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Abstract The aim of this paper is to study two particular GV-semigroups whose full subsemigroups
form 0-semidistributive lattices. The structure of GV-inverse semigroups whose full subsemigroup lat-
tices are 0-semidistributive is first characterized. Moreover, much more explicit structural description
is obtained for orthodox GV-semigroups by establishing an inverse semigroup congruence.
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1 Introduction

The subsemigroup lattices of semigroups have been the subject of continued investigation for many years.
The main achievements in the area, accomplished by the mid 1990s, have been comprehensively reflected
in the monograph [14]. Among the large fields of the investigation, much attention has been paid to the
full regular subsemigroup lattices of regular semigroups. Recall that a subset of a semigroup is called full
if it contains the set of all idempotents of the given semigroup.

Johnston and Jones researched regular semigroups with their full regular subsemigroup lattices in
[7], which provides some interesting results. It is well known that full regular subsemigroups of inverse
semigroups are just their full inverse subsemigroups. Thus the theory concerning full regular subsemigroup
lattices has been extensively explored in the case of inverse semigroups. A series of papers have been
devoted to the theme of describing the structure of inverse semigroups with various types of full regular
subsemigroup lattices (see [8,9,10,11,12,16]). Moreover, Jones and Tian generalized to eventually regular
semigroups the study of the full regular subsemigroup lattices of regular semigroups and characterized
the structure of eventually regular semigroups whose full eventually regular subsemigroup lattices are
distributive lattices or chains in [13]. Recently, a programme of studying the interrelationships of inverse
semigroups and their full subsemigroup lattices has been presented in [15] by Tian, who established the
structure of inverse semigroups with various assumptions on their full subsemigroup lattices.

2 Preliminaries

Recall that a lattice L with zero is called 0-semidistributive, if for any a, b, c ∈ L, a∧ b = a∧ c = 0 implies
a ∧ (b ∨ c) = 0. A semigroup S is called eventually regular if some power of each element of S is regular.
If every regular element of an eventually regular semigroup S is completely regular, then S is called a
GV-semigroup. For a completely regular semigroup S, every regular element a of S exists and only exists
an inverse of a which commutes with a. We usually denote the unique inverse of a by a−1. If every regular
element of an eventually regular semigroup S possesses a unique inverse, then S is called eventually
inverse, and the unique inverse of a ∈ S is denoted by a−1. A semigroup S is called orthodox [eventually
orthodox] if it is a regular [ an eventually regular] semigroup whose the set ES forms a subsemigroup of
S. In particular, a GV-semigroup is called a GV-inverse semigroup [orthodox GV-semigroup ] if it is
eventually inverse [eventually orthodox]. For any a ∈ S, an element x of S is called a weak inverse of a if
xax = x. Denote by W (a) the set of all weak inverses of a in S, and by V (a) the set of all inverses of a in
S.

For any subset A of a semigroup S, we denote by 〈A〉 the subsemigroup of S generated by A, by A∗

the set of all non-zero elements of A, by SubS the lattice of all subsemigroups (including the empty set)
of S, and by SubfS the lattice of all full subsemigroups of S. It is easy to show that the lattice SubfS is a
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complete sublattice of the lattice SubS. In particular, for an inverse semigroup S, we shall denote by
SubfiS the lattice of full inverse subsemigroups of S as in [8,9]. If K is one of the Green’s relations L, R,
H, D and J on a semigroup S, then we will use Ka to denote the K-class of S containing an element a
in S, and use KA to denote the relation K restricting to a subsemigroup A of S.

A semigroup S is called to be combinatorial if its subgroups are all trivial. In this case, it is easy to
observe that each H-class of S has exactly one element if S is regular. An inverse semigroup S is called to
be E-unitary if ex, e ∈ ES implies x ∈ ES , or equivalently if R∩ σ = 1, where σ = {(a, b) ∈ S × S : ea =
eb for some e ∈ ES} is the minimal group congruence on S. For an inverse semigroup S that is E-unitary,
it is obvious that the set defined by kerσ = {x ∈ S : xσe for some e ∈ ES} is equal to ES . A completely
0-simple inverse semigroup is called Brandt semigroup. In Section 3, we need consider a combinatorial
Brandt semigroup B5 =< a, b | aba = a, bab = b, a2 = b2 = 0 > with exactly two non-zero idempotents
and two non-idempotents.

Let J be any J -class of a semigroup S. We shall define the principal factor PF (J) of S as the set
J with a zero adjoined, the product of two elements of J being their product in S if it lies in J , and
all other products being zero. Here, the zero should be adjoined to J even if J is a minimal J -class of
S. It is well known that any principal factor of a semigroup is either null (that is, the product of any
two elements is zero) or 0-simple semigroup. Note that the present definition of principal factor varies
slightly from the traditional one in [2], in which the definition is that PF (J) = J if J is minimal and
PF (J) = J ∪ {0} if J is not minimal.

The following lemma provides an important property for the J -classes of eventually regular semigroups.

Lemma 2.1. ([13], Proposition 1.5) Let S be an eventually regular semigroup and let J be a J -class of
S that contains an idempotent. Then every element of J is regular. Equivalently, any 0-simple eventually
regular semigroup is regular.

It follows from Lemma 2.1 that a product being irregular lies in a J -class that must consist entirely of
irregular elements. For a GV-semigroup, we classify J -class as either irregular or regular and its principal
factors are either null or regular.

Lemma 2.2. ([17], Corollary 3.3 and Proposition 3.7) Let S be an E-semigroup. Then
(1) W (ab) = W (b)W (a) and W (e) ⊆ ES for any a, b ∈ S, e ∈ ES;
(2) W (a) = ESa

′
ES for any a ∈ RegS, a′ ∈ V (a).

By virtue of Lemma 2.2 we shall give another characterization on weak inverses in an E-semigroup.

Lemma 2.3. Let S be an E-semigroup. Then
(1) W (e) = W (f) for some e, f ∈ ES ⇐⇒ eJ ESf ;
(2) W (a) = W (a′

a)a′
W (aa′) for any a ∈ RegS, a′ ∈ V (a).

Proof. To prove “=⇒", suppose that W (e) = W (f) for some e, f ∈ ES . It is obvious that e, f ∈ RegS
and e ∈ V (e), f ∈ V (f). It follows from Lemma 2.2 that W (e) = ESeES = ESfES = W (f). Hence
e ∈W (e) = ESfES , f ∈W (f) = ESeES , and so eJES

f . We now show “⇐=". Suppose that eJES
f for

some e, f ∈ ES . Then there exist e1, e2, f1, f2 ∈ ES such that e = e1fe2, f = f1ef2. By Lemma 2.2 again,
it follows that W (e) = ESeES = ESe1fe2ES ⊆ ESfES = W (f), which shows that W (e) ⊆ W (f). A
similar argument will show that W (f) ⊆W (e). Hence W (e) = W (f), and so part (1) has been proved.

We then turn to proving part (2). It follows from Lemma 2.2 thatW (a) = ESa
′
ES andW (a′

a),W (aa′) ⊆
ES for any a ∈ RegS, a′ ∈ V (a). Therefore W (a′

a)a′
W (aa′) ⊆ ESa

′
ES = W (a). To prove the converse

inclusion, take any a∗ ∈W (a). Then a∗ = a∗aa∗ = (a∗a)a′(aa∗). Notice that

(a∗a)a
′
a(a∗a) = a∗aa∗a = a∗a, (aa∗)aa

′
(aa∗) = aa∗aa∗ = aa∗,

and so a∗a ∈ W (a′
a), aa∗ ∈ W (aa′). Hence a∗ = (a∗a)a′(aa∗) ⊆ W (a′

a)a′
W (aa′), so that W (a) ⊆

W (a′
a)a′

W (aa′). Consequently, we obtain that W (a) = W (a′
a)a′

W (aa′) for any a ∈ RegS, a′ ∈
V (a).
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3 0-semidistributivity in the GV-inverse semigroup

In this section, we shall give a structure theorem for GV-inverse semigroups with 0-semidistributive full
subsemigroup lattices. It follows from the definition that the set of all regular elements of a GV-inverse
semigroup is an inverse subsemigroup. Therefore we first characterize inverse semigroups whose full
subsemigroup lattice is 0-semidistributive.

The following lemma is a generalization of Lemma 3.2 in [15].

Lemma 3.1. Let S be an inverse semigroup. Then the map Σ defined by A→ AΣ = {aσ : a ∈ A} for
any A ∈ SubfS, where σ is the minimum group congruence on S, is a surjective lattice homomorphism of
SubfS upon Subf(S/σ) that preserves complete join.

Proof. Let A,B ∈ SubfS. Then it is straightforward to show that (A ∨ B)Σ = AΣ ∨ BΣ. It is clear
that AΣ ∩BΣ ⊇ (A ∩B)Σ. To prove the converse inclusion, let x ∈ AΣ ∩BΣ. Then there exist a ∈ A
and b ∈ B such that x = aσ = bσ, and so ea = eb, a−1e = b−1e and ba−1e = bb−1e ∈ ES for some
e ∈ ES , hence (ba−1e)a ∈ A. On the other hand, it follows from a−1ea ∈ ES that b(a−1ea) ∈ B, and so
ba−1ea ∈ A ∩B. Notice that x = bσ = (b(a−1ea))σ ∈ (A ∩B)σ, that is, AΣ ∩BΣ ⊆ (A ∩B)Σ. Hence
AΣ ∩BΣ = (A ∩B)Σ, and so the map Σ is a lattice homomorphism.

We now verify that the homomorphism Σ is surjective. Let U ∈ Subf(S/σ) and put A = {s ∈ S :
sσ ∈ U}. Since ES ⊆ A and (ab)σ = aσbσ ∈ U for any a, b ∈ A, we have ab ∈ A and AΣ = U , where
A ∈ SubfS. Therefore the homomorphism Σ is surjective. The fact that the homomorphism Σ preserves
complete join is obvious.

Lemma 3.2. For a non-trivial group G with the identity e, the lattice SubfG is 0-semidistributive if and
only if for any a1, a2, . . . , an ∈ G with a1a2 · · · an 6= e, there exists at such that (a1a2 · · · an)m ∈ 〈at〉\{e}
for some m ∈ Z+ (the set of positive integers).

Proof. Put a = a1a2 · · · an, and suppose that 〈e, a〉 ∩ 〈e, ai〉 = {e} for each i = 1, 2, . . . , n. Then by
0-semidistributivity of the lattice SubfG, we have 〈e, a〉 ∩ 〈e, a1, a2〉= {e}. It is easy to obtain that
〈e, a〉 ∩ 〈e, a1, a2, . . . , an〉 = {e}, contradicting to the assumption that a = a1a2 · · · an 6= e. Hence there
exist b ∈ (〈e, a〉 ∩ 〈e, at〉)\{e} for some at, and so am = b ∈ 〈at〉\{e} for some m ∈ Z+.

Conversely, let A,B,C ∈ SubfG with A ∩ B = A ∩ C = {e}. Suppose that there exists a ∈ G\{e}
such that a ∈ A ∩ (B ∨ C). Then a = a1a2 · · · an, where each ai ∈ B ∪ C, i = 1, 2, . . . , n, whence there
exists some at such that am ∈ 〈at〉\{e} ⊆ B ∪ C for some m ∈ Z+, together with am ∈ A, and so
am ∈ A ∩ (B ∪ C) = {e}, which leads to a contradiction. Therefore A ∩ (B ∨ C) = {e}, which shows that
the lattice SubfG is 0-semidistributive.

Using Corollary 2.2 in [16] and Lemma 3.2, we have the following

Corollary 3.3. For a torsion-free group G with the identity e, the following conditions are equivalent:
(1) SubfG is 0-semidistributive ;
(2) SubfiG is 0-semidistributive ;
(3) For any a, b ∈ G with ab 6= e, there exist m,n ∈ Z+ such that (ab)m = an or bn.

Let X be a set. As in [15], we denote by RT (X) the set of binary relations satisfying reflexivity and
transitivity on X. It is obvious that RT (X) is a complete lattice. Suppose that |X| ≥ 3, and let x1, x2, x3
be distinct elements ofX. Put ρ1 = {(x1, x2), (x1, x3)}∪{(x, x) : x ∈ X}, ρ2 = {(x2, x3)}∪{(x, x) : x ∈ X}
and ρ3 = {(x2, x1)} ∪ {(x, x) : x ∈ X}. Clearly, ρ1, ρ2, ρ3 ∈ RT (X). Notice that ρ2 ∩ ρ1 = ρ2 ∩ ρ3 = 1X
and

ρ1 ∨ ρ3 = {(x1, x2), (x1, x3), (x2, x3), (x2, x1)} ∪ {(x, x) : x ∈ X}.

Hence ρ2 ⊆ ρ1 ∨ ρ3, and so ρ2 ∩ (ρ1 ∨ ρ3) = ρ2 6= 1X . It follows that the lattice RT (X) is not
0-semidistributive. Combining with Lemma 3.7 in [15], we then have the following

Lemma 3.4. For any set X, the following conditions are equivalent:
(1) RT (X) is distributive ;
(2) RT (X) is 0-semidistributive ;
(3) |X| ≤ 2.
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It suffices to consider 0-semidistributivity for 0-simple inverse semigroups when we investigate inverse
semigroups whose full subsemigroups form 0-semidistributive lattices. Therefore we consider first completely
0-simple inverse semigroups, that is, 0-simple inverse semigroups containing a primitive idempotent.

Lemma 3.5. For a Brandt semigroup S, the lattice SubfS is 0-semidistributive if and only if either S is
isomorphic to B5, or S∗ is a group whose lattice SubfS is 0-semidistributive.

Proof. Let S be a Brandt semigroup, whose lattice SubfS is 0-semidistributive. Assume first that |E∗
S | = 1.

Then S∗ is a group, and so SubfS ∼= SubfS∗. Therefore the lattice SubfS∗ is 0-semidistributive.
Suppose now that |E∗

S | > 1. Note that the lattice SubfiS is 0-semidistributive since the lattice SubfiS
is a complete sublattice of the lattice SubfS. Therefore it follows from Theorem 2.3 in [16] that S is
combinatorial, and so S is a combinatorial Brandt semigroup. Following Theorem 3.8 in [15], stating that
for a combinatorial Brandt semigroup S, SubfS ∼= RT (E∗

S), we, by Lemma 3.4, deduce that |E∗
S | = 2.

Thus S is isomorphic to B5.
The sufficiency follows from Theorem 3.8 in [15], Lemmas 3.2 and 3.4.

We now turn to considering 0-simple inverse semigroups that are not completely 0-simple cases.
Referring to Lemma 2.4 in [16] we know that if S is a non-completely 0-simple inverse semigroup whose
lattice SubfiS is 0-semidistributive, then S has no zero divisor and SubfiS ∼= Subfi(S∗). Therefore it
remains to consider the full subsemigroup lattices of simple inverse semigroups that is not groups.

Lemma 3.6. For a simple inverse semigroup S that is not a group, the lattice SubfS is 0-semidistributive
if and only if S is E-unitary, combinatorial and for a, b ∈ S/σ with ab 6= e, there exist m,n ∈ Z+ such
that (ab)m = an or bn.

Proof. Suppose that a simple inverse semigroup S (not a group), whose lattice SubfS is 0-semidistributive.
Then the lattice SubfiS is 0-semidistributive, and so the necessity follows from Theorem 2.10 in [16]
immediately.

Conversely, let A,B,C ∈ SubfS with A ∩ B = A ∩ C = ES . Suppose that there exists a ∈ S\ES
such that a ∈ A ∩ (B ∨ C). Since the map Σ induced by σ is a surjective homomorphism of SubfS upon
Subf(S/σ) by Lemma 3.1, we have AΣ∩BΣ = AΣ∩CΣ = {e} and aσ ∈ AΣ∩(BΣ∨CΣ), where aσ 6= e
by the fact that S is E-unitary. On the other hand, the lattice Subf(S/σ) is 0-semidistributive according
to Lemma 2.7 in [16] and Corollary 3.3. Therefore AΣ ∩ (BΣ ∨CΣ) = {e} by the 0-semidistributivity of
the lattice Subf(S/σ), which contradicts to e 6= aσ ∈ AΣ ∩ (BΣ ∨CΣ). Consequently, A∩ (B ∨C) = ES ,
which shows that the lattice SubfS is 0-semidistributive.

Now we are ready for the main result in this section.

Theorem 3.7. For a GV-inverse semigroup S that is not inverse, if the lattice SubfS is 0-semidistributive
then

(1) each regular J -class containing a primitive idempotent is either a group whose the lattice SubfS
is 0-semidistributive , or has principal factor isomorphic to B5; and

(2) each regular J -class not containing a primitive idempotent is E-unitary, combinatorial, and for
a, b ∈ S/σ with ab 6= e, there exist m,n ∈ Z+ such that (ab)m = an or bn.

Proof. Let S be a GV-inverse semigroup. Then the set RegS is an inverse subsemigroup of S. Hence the
lattice Subf(RegS) coincides with the interval [ES ,RegS] of the lattice SubfS, which is 0-semidistributive,
and so the lattice Subf(RegS) is 0-semidistributive. It then follows that the lattice Subf(PF (J)) is
0-semidistributive for each J -class J of the set RegS. Note that each regular J -class J of S turns out to
be J -class of RegS. Therefore conditions (1) and (2) follow from Lemma 3.5 and 3.6.

4 0-semidistributivity in the orthodox GV-semigroup

For an orthodox GV-semigroup S, it is well known that ES is a semilattice of rectangular bands (that is,
simple bands). In precise, components of ES in this decomposition are just its JES

-classes. For convenience,
we shall denote JES

by π, and E∗
S/π by ε(S) in the rest of this section. By virtue of the statement in the

paragraph following Lemma 2.1, we obtain that PF (J) is a 0-simple orthodox semigroup for each regular
J -class J of S.

Journal of Advances in Applied Mathematics, Vol. 1, No. 4, October 2016 237

Copyright © 2016 Isaac Scientific Publishing JAAM



Lemma 4.1. Let S be an orthodox GV-semigroup and let J be any regular J -class J of S. Then the
relation γ defined by γ = {(a, b) ∈ S×S : W (a) = W (b)} is a congruence on S. Furthermore, the relation
γ, restricting to PF (J), is an inverse semigroup congruence and ker γ = EPF (J).

Proof. It is a routine matter to show that the relation γ is an equivalence on S. Let aγb, that is,
W (a) = W (b) for some a, b ∈ S. Since S is eventually regular, each element of S exists weak inverse. Take
any c ∈ S, t ∈ W (ca). Then t ∈ W (ca) = W (a)W (c) by Lemma 2.2, and so there exist a′ ∈ W (a) =
W (b), c′ ∈W (c) such that t = a

′
c

′ ∈W (b)W (c) = W (cb), so that W (ca) ⊆W (cb). Dually, we may show
that W (cb) ⊆ W (ca), and so W (ca) = W (cb), that is, caγcb. A similar argument will show that acγbc.
Thus the relation γ is a congruence on S.

To prove the latter assertion, let J be any regular J -class J of S. Then PF (J) is a 0-simple orthodox
semigroup, and so the quotient PF (J)/γ is regular. It then follows from Lallement’s Lemma and Lemma
2.3 that E(PF (J)/γ) is a semilattice. Therefore PF (J)/γ is an inverse semigroup, which shows that
the congruence γ is an inverse semigroup congruence when γ restricts to PF (J). We shall prove that
ker γ = EPF (J). Assume that there exists b ∈ PF (J)\EPF (J) and e ∈ E∗

PF (J) such that bγe. Then
W (b) = W (e) ⊆ E∗

PF (J). Further, since PF (J) is a regular semigroup, we have V (b) ⊆W (b) = W (e) ⊆
E∗
PF (J), and so there exists f ∈ E∗

PF (J) such that fbf = f, bfb = b. Hence b ∈ V (f) ⊆W (f) ⊆ E∗
PF (J),

which contradicts the assumption. Therefore ker γ = EPF (J), as required.

Lemma 4.2. Let S be a 0-simple orthodox semigroup. Then the map Γ defined by A→ AΓ = {aγ : a ∈ A}
for any A ∈ SubfS, where γ is the relation defined in Lemma 4.1, is a lattice isomorphism from SubfS
upon Subf(S/γ).

Proof. Let A,B ∈ SubfS. Then it is straightforward to show that (A∨B)Γ = AΓ ∨BΓ and AΓ ∩BΓ ⊇
(A ∩ B)Γ . To prove the converse inclusion, let x ∈ AΓ ∩ BΓ . Then there exist a ∈ A and b ∈ B such
that x = aγ = bγ. Since the relation γ is a congruence on S proved in Lemma 4.1, we have a′

aγa
′
b for

any a′ ∈ W (a). It follows, by the property that ker γ = ES showed in Lemma 4.1, that a′
b ∈ ES and

a(a′
b) ∈ A, (aa′)b ∈ B, where A,B ∈ SubfS. Hence aa′

b ∈ A ∩B. Note that γ is a regular congruence on
S. Then we, according to Lemma 5.4 in [18], know that there exists a′′ ∈W (a) such that aγaa′′

a, and
so x = aγ = aa

′′
aγ = aa

′′
bγ. And since aa′

b ∈ A ∩ B for any a′ ∈ W (a), it follows that x ∈ (A ∩ B)Γ ,
and so AΓ ∩BΓ ⊆ (A ∩B)Γ . Therefore AΓ ∩BΓ = (A ∩B)Γ , which gives that the map Γ is a lattice
homomorphism.

To show that the homomorphism Γ is surjective, let U ∈ Subf(S/γ), and put A = {s ∈ S : sγ ∈ U}.
Since ES ⊆ A and (ab)γ = aγbγ ∈ U for any a, b ∈ A, it follows that ab ∈ A and AΓ = U , where A ∈
SubfS. Therefore the homomorphism Γ is surjective. We finally show that Γ is injective. Let A,B ∈ SubfS
such that AΓ = BΓ . Take any a ∈ A. Then there exists b ∈ B such that aγ = bγ, that is , W (a) = W (b).
Hence for any a′ ∈ V (a) ⊆ W (a) = W (b), we have a′

ba = a
′
, a = aa

′
a = a(a′

ba
′)a = (aa′)b(a′

a) ∈ B,
and so A ⊆ B. Similarly, we may show that B ⊆ A. Therefore A = B. Up to now, we have proved that Γ
is a lattice isomorphism from SubfS upon Subf(S/γ).

As the title of this section indicated, we are to establish the structure for orthodox GV-semigroups. Let
S be a orthodox GV-semigroup. It is easy to observe that PF (J) is completely 0-simple for each regular
J -class J of S. We thus only need to consider PF (J) by two cases, that is, combinatorial completely
0-simple case or non-combinatorial completely 0-simple case.

Lemma 4.3. For a combinatorial completely 0-simple orthodox semigroup S, the lattice SubfS is 0-
semidistributive if and only if S is either a 0-simple band or |ε(S)| = 2.

Proof. We show first that the quotient S/γ is a combinatorial completely 0-simple inverse semigroup. It
follows by Lemma 4.1 that S/γ is inverse. To prove that S/γ is completely 0-simple, let any aγ, bγ ∈ S/γ
for some a, b ∈ S∗. Since S is 0-simple, there exist x1, y1, x2, y2 ∈ S such that a = x1by1, b = x2ay2.
Therefore aγ = (x1γ)(bγ)(y1γ), bγ = (x2γ)(aγ)(y2γ), and so S/γ is 0-simple. By virtue of the property
that S is complete, we know that S at least contains a primitive idempotent e. Then it is easy to check
that eγ is a primitive idempotent of S/γ, and so S/γ is a completely 0-simple semigroup.

To prove that the quotient S/γ is combinatorial, assume that S is not combinatorial. Then there
exist a, b ∈ S such that aγ 6= bγ and (aγ)H(bγ). Since S/γ is inverse, we may denote by (aγ)−1 and
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(bγ)−1 the unique inverses of aγ and bγ, respectively. It is obvious that a′
γ = (aγ)−1 and b′

γ = (bγ)−1

for any a′ ∈ V (a), b′ ∈ V (b). It follows from (aγ)H(bγ) that aγ(aγ)−1 = (aa′)γ = (bb′)γ = bγ(bγ)−1 and
(aγ)−1aγ = (a′

a)γ = (b′
b)γ = (bγ)−1bγ. On the other hand, since S is completely 0-simple, it follows that

bRb(b′
ab

′
b) and bL(bb′

ab
′)b. Hence bHbb′

ab
′
b, and so b = bb

′
ab

′
b from the fact that S is combinatorial.

And by (a′
a)γ = (b′

b)γ and (aa′)γ = (bb′)γ proved above, notice that

aγ = aa
′
aγ = (aa

′
bb

′
)aa

′
aγ = aa

′
(bb

′
ab

′
b)a

′
aγ = bb

′
ba

′
aγ = bb

′
bb

′
bγ = bγ,

which leads to a contradiction. Therefore S/γ is combinatorial, and so S/γ is a combinatorial completely
0-simple inverse semigroup, as required. From Theorem 3.8 in [15] and Lemma 4.2 we obtain that
SubfS ∼= Subf(S/γ) ∼= RT (E∗

S/γ), and so |E∗
S/γ | ≤ 2 by Lemma 3.4. It follows, by the property that

ker γ = ES and Lemma 2.3, that E∗
S/γ = E∗

S/γ = E∗
S/π = ε(S). Thus |ε(S)| = {1, 2}. If |ε(S)| = 1, then

it is easy to see that S is a 0-simple band. In fact, it follows from |ε(S)| = 1 that S/γ only contains
a non-zero idempotent denoted by eγ. Suppose that there exists a ∈ S\ES . Then S/γ must contain a
non-idempotent aγ from the property that ker γ = ES proved in Lemma 4.1. Since S/γ is completely
0-simple, we have (aγ)L(aγ)−1aγ = eγ and (aγ)R(aγ)(aγ)−1 = eγ, where (aγ)−1 is the unique inverse of
aγ in S/γ. Hence (aγ)H(eγ), which contradicts the fact that S/γ is combinatorial, and so S is a 0-simple
band.

The sufficiency follows from Lemmas 3.4 and 4.2.

Lemma 4.4. For a non-combinatorial completely 0-simple orthodox semigroup S, the lattice SubfS is
0-semidistributive if and only if each non-trivial maximal subgroup of S is as described in Lemma 3.2 and
ES is a 0-simple band.

Proof. Let S be a non-combinatorial completely 0-simple orthodox semigroup. Then S at least contains a
non-trivial maximal subgroup, denoted by G, of S. It follows from ker γ = ES that G/γ is a non-trivial
maximal subgroup of S/γ, and so S/γ is not combinatorial. As in the proof of Lemma 4.3, we may show
that S/γ is a completely 0-simple inverse semigroup, and so S is a non-combinatorial completely 0-simple
inverse semigroup. Since the lattice SubfS is 0-semidistributive, it follows by Lemma 4.2 that the lattice
Subf(S/γ) is 0-semidistributive. Therefore the lattice Subfi(S/γ) is 0-semidistributive, and so |E∗

S/γ | ≤ 2
by Theorem 2.3 in [16]. On the other hand, since S/γ is not combinatorial, we have |E∗

S/γ | 6= 2, and so
|E∗
S/γ | = 1, that is, |ε(S)| = 1, which implies that ES is a 0-simple band.
It follows from |ε(S)| = 1 that (S/γ)∗ is a group. From Lemmas 3.5 and 4.2 we obtain that the lattice

Subf(S/γ)∗ is 0-semidistributive, and so its each non-trivial maximal subgroup is as described in Lemma
3.2. For any non-trivial maximal subgroup G of S, it is easy to check that G ∼= G/γ, where G/γ is the
non-trivial maximal subgroup of S/γ. Referring to Proposition 2.3.6 of [6], stating that any two group
H-classes, which are in the same D-class, are isomorphic, we may conclude that each non-trivial maximal
subgroup of S is isomorphic to G/γ, which is as described in Lemma 3.2 proved above. So the necessity
is proved.

The sufficiency follows from Lemmas 3.5 and 4.2.

As a direct consequence of Lemmas 4.3 and 4.4, we now arrive at the main result in this section.

Theorem 4.5. For an orthodox GV- semigroup S, if the lattice SubfS is 0-semidistributive then
(1) each combinatorial regular J -class, is either a rectangular band or |ε(S)| = 2; and
(2) each non-combinatorial regular J -class, whose each non-trivial maximal subgroups is as described

in Lemma 3.2 and EJ is a rectangular band.

5 Conclusion

In the paper, we extend the study of the full subsemigroup lattices of inverse semigroups to that of two
particular GV-semigroups. Thus the results and the way in [15] are extended. Inverse semigroups with
0-semidistributive full subsemigroup lattices are first determined. Moreover, the structure of GV-inverse
semigroups whose full subsemigroup lattices are 0-semidistributive is characterized. As a consequence,
much more explicit structural description is obtained for orthodox GV-semigroups by establishing an
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inverse semigroup congruence. Using the way and the proposed results in the paper, we are to study
eventually regular semigroups whose full subsemigroups form certain specific lattices.
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