
Dynamics of a Delayed Solow Model
with Effective Labor Demand

Sanaa ElFadily1*, Abdelilah Kaddar2 and Khalid Najib3

1Mohammed V University in Rabat, Mohammadia School of engineering, Rabat, Morocco
2Faculty of Juridical, Economic and Social Sciences of Salé, Mohammed V University in Rabat

3Ecole Nationale Supérieure des Mines de Rabat
Email: a.kaddar@yahoo.fr

Abstract In this paper, we propose a model of mutual interactions between the economically
active population and the economic growth. Our principal goal is to introduce a delayed equation
of the active population evolution. The time delay, resulting from the recruitment processes, is
incorporated in the effective labor demand. The dynamics are studied in terms of local stability and
of the description of the Hopf bifurcation, is proven to exist as the delay (taken as a parameter
of bifurcation) cross some critical value. Some numerical simulations are given to illustrate our
theoretical results. Additionally we conclude with some remarks.
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1 Introduction

Economic growth corresponds to positive change in gross domestic product (GDP), over a period of one
year. This change depends on the use of production factors: capital, labor and total factor productivity.
The capital refers to resources used to create goods or services that are not themselves significantly
consumed in the production process. The labor is related to the workforce. It increases levels of economic
growth by increasing the number of hours work and by improving the quality of this work. Finally, the
total factor productivity refers to anything that is not explained by the above two factors, we cite for
example: the organizational innovation and technological innovation.

Theoretically, the increase of capital stock, the workforce and the qualitative improvement of these
factors are essential components and engines of economic growth. Economists have long examined the
effect of the change in these factors on the economic growth. For example, the effect of variation of active
population on the economic growth. These studies have led to three conclusions: The first conclusion
states that population growth stimulates economic growth. The second view indicates that population
growth adversely affects economic growth and the third point of view asserts that population growth is a
neutral factor in economic growth.

In this work, we will try to model the phenomenon of mutual interactions between economically
active population and economic growth. Our starting point is based on three models: the classical Solow
model of economic growth (1956, [1]), the active population growth model (logistic model) introduced by
Hallegatte et al. (2008, [2]) and the economic growth model with a carrying capacity proposed by Cai
(2012, [3]). The resulting model is the following delay differential system:{ dK

dt = f(K,L)− δK,
dL
dt = γL[1− Lτ

g(Kτ ) ], (1)

where K is the capital stock, L is the number of employed workers, δ is the depreciation rate of capital
stock, f is the production function, g is the effective labor demand and τ is the time needed to assess
needs for labor force and the time taken for the recruitment of this labor force.

We assume that the function g is continuously differentiable, satisfying the following hypotheses:

(H1) : g(0) > 0;
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(H2) : g is a strictly monotone increasing and concave function;
(H3) : limK→+∞ g(K) = Le;

where Le is the maximal effective labor demand [2]. Moreover, as in the Solow model [1], we consider a
Cobb-Douglas function [4]:

f(K,L) = sAKαL1−α,

where s denotes the constant saving rate, A is a positive constant that reflects the level of the technology
and α ∈ (0, 1) is a constant.

The first model in this is the Harrod-Domar model, presented by Harrod (1939, [5]) and completed
by Domar (1947, [6]). This keynesian model stresses the importance of savings and investments as key
determinants of growth.

Based on the Harrod-Domar model, Solow presented the following new-classical growth model (1956,
[1]):

dK

dt
= sAKαL1−α − δK.

This model attempts to explain long-run economic growth by considering a capital accumulation, labor
growth, and technological progress.

In (2010, [7]), Cai integrated the logistically variable population into the Solow model and he proved
the existence of the saddle-node bifurcations.

In (2013, [8]), Guerrini and Sodini assumed that population of workers evolves according to the delayed
logistic equation with constant carrying capacity as follows:{

dK
dt = sAK(t− σ1)αL(t)1−α − δK(t),

dL
dt = γL(t)[a− bL(t− σ2)], (2)

where K and L are capital and labor force, respectively, ab is the constant carrying capacity, σ1 is the
time delay between new investment and production (Kalecki’s time delay [9]) and σ2 is the time delay
between the birth date and the recruitment in the labor force.

For σ1 = σ2, the authors showed that the coexistence of delays is a source of cyclical behavior in
capital accumulation.

In (2013, [10]), Guerrini proposed the following generalization of the model (2):{
dK
dt = sAK(t− σ)αN(t)1−α − δK(t− σ),

dN
dt = γN(t)[1− N(t)

g(K(t)) ], (3)

where N is the population size, γ is a reproduction rate, σ is the Kalecki’s time delay and g is the carrying
capacity.

In this model, Guerrini assumed that there is full employment in the economy, so that employment
and labor supply coincide, i.e. L = N . He proved that the system (3) loses stability and a Hopf bifurcation
occurs when the time delay passes through critical values.

In this work, we assume that economy is not at full employment (L < N) and we show that a
time delay in recruitment process can destabilize the system giving birth to economic fluctuations. The
dynamics of the system (1) are studied in terms of local stability and of the description of the Hopf
bifurcation, is proven to exist as the delay (taken as a parameter of bifurcation) cross some critical value.
In the end some numerical simulations are given to illustrate our theoretical results.

2 Stability Analysis and Hopf Bifurcation Occurrence

In this section, we discuss the local asymptotic stability of the positive equilibrium of the system (1). In
order to do this, we give a sufficient conditions for the existence and uniqueness of a positive equilibrium
(K∗, L∗).
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2.1 Steady State

Proposition 1 System (1) always has two equilibria P0 = (0, 0) and P1 = (0, g(0)) which exist for all
parameter values. On the other hand, if hypotheses (H1), (H2) and (H3) hold, then system (1) also admits
a unique positive equilibrium (K∗, L∗), where K∗ is the unique positive solution of

g(K) = ( δ
sA

)
1

1−αK, (4)

and L∗ is determined by
L∗ = ( δ

sA
)

1
1−αK∗. (5)

Proof. (K,L) is an equilibrium of (1) if
dK

dt
= dL

dt
= 0,

that is {
sAKαL1−α − δK = 0,
γL[1− Lτ

g(Kτ ) ] = 0. (6)

It’s easy to see that equation (6) has two trivial solutions: (0, 0) and (0, g(0)).
Now, let us assume that K > 0 and L > 0 satisfy (6). Then

L = ( δ
sA

)
1

1−αK, (7)

and
g(K) = ( δ

sA
)

1
1−αK. (8)

In view of hypotheses (H1), (H2) and (H3), it’s clear that equation (8) has a unique solution K∗ > 0.
This concludes the proof. 2

2.2 Local Stability Analysis

Let x = K −K∗ and y = L− L∗. Then by linearizing system (1) around (K∗, L∗) we have{
dK
dt = [ ∂f∂K (K∗, L∗)− δ](K −K∗) + ∂f

∂L (K∗, L∗)(L− L∗),
dL
dt = −γL2

∗(
−g′(K∗)
g2(K∗) )(K −K∗) + γL2

∗( −1
g(K∗) )(L− L∗),

(9)

where f(K,L) = sAKαL1−α.
According to (4) and (5), we get{

dx
dt = (α− 1)δx+ (1− α)δK∗L−1

∗ y,
dy
dt = γg′(K∗)xτ − γy.

(10)

The characteristic equation associated to system (10) is

λ2 + aλ+ bλ exp(−λτ) + c+ d exp(−λτ) = 0, (11)

where
a = δ(1− α),

b = γ,

c = 0,

and
d = γδ(1− α)(1−M),

where M = K∗L
−1
∗ g′(K∗).
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The local stability of the steady state (K∗, L∗) is a result of the localization of the roots of the
characteristic equation (11). In order to investigate the local stability of the steady state, we begin by
considering the case without delay τ = 0. In this case the characteristic equation (11) reads as

λ2 + (γ + δ(1− α))λ+ γδ(1− α)(1−M) = 0, (12)

hence, according to the Hurwitz criterion, we have the following lemma.

Lemma 2 For τ = 0, the equilibrium (K∗, L∗) is locally asymptotically stable if and only if M < 1.

We now return to the study of equation (11) with τ > 0.

Theorem 3 If M < 1, then there exists τ0 > 0 such that,

(i) for τ ∈ [0, τ0) the steady state (K∗, L∗) is locally asymptotically stable;
(ii) for τ > τ0, (K∗, L∗) is unstable;
(iii) for τ = τ0, equation (11) has a pair of purely imaginary roots ±iω0;

with
ω2

0 = 1
2{(γ

2 − ((1− α)δ)2) + [(γ2 − ((1− α)δ)2)2 − 4δ2γ2(1− α)2(1−M)2] 1
2 },

and

τ0 = 1
ω0

arccos ω2
0δ(α− 1)M

γ(ω2
0 + (δ(1− α)(1−M))2 .

Proof. From the hypothesis M < 1, the characteristic equation (11) has negative real parts for τ = 0 (see
lemma 2.1). By Rouche’s theorem ([11], p.248), it follows that if instability occurs for a particular value
of the delay τ, a characteristic root of (11) must intersect the imaginary axis. Suppose that (11) has a
purely imaginary root iω, with ω > 0. Then, by separating real and imaginary parts in (11), we have{

−ω2 + δγ(1− α)(1−M)cos(ωτ) + ωγsin(ωτ) = 0,
(1− α)δω + ωγcos(ωτ)− δγ(1− α)(1−M)sin(ωτ) = 0. (13)

Hence,
ω4 + ((1− α)2δ2 − γ2)ω2 + δγ(1− α)(1−M) = 0. (14)

It’s roots are

ω2
± = 1

2{γ
2 − ((1− α)2δ)2 + [(γ2 − (1− α)δ2)2 − 4δ2γ2(1− α)2(1−M)2]1/2}.

Clearly, the hypothesis M < 1 implies that ω0 = ω+ makes sense.
From equations (13), we obtain the following set of values of τ for which there are imaginary roots:

τn,1 = θ1

ω0
+ 2nπ

ω0
,

where 0 ≤ θ1 < 2π, and

cos θ1 = ω2
0δ(α− 1)M

γ2ω2
0 + (δ(1− α)(1−M))2 ,

where n = 0, 1, 2, ...
We set

τ0 = τ0,1. (15)

Thus, we have: if τ ∈ [0, τ0), then (K∗, L∗) is locally asymptotically stable. If τ > τ0, then (K∗, L∗) is
unstable and if τ = τ0, then equation (11) has a purely imaginary roots λ0 = ±iω0. 2
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2.3 Hopf Bifurcation Occurrence

According to the Hopf bifurcation theorem [12], we establish sufficient conditions for the local existence
of periodic solutions.

Theorem 4 Under hypothesis M < 1, a Hopf bifurcation of periodic solutions of system (1) occurs at
(K∗, L∗) when τ = τ0.

Proof. For the proof of this theorem we apply the Hopf bifurcation theorem (see, for example [12]). From
Theorem 2.2, the characteristic equation (11) has a pair of imaginary roots ±iω0 at τ = τ0. In the first,
lets show that iω0 is simple: Consider the branch of characteristic roots λ(τ) = ν(τ) + iω(τ), of equation
(11) bifurcating from iω0 at τ = τ0. By derivation of (11) with respect to the delay τ, we obtain

{2λ+ δ(1− α)[γ − τ(γλ+ δγ(1− α)(1−M))]e−λτ}dλ
dτ

= λγ(λ+ δ(1− α)(1−M))e−λτ . (16)

If we suppose, by contradiction, that iω0 is not simple, the right hand side of (16) gives

δ(1− α)(1−M)) + iω0 = 0,

and leads to a contradiction with the fact that ω0 > 0.
Lastly we need to verify the condition,

dRe(λ)
dτ

|τ0 6= 0.

From (16), we have

(dλ
dτ

)−1 = (2λ+ δ(1− α)) exp(λτ) + γ

γλ(λ+ δ(1− α)(1−M)) −
τ

λ
.

From (11), we have

exp(λτ) = −γ(λ+ δ(1− α)(1−M))
λ2δ(1− α)λ . (17)

As,
Sign{dRe(λ)

dτ
|τ0} = Sign{Re(dλ

dτ
)−1|τ0}.

Then
Sign

dRe(λ)
dτ

|τ0 = Sign{Re−2(λ+ (1− α)δ)
(1− α)δ + λ)λ2 +Re

1
λ(λ+ δ(1− α))(1−M)}.

Thus, we obtain

Sign{dRe(λ)
dτ

|τ0} = Sign{ 2ω2
0 + (δ(1− α))2

ω2
0(δ2(1− α)2 + ω2

0) −
1

γ2(ω2
0 + δ2(1− α)2(1−M)2)}

= Sign{(δ2(1− α))2 − γ2 + 2ω2
0}.

(18)

By inserting the expression for ω2
0 , we obtain:

Sign{dRe(λ)
dτ

|τ0} = Sign{(γ2 − δ2(1− α))2 + 4γ2δ2(1− α)2(1−M)2}.

Hence
dRe(λ)
dτ

(τ0) > 0.
2

Proposition 5 if M = 1 and δ(1−α) ≥ γ, then the steady state (K∗, L∗) is stable, but not asymptotically
stable.

Proof. if M = 1 and δ(1− α) ≥ γ, all roots of characteristic equation (11) have non positive real parts,
this implies that (K∗, L∗) is stable. Furthermore, λ(τ) = 0 is always a root of characteristic equation (11).
Thus the steady state (K∗, L∗) is not asymptotically stable. 2
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3 Application: Effect of Time Delay

In this section, we study how the dynamics of the model (1) change when the time delay parameter varies.
Let’s give the following numerical simulations:

Proposition 6 If α = 0.5; s = 0.3; A = 1; δ = 0.2; γ = 1; and g(K) = 300eK
1+eK . Then system

(1) have the following positive equilibrium

E∗ = (675; 300).

Furthermore, the critical delay and the period of oscillations corresponding to (1) are τ0 = 1.5861 and
P0 = 2π.
Proof. For

α = 0.5; s = 0.3; A = 1; δ = 0.2 γ = 1 and g(K) = 300eK

1 + eK
,

we have f(K,L) = 0.3
√
KL and the system (1) becomes{

dK
dt = 0.3

√
KL− 0.2K,

dL
dt = L[1− (1+eK)Lτ

300eK ].
(19)

System (19) has a unique positive equilibrium point E∗ = (K∗;L∗) which satisfies the following conditions:

L∗ = 4
9K∗ and

4
9K∗ = 300eK

1 + eK
.

Thus E∗ = (300; 675) (see Figure 1).
The characteristic equation associated to system (19) is

λ2 + 0.1λ+ λ exp(−λτ) + 0.1 exp(−λτ) = 0, (20)

which has a purely imaginary roots λ0 = ±0.9987912i, for τ0 = 1
0.9987912 .

π
2 = 1.5719. 2

Figure 1. The graphs of functions h1(K) := 4
9K and h2(K) := 300eK

1+eK
on the interval [674;676].

4 Conclusion

In this paper, we propose a system of delay differential equations for modeling the interactions between
the active population and the economic growth to explain economic growth and the unemployment
phenomenon. When we take into account the time taken for the recruitment of the labor force, the cyclic
behavior can appear for some specific values of parameters due to the Hopf bifurcation where the time
delay parameter is the bifurcation parameter: for τ = 1.4, the time series of capital stock and employed
workers are shown in Figure 2, and for τ = 1.5719, the Figure 3 describes periodic oscillations typical of
real world economic variables.
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Figure 2. With the values given by Proposition 6, Solution of the model (1) is locally asymptotically stable for
τ = 1.4. This solution has a period about P0 = 2π.

Figure 3. With the values given by Proposition 6, model (1) has a periodic solution for τ = 1.5719. This solution
has a period about P0 = 2π.
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