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Abstract In supervised machine learning, a support vector machine (SVM) constructs from binary
classified training data a linear classifier by solving a linearly constrained convex optimization
problem. Depending on the number N of training data and the dimension D of the feature space,
it either is advantageous to solve the primal problem or the dual problem. In this article, the
case D >> N is discussed where D is so large that even a calculation of the dot product of fully
occupied vectors in dimension D is too slow for the desired (e.g. real-time) application. Then a way
to speed up the classification is to use an SVM which constructs a sparse linear classifier by solving
an optimization problem involving the 1-norm, i.e. many components of the classifying vector are
zero so that much less than D multiplications are neccessary to calculate the dot product. For a
soft-margin SVM, in this article a theorem on the number of non-zero components is shown.

Keywords: Support vector machines, SVM, sparse classifier, L1 regularization, LASSO, big data,
machine learning.

1 Introduction

Among different supervised machine learning methods like decision trees, rule-based classification or
Bayesian statistics, support vector machines (SVMs) [1] have been proven to be efficient tools in many
applications. For example, the review [2] of classification methods for internet traffic emphasizes the
key finding of [3] that “their classifier based on a support vector machine (SVM) outperformed other
ML algorithms and produced robust results once it was trained with a representative, unbiased training
set”, and the survey [4] of methods for encrypted traffic classification emphasizes the results of [5] which
“demonstrated that SVM methods provide comparable accuracy with less false positives”.

While the training of SVMs from N binary classified data points has a rather high complexity, because
a convex optimization problem subject to linear inequality constraints has to be solved, an important
advantage of SVMs is that once they have been trained, the classification is possible by a simple dot
product of vectors, i.e. by a linear classifier. This still holds true, if the data is embedded into a much
higher dimensional space via a feature map to make the data linearly separable, and then the kernel trick
[6] is used to obtain on the one hand a nonlinear classifier and to avoid on the other hand calculations in
the higher dimensional space. A different approach to obtain a nonlinear classifier is suggested in [7], there
a combination of support vector machines and decision trees is proposed. In every case, classification is
very fast as long as the feature vectors are not too high-dimensional. Yet, the dimension of these feature
vectors is identical with the dimension D of the feature space, in which the data points lie. For big data
(e.g. high-resolution pictures, internet traffic), this dimension D may be very large, and the purpose of
this paper is to investigate analytically, how a speed up of the classification can be made possible by using
an appropriate SVM to generate the classifier. Such a speed up has the potential to allow applications
which currently are not possible by the available methods. A concrete example is the detection of malware
and computer viruses in (possibly encrypted) internet traffic. To prevent hijacking attacks, it would
be most useful to be able to detect and eliminate such unwanted internet traffic already at routers or
switches, before malware can attack the computer of an end user. However, running an SVM on routers
or switches with low cost processors to scan internet traffic in real-time is currently not possible due to
the high dimension D of the data. Here the approach proposed in this article may lead to a significant
improvement.

If D is so large that minimization in dimension D is numerically out of reach, but not too large to
calculate the dot product of D-dimensional vectors sufficiently fast, and minimization in dimension N is
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numerically tractable, an appropriate way to generate an SVM is to use the dual optimization problem
and the dual form of the classifier. However, if D is so large that even the dot product of fully occupied
D-dimensional vectors can not be calculated sufficiently fast, then it is necessary to generate an SVM with
sufficiently many zero components of the classifying vector, as this allows to reduce the D multiplications
needed for classification to a sufficiently small number. Sparsity of the classifying vector can be obtained
by using a 1-norm SVM, where the usual 2-norm of the classifying vector in the objective function of
an SVM is replaced by a 1-norm, i.e. a L1-regularization instead of an L2-regularization of the penalty
function is used or – in other words – a least absolute shrinkage and selection operator (LASSO) is
constructed. In [8] it is shown that in case of non-linearly separable data for arbitrary Lp-regularization,
p ≥ 1, there are at most D + 1-support vectors, but this result does not help much for D >> N . In
contrast, the discussion of sparsity obtained by L1-regularization in [9, 18.4] mentions with reference to
[10] that for a 1-norm SVM there are at most N support vectors. Moreover, [10] discusses properties of
the solution path obtained by varying the regularization parameter, and [11] provides an accompanying
numerical study. Yet, for a 1-norm SVM the dual problem is different from that of a 2-norm SVM,
particularly it is not trivial to obtain the classifying vector from the solution of the dual problem, and the
aim of this article is to properly work out, how a sparse classifier can be calculated from the solution of
the dual problem of a 1-norm SVM. A different approach to obtain sparsity is suggested in [12], instead
of using L1-regularization there the constraints are modified appropriately.

1.1 Outline

In section 2 we review 2-norm SVMs. In the main section 3 we discuss 1-norm SVMs, prove an a-posteriori-
sparsity Lemma 2 and show in Theorem 3 how to obtain a sparse solution of the primal problem from
the solution of the dual problem. Finally, we formulate the sparse SVM method based on these results.

2 Review of 2-norm SVMs

A support vector machine (SVM) for the binary classification of data points x is given by an affine function
f(x) := ωTx + β : If f(x) > 0, then x is estimated to be of class +1, else of class −1. To generate an
SVM from training data xi ∈ RD with binary classification yi = ±1, i = 1, . . . , N , in the case where D
and N are not too large, usually the minimization problem

1
2

D∑
j=1

ω2
j + γ

N∑
i=1
|ξi| = min

ω,β,ξ
! subject to (ωTxi + β)yi ≥ 1− ξi for i = 1, . . . , N

with a regularization parameter γ > 0 is solved e.g. by a primal-dual algorithm.
For a soft-margin SVM a finite regularization parameter γ < +∞ is chosen. In this case, there may

be training data points xi with f(xi) < 1 which belong to class +1 (resp. xi with f(xi) > −1 which
belong to class −1), such data points xi are merely penalized via the slacks ξi > 0. For too small γ > 0,
the generated SVM may have too large slacks, i.e. a too high number of misclassifications (f(xi) < 0 or
equivalently ξi > 1 for many xi of class +1) or non-sharp classifications (0 ≤ f(xi) < 1 or equivalently
0 < ξi ≤ 1 for many xi of class +1), or some extreme misclassifications (f(xi) << 0 or equivalently
ξi >> 1 for few xi of class +1) of training data are accepted. Note that due to our choice of the 1-norm
as regularization term all these different classification errors are penalized in the same way. If instead
γ
p

N∑
i=1
|ξi|p with p > 1 is chosen as regularization term, then non-sharp classifications are not so strongly

penalized as misclassifications. Moreover, if the training data is far away from being linearly separable,
then there may be no (ω, β) which makes the slacks small. As mentioned in the introduction, in this
case the data points should be embedded into a higher dimensional space to make them (nearly) linearly
separable, and the kernel trick should be used to avoid calculations in this higher dimensional space. Yet,
for certain training data characterized in [8], the minimizer (ω, β, ξ) may be degenerate, i.e. (ω, β) = (0, 0)
may hold so that the obtained classifier is not useful.

For a hard-margin SVM the regularization parameter is set to γ = +∞, i.e. no slacks are allowed and
f(xi) ≥ 1 is required for every training data point xi of class +1 (resp. f(xi) ≤ −1 for every xi of class
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−1). An advantage of hard-margin SVMs is that minimization has to be performed merely in the variables
(ω, β) of dimension D + 1 (and not in the variables (ω, β, ξ) of dimension D + 1 +N). Particularly, to
solve the minimization problem may be numerically tractable for low dimensions D even if N is very
large. However, for hard-margin SVMs linearly separable training data are needed, else the minimization
problem is not admissible.

A training data point xi is called a support vector of the generated SVM, if the i-th constraint is
active, i.e. (ωTxi + β)yi = 1− ξi or equivalently f(xi) ≤ 1 for xi of class +1 (resp. f(xi) ≥ −1 for xi of
class −1). As we shall see below, if the SVM is generated by the minimization problem above, then the
classifying vector ω is a linear combination of the support vectors, i.e. only the support vectors but no
other training data points influence the classifier.

In matrix-vector notation, the above minimization problem reads as

1
2‖ω‖

2
2 + γ‖ξ‖1 = min

ω,β,ξ
! subject to Y TXTω + βY T1 ≥ 1− ξ (1)

with the two-norm ‖ω‖2 of ω ∈ RD, β ∈ R, the one-norm ‖ξ‖1 of ξ ∈ RN , the one vector 1 ∈ RN , the
diagonal classification matrix Y = diag(y1, . . . , yN ) ∈ RN×N and the training matrix X = (x1, . . . , xN ) ∈
RD×N . Due to the prominent role played by the 2-norm of ω in (1), we call an SVM generated in this way
a 2-norm SVM. Mathematically, without any additional difficulties an arbitrary orthogonal matrix Y can
be used instead of a diagonal matrix. An application for the non-diagonal case may be an uncertain binary
classification of the training data, where Y model dependencies between the classification of different
data points xi. As

L(ω, β, ξ, λ) = 1
2‖ω‖

2
2 + γ‖ξ‖1 +

(
1− ξ − Y TXTω − βY T1

)T
λ

is the Lagrangian of (1), the KKT-conditions for a minimizer (ω, β, ξ) read as

ω −XY λ = 0
(
⇔ ∂L

∂ω
= 0
)

1TY λ = 0
(
⇔ ∂L

∂β
= 0
)

γ sgn(ξ) 3 λ
(
⇔ ∂L

∂ξ
= 0
)

(
1− ξ − Y TXTω − βY T1

)T
λ = 0 (complementarity)

Y TXTω + βY T1 ≥ 1− ξ (constraints)
λ ≥ 0 (sign condition)

These conditions allow the following conclusions:

Remark 1

1. ξ ≥ 0, as γ sgn(ξ) 3 λ and λ ≥ 0 imply non-negativity of ξ (of course, we want that the slacks ξ
are non-negative and already assumed this implicitly, but we did nowhere require this explicitly via a
constraint, yet – as we have seen now – non-negativity automatically holds for a minimizer).

2. ω = XY λ is in the case of a diagonal Y a linear combination of the support vectors (sometimes this
fact is called representer theorem), as λi 6= 0 only for support vectors xi.

If the dimension D is so large that a numerical solution of the minimization problem (1) is out of
reach, while minimization in dimension N is numerically still tractable, then it is advantegeous to use the
dual formulation. The Lagrangian dual problem of (1) reads as

1
2‖XY λ‖

2
2 − 1Tλ = min

λ
! subject to 1TY λ = 0 and 0 ≤ λ ≤ γ1 , (2)

and the classifier is given in its dual form by f(x) := (XY λ)Tx+ β. As λi 6= 0 only for support vectors
xi, the complexity to calculate ω = XY λ scales linearly with the number of support vectors, avoiding in
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the case of a diagonal Y multiplication of those xi by yiλi where λi = 0 is known. However, while λ is
sparse, ω usually is fully occupied and not sparse. Further, when solving the minimization problem (2),
the calculation of D-dimensional vectors XY λ should be avoided: Due to ‖XY λ‖2

2 = λT ((XY )T (XY ))λ,
where (XY )T (XY ) is an (N ×N)-matrix, only the products yiyj · xTi xj of the training data points have
to be precalculated to avoid a calcuation with D-dimensional vectors.

3 1-norm SVMs

In this section we are interested in the case, where the dimension D is so large that the dot product can
not be calculated sufficiently fast for the desired application. In this case it would be advantegeous if not
only λ but also ω = XY λ would be sparse. As we show below, in contrast to 2-norm SVMs this is the
case for 1-norm SVMs. A 1-norm SVM is generated from training data xi ∈ RD with binary classification
yi = ±1, i = 1, . . . , N , by the minimization problem

d∑
j=1
|ωj |+

γ

p

N∑
i=1
|ξi|p = min! subject to (ωTxi + β)yi ≥ 1− ξi .

In fact, using the 1-norm instead of the 2-norm for the normal vector ω of the separating hyperplane
enforces that for a minimizer (ω, β, ξ) the vector ω is sparse, i.e. many components of ω are zero. Thus,
despite the very high dimension D of ω it is still cheap to form the dot product with ω. For the training
of the SVM not the primal but the dual problem should be used, as there an optimization in N << D
variables has to be performed.

For p = 2 the problem reads in matrix-vector notation as

‖ω‖1 + γ

2 ‖ξ‖
2
2 = min! subject to Y TXTω + βY T1 ≥ 1− ξ (3)

with ω ∈ Rd, β ∈ R, ξ ∈ RN , the one vector 1 ∈ RN , the diagonal classification matrix Y =
diag(y1, . . . , yN ) ∈ RN×N and the training matrix X = (x1, . . . , xN ) ∈ Rd×N . The Lagrangian of
(3) is

L(ω, β, ξ, λ) = ‖ω‖1 + γ

2 ‖ξ‖
2
2 +

(
1− ξ − Y TXTω − βY T1

)T
λ ,

thus at a minimizer (ω, β, ξ) of (3) there exist Lagrangian multipliers λ ∈ RN such that the KKT
conditions

sgn(ω)−XY λ 3 0
(
⇔ ∂L

∂ω
= 0
)

1TY λ = 0
(
⇔ ∂L

∂β
= 0
)

γξ − λ = 0
(
⇔ ∂L

∂ξ
= 0
)

(
1− ξ − Y TXTω − βY T1

)T
λ = 0 (complementarity)

Y TXTω + βY T1 ≥ 1− ξ (constraints)
λ ≥ 0 (sign condition)

are satisfied. Hence, due to γξ = λ we can eliminate the Lagrangian multiplier and obtain

γXY ξ ∈ sgn(ω)
1TY ξ = 0(

1− ξ − Y TXTω − βY T1
)T
ξ = 0

Y TXTω + βY T1 ≥ 1− ξ
ξ ≥ 0 .

The first inclusion already indicates sparsity of ω: If γ(XY ξ)j lies in the open interval (−1, 1) for an
index j, the inclusion implies ωj = 0. This is a kind of a-posteriori-sparsity result:
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Lemma 2 If the support vectors xi weighted by γ and the signed slacks have a j-th component between
(but not equal to) −1 and +1, then ωj = 0.

Particularly, if γ > 0 is small, then ωj = 0 for many j, but due to smallness of γ > 0 the generated
SVM may have too large slacks. Yet, also if γ > 0 is not small, but the slacks are small, then ωj = 0 for
many j. Moreover, if the support vectors weighted by the signed slacks nearly cancel out, then ωj = 0 for
many j (note that due to 1TY ξ = 0 the signed stacks alone automatically cancel out), and this is exactly
what Lemma 2 says. To generate a 1-norm SVM for D >> N , the Lagrangian dual problem of (3) should
be solved, which reads as

1
2γ ‖λ‖

2
2 − 1Tλ = min

λ
! subject to 1TY λ = 0 , −1 ≤ XY λ ≤ 1 and λ ≥ 0 . (4)

However, the classifier can not be directly calculated from λ, as XY λ is merely the sign of ω, but the
absolute value of each component is unknown. Yet ξ = 1

γλ, thus (ω, β) can be determined by solving
the linear equation (Y TXTω + Y T1β)I = (1− ξ)I , where I := {i |λi > 0} and ω automatically is zero
outside the index set J := {j | |(XY λ)j | ≥ 1}. These |I| ≤ N linear equations for |J |+ 1 variables are the
only conditions on (ωJ , β), thus all solutions of these linear equations are minimizers.

Theorem 3 Let λ ∈ RN be a solution of the dual problem (4), let I := {i ∈ {1, . . . , N} |λi > 0} and
let J := {j ∈ {1, . . . , D} | |(XY λ)j | ≥ 1}. Then the (in general non-unique) minimizer (ω, β, ξ) of (3)
satisfies ξ = 1

γλ and ωj = 0 for j 6∈ J , and the remaining ωj for j ∈ J as well as β solve the linear
equations (Y TXTω + βY T1)i = 1− 1

γλi, i ∈ I.

Due to Theorem 3 a posteriori not only the number |I| of support vectors can be read off from the
solution λ of the dual problem, but also the least number D− |J | of components where ω is zero, and the
sparse classifier can be obtained from λ just by solving a system of linear equations of dimension |J |.

4 Conclusion
Together with Lemma 2, which guarantees that for sufficiently small γ > 0 also the index set J is
sufficiently small (for a more precise discussion of the dependence of the solution path on γ see [10]), we
obtain from theorem 3 the following SVM algorithm to calculate a sparse classifying vector ω in the case
D >> N :
1. Choose γ > 0 sufficiently small (or consider the whole solution path for γ ∈ (0,∞)).
2. Solve the dual problem (4) to obtain λ ∈ RN .
3. Let I := {i ∈ {1, . . . , N} |λi > 0} be the indices of support vectors.
4. Let J := {j ∈ {1, . . . , D} | |(XY λ)j | ≥ 1} be the indices where not a priori ωj = 0 for j ∈ J .
5. Put ωj := 0 for every j 6∈ J .
6. Solve (Y TXTω + βY T1)i = 1− 1

γλi, i ∈ I, for the remaining ωj , j ∈ J , and β.

This algorithm combines two advantages: On the one hand, a linear SVM classifier is constructed,
which because of its sparsity may even be used if the dimension D of the feature space is very large. On
the other hand, despite the high dimension D of the feature space, the training of the SVM is possible in
acceptable time for N << D, because merely an optimization problem in dimension N has to be solved.

These two properties may for example allow to scan internet traffic for malware in real-time at routers
or switches, because on the one hand the classifier is sufficiently fast due to sparsity of ω, and on the
other hand new information about malware can be incorporated into the classifier over night by a new
training of the SVM. We plan a numerical study of this algorithm and general sparse SVMs in the project
KompDataSci and forthcoming papers.

Let us again point out that the smaller γ > 0 is chosen, the more components of ω are zero, however,
the price for this advantage are larger classification mistakes. At present there seems to be no way to
calculate γ > 0 a priori from training data so that e.g. a certain least number of components of ω is
zero and at the same time the classification error is acceptable. It would be an improvement to have an
automatic method for choosing the regularization parameter so that such an objective is reached, but at
present γ > 0 has to be chosen carefully by hand, e.g. by considering the whole path of solutions when
γ ∈ (0,∞) is varied.
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