by less than 1 meter per year [19].  

In this paper, the impact of water level changes on the shoreline geometry is investigated. First, 
shorelines are generated as the intersecting line between Coastal Terrain Models (CTM) and Water 
Surface Models (WSM). CTM are generated by combining Digital Terrain Models (DTM) that 
represents land topography and waterbed topography represented by bathymetry. Water surface models 
are estimated from a hydrological modeling system. Two shoreline generalization schemes are then 
examined using mathematical polynomial using fixed length and variable length generalization schemes. 
The evaluation of the results of both generalization schemes demonstrated that the variable length 
generalization scheme results are stable. This endorsed the use of the second scheme in this research. 
Experiments for estimating the shoreline polynomial coefficients at different water levels were then 
performed. Different shorelines were generated at different water levels. Then the shoreline polynomial 
coefficients were computed and the relationship between the polynomial coefficients and the water levels 
was examined. The results using different mathematical polynomials showed that the zero order 
polynomial coefficients are highly correlated with the water level changes. 

2   Generating Shorelines Using CTM and WSM 

A shoreline is a linear intersection of the water surface and the coastal land. In this research, coastal 
land is represented by the CTM and water surface is represented by the WSM. In this section the 
generation of the CTM and the WSM will be presented. 

2.1   CTM Generation 

The CTM contains the topographic information in a narrow zone of the coast and near-shore 
bathymetry. They are generated by combining the DTM representing land topography and the 
waterbed topography represented by bathymetry data. As figure 1 shows, the study area for coastline 
change analysis extends along the south shore of Lake Erie. The DEM was generated from National 
Elevation Dataset (NED) products, figure 1. NED is the United States Geological Survey (USGS) main 
source for topographic datasets. NED stores DEMs as a seamless raster elevation dataset for the U.S. at 
one arc-second (approximately 30 meters) grid spacing. These topographic data are collected mainly 
from USGS map-based DEM that have a resolution of either 10 meters or 30 meters. Bathymetry data 
was provided by the National Geophysical Data Center (NGDC) in the National Oceanic and 
Atmospheric Administration (NOAA), figure 2 [20]. The data has been compiled with a one-meter 
contour interval with scales ranging between 1:100,000 and 1:2,500. The bathymetry was generated from 
digital sounding data combined with archived sounding data. Trackline separations range from about 
125m to 500m for nearshore areas and 500m to 2500m for the open lake regions. 
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Figure 1. DTM for the study area. 

 

Figure 2. Lake Erie bathymetry data. 

Since both datasets are available from different sources, collected at different times with different 
specifications, they need to be registered horizontally and vertically. ArcGIS was used to register both 
datasets horizontally in the North American Datum of 1983 (NAD 83). In addition, the North American 
Vertical Datum of 1988 (NAVD 88) was selected as the vertical datum. Elevations conversion was 
implemented through VDatum. Water penetrating LIDAR bathymetric survey with the U.S. Army 
Corps of Engineers SHOALS (Scanning Hydrographic Operational Airborne LIDAR Survey) are utilized 
in these gaps. 
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2.2   Water Surface Generation 

The Water Surface Model (WSM) is created from tide gauge measurements surrounding Lake Erie. In 
the USA, there are eight gauge stations along the perimeter of Lake Erie that provide hourly water 
levels. The data of these stations is published by Center for Operational Oceanographic Products and 
Services (CO-OPS). In addition, there are seven stations on the Canidian side of the lake and they are 
managed by the Marine Environmental Data Service (MEDS). Spatial distribution of the stations is 
exhibited in figure 3. Kriging interpolation was utilized in generating water surfaces for the lake. This 
interpolation method estimates values modeled through a Gaussian process governed by prior 
covariances. It outputs the optimal linear unbiased prediction of the interpolated values under suitable 
assumptions on the priors [21]. Computed elevations are referenced to the International Great Lakes 
Datum of 1985 (IGLD 85). A hydraulic corrector needs to be applied to convert them to the NAVD 88 
dynamic heights. The dynamic heights are then transferred to conventional orthometric heights through 
equation 1 [22]. 

 
γ⋅

=
⋅

0

0.0424
dymH

H
g H

  (1) 

where H is the orthometric height, Hdym is the dynamic height, g is the gravity measured at a ground 
point and γ0 is normal gravity. 

 

Figure 3. Three interpolated water surfaces at different times. 

2.3   Extracting Shorelines from CTM and WSM 

Theoretically, a shoreline is derived by subtracting the WSM from the CTM. Those cells with 
differential value of zero represent the shoreline, figure 4. However, several challenges need to be 
carefully watched for and solved to obtain a high quality shoreline. Firstly, the subtraction result of the 
CTM and WSM needs to be smoothed so that the shorelines are continuous lines. We convolved the 
grid with a 2-D Gaussian smoothing operator to remove any noise. In addition, shoreline segments 
whose lengths are smaller than a predefined threshold are eliminated. Furthermore, a classification based 
on the elevation/bathymetry differential values is performed to delineate grid points into land, water, 
and land-water interaction points and to create a thematic image. Subsequently, a clump operation 
groups the same kinds of grid points together to form clumps of land, water, and land-water interaction 
areas. After a noise detection and deletion process, the refined clump image is used to find the shoreline 
which is defined as one of the boundaries of the clump areas. In shoreline detection, topological 
information indicating that a shoreline separates water from land is also checked. The raster or grid 
shoreline is then converted to the vector shoreline. Finally, after a visual inspection and editing process, 
the digital shoreline becomes available for various applications. More details could be found in [23]. 
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Figure 4. CTM and water surface intersection. 

3   Validation of Shoreline Generalization Using Mathematical Polynomial 

The 3D positions of the shoreline can be described, depending on the length and complexity of the 
shoreline, by a 3D complex line. In principle, the horizontal position of the shoreline can be presented 
using equation (2). 
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Equation (2) states that, x and y are functions of the coastland geometry Ω  and water surface Φ  
and it can be rewritten and simplified as ( = ( )y F x ). The function ( )F x can be represented by piece-
wise polynomials. In this research 1st and 2nd order polynomials will be used to represent the shoreline. A 
polynomial is an algebraic expression with one term receiving most of the attention in shape description. 
Generally, shapes are represented by parametric form and cannot be represented with one-value 
functions. Therefore, two-dimensional shapes are represented by sets of parameters for each coordinate 
of a point location (x,y). In this study, the shoreline will be divided into polynomial-pieces with either 
fixed length or variable lengths. The final objective is to verify that any shoreline can be represented 
using polynomials regardless of the shoreline shape. Two schemes are designed and implemented for this 
investigation. The Root Mean Square Error (RMS) for each scheme will be used to either validate or 
invalidate the generalization scheme. Five shorelines will be generated by intersecting five WSM at five 
randomly selected water levels and a coastal terrain model for the research area, figure 5. Each shoreline 
will be represented by a number of points with a sampling rate of 30 meters that corresponds to the 
coastal terrain model pixel size. 

A lest squares adjustment model, equation 3, is used with each scheme to compute the residuals. The 
horizontal (x and y) coordinates of the shorelines points will be used as observations. The polynomial 
coefficients will be used as the unknowns in the model. As output, the least squares model will produce 
the residual for each scheme. The residuals will then be used to compute the RMS for each scheme. 

 
+ =

= •( )t

Av BΔf
ΔB B f

  (3) 

where A is the coefficient matrix of the observations, v is the residual vector for the observations, B is 
the coefficient matrix of the unknown parameters, ∆ is the vector of unknown parameters, and f is the 
coefficient vector of the observation equations. 
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Figure 5. The CTM and the intersecting shorelines. 

3.1   Shoreline Generalization Using Fixed Length Spans 

The fixed length generalization of the shoreline was implemented using different spans (50, 100, 200, 500, 
and 1000 points). For each polynomial the residuals were computed. In order to conclude whether this 
generalization scheme is valid, it is tested using the following hypotheses: 

µ µ µ µ= ≠1: :o o oH H  

and 
σ σ σ σ= >1: :o o oH H  

For this test µo = 0.0 meter and σ = ±15o meters (these values are calculated based on the horizontal 
accuracy of the DTM derived by USGS) and at the level of significance (α ) is 95%. The results of the 
two tests for each shoreline span are shown in table 1, where x represents the sample mean and s 
represents the sample standard deviation. Table 1 shows that the results of testing the variance are not 
stable and are based on the shoreline span. The results show that for short shorelines, the test is 
accepted while for long shorelines the test is rejected. The results also suggest the use of short shoreline 
spans. However, these spans can’t be determinant and needs an extensive investigation and analysis for 
the shoreline to decide optimal shoreline spans. In addition, for some cases false spans might be 
generated in areas such as harbors. The same trend was observed for the case of 2nd order polynomial, 
table 2. 

Table 1. Results for 1st order shoreline generalization using fixed length spans 

Shoreline Span x  s Test of Mean Test of Variance 
50 0 2 Accepted Accepted 
100 0 3 Accepted Accepted 
200 0 3 Accepted Accepted 
500 0 32 Accepted Rejected 
1000 0 62 Accepted Rejected 
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Table 2. Results for 2nd order shoreline generalization using fixed length spans 

Shoreline Span x  s Test of Mean Test of Variance 
50 0 1 Accepted Accepted 
100 0 2 Accepted Accepted 
200 0 4 Accepted Rejected 
500 0 14 Accepted Rejected 
1000 0 32 Accepted Rejected 

3.2   Shoreline Generalization Using Variable Length Spans 

In order to overcome the deficiency of the fixed length shoreline generalization scheme, a variable length 
shoreline generalization scheme is implemented in this research. The scheme starts by having the first 
span of length (n+1) where (n) is the polynomial order, i.e. (n+1) points. Then a polynomial is fitted to 
these points. If a statistic representing the fitting residuals is smaller than a preselected threshold, the 
next point of the shoreline is added to the span and the statistic is recalculated. Points are added 
sequentially until the statistic gets larger than the threshold. In this case, the last point is not accepted 
and a new span starts. The process is recursively carried out until the entire shoreline is divided. The 
statistic used in this research is the RMS. The process is shown in figure 6. The results of examining a 
number of different thresholds are presented in table 3. The table shows that as the threshold increases 
the number of spans decreases. The process grantees that the maximum RMS is less than the 
preselected threshold. The threshold is selected based on the shoreline topography, the quality of the 
mapped shoreline, and the characteristics of the coastal area. 
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Figure 6. Shoreline generalization using variable length spans. 

Table 3. Results for 1st order shoreline generalization using variable length spans 

Threshold Maximum RMS Number of spans 
5 4.9 58 
15 14.9 27 
30 29.9 18 
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4   Impact of Water Level Changes on Changes in Shoreline Geometry 

4.1   Theoretical Analysis 

In order to justify the research concept, a theoretical investigation using the extracted shorelines is 
conducted. The process consists of three main steps. First, the water level over a long period is modeled. 
In the second step, polynomials are used to simulate the shoreline. For each polynomial, a 
parameterization scheme is implemented. In this process, the points contributing to the shoreline are 
used in a least square adjustment model to find the parameters representing the shoreline. In the last 
step, the effect of changing the water levels on the parameters that represent the shoreline geometry is 
analyzed. 

4.2   Water Level Generation 

The water heights are assumed to change on the long-term and short-term scales. At a given time (t), 
the water level can be computed using equation 4. 
 = +( ) ( ) ( )l sh t F t F t   (4) 
where ( )lF t  is a function that represents the long term water level changes, ( )sF t  a function that 
represents the short-term water level changes.  

A number of linear, curved, sinusoidal, and discontinuous functions are used to represent both ( )lF t  
and ( )sF t . For example, figure 7 shows a case of five-year change with a sudden change in water level 
after two years. The case is modeled through: 

 
 + ≤ ≤ ×= 

+ × ≤ ≤ ×
= + ≤ ≤ ×

0 365 2
( )

365 2 365 5
( ) sin( ) 0 365 5

l

s

at b t
F t

ct d t
F t e ft g t

  (5) 

where  a, b, c, d, e, f, g are constants and t is measured in days.  

 

Figure 7. Changes of water level over five years. 

4.3   Shorelines Generation 

In order to generate shorelines, simple geometry is used to represent the intersection between the water 
surface and the coastal land as shown in figure 8. The figure shows that a change (∆h) in water level 
will generate a change (∆p) in the shoreline position. The relation between (∆h) and (∆p) can be 
computed using the form (∆p = ∆h*s), where s represents the coastland slope. For this test s is selected 
to be 1/100. Moreover, two shoreline mathematical models are used to represent the horizontal location 
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of the shoreline: the 1st order polynomial model ( 01 axay += ) and the 2nd order polynomial model 
( 01

2
2 axaxay ++= ). 

h

p

1:s

h∆

∆p

 

Figure 8. Intersecting water level and coastal land. 

4.4   Effect of Water Level Changes on Shoreline Geometry 

The following scheme is used to investigate the effect of water level changes on the geometry of the 
shorelines. Let ( = +1 1

1 1 0y a x a ) represent the shoreline geometry at water level (h1) and ( = +2 2
2 1 0y a x a ) 

represent the shoreline geometry at water level (h2). The relationship between (h2) and (h1) is described 
as ( = + ∆2 1h h h ). The effect of the water level change (∆h) on the shoreline geometry is represented by 
(∆p). In this study, shorelines are assumed to be parallel, therefore ( = + ∆2 1

0 0a a p ) and ( =2 1
1 1a a ). This 

indicates that the changes in the parameter 0a are linearly correlated to the changes in water level. In 
addition, water level changes don’t affect the parameters 1a and 2a . This was verified by examining the 
shorelines generated at each water level and investigating the relationship between the shorelines 
parameters and the water level changes 

4.5   Relationship between Water Level Changes and Changes in Shoreline Geometry 

This section presents the analyses and modeling of the shoreline geometry changes as a respond to the 
water level rise or drop. Five shorelines are used and the statistic for each shoreline is computed. The 
maximum statistic is compared against the preselected threshold. If the maximum statistic is smaller 
than the threshold the next point of in each shoreline is added to each shoreline span and the statistics 
are recalculated. Points are added sequentially to each shoreline until the maximum statistic for each 
shoreline gets larger than the threshold. In this case, the last point in each shoreline is not accepted and 
new spans from the last point for each shoreline start. The process is recursively carried out until all 
shorelines are divided. The modified scheme provides sets of correspondence spans in all shorelines. In 
addition, it grantees that the maximum statistic is less than the preselected threshold. Figure 9 shows 
the generated spans for each shoreline using a 2nd order polynomial. For each span, the correlation 
coefficients between the polynomial coefficients and the water levels are computed. The maximum and 
minimum correlation coefficients are shown in table 4 for both 1st and 2nd order polynomial fittings. 

Table 4. Correlation between water level changes and shoreline geometry 

 1st Order Polynomial 2nd Order Polynomial 
 a0 a1 a0 a1 a2 

Max 
Corr. Coff. 0.99 0.95 0.99 0.99 0.81 

Min 
Corr. Coff. 0.94 -0.62 0.94 -0.66 -0.88 
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Figure 9. Generalized shorelines generated using variable length spans with a 30m threshold. 

5   Discussions and Conclusions 

In this paper, the impact of water level changes on shoreline geometry is investigated. First, shorelines 
are generating as the intersecting line between CTM and WSM. Then two shoreline generalization 
schemes are examined using mathematical polynomial to simplify the shoreline geometry using fixed 
length and variable length generalization schemes. The evaluation of the results of both generalization 
schemes demonstrated that the variable length generalization scheme results are stable. This supports 
the use of the second scheme in this research. Experiments for estimating the shoreline polynomial 
coefficients at certain water levels were then performed using both simulated and real data. Different 
shorelines were generated at different water levels. Then the shoreline polynomial coefficients were 
computed. Results using different mathematical polynomials showed that the zero order polynomial 
coefficients are highly correlated with the water level changes. Errors in the elevation model have a 
great impact on the proposed technique. In general, the elevation errors need to be smaller than the 
changes in water levels. Otherwise, there effect will superimpose the effect of the water level changes. A 
comprehensive analysis is needed to study the effect of all sources of errors in the system. This analysis 
should consider: the horizontal resolution of the elevation model, the accuracy of the estimated water 
level, the accuracy of the elevation model, and the accuracy of the extracted shoreline. 
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