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Abstract Let X and Y be Banach spaces. Let Ω be an open subset of X. Suppose that f : X → Y
is Fréchet differentiable in Ω and F : X ⇒ 2Y is set-valued mapping with closed graph. In the
present paper, for solving the generalized equations 0 ∈ f(x) + F(x), an extended cubic method
(ECM) is introduced and studied its convergence analysis. Indeed, we analyze semi-local and local
convergence of the ECM.
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1 Introduction

Let X and Y be Banach spaces and Ω 6= ∅ be an open subset of X. Let f : X → Y be a Fréchet
differentiable function on Ω. Assume that the first and second Fréchet derivatives of f are denoted by
∇f and ∇2f respectively. Let F be a set-valued mapping with closed graph acting between Banach space
X and the subsets of Y . In this communication, we are interested to approximate the solution of the
following generalized equation problem

0 ∈ f(x) + F(x). (1)

The inclusion type (1), introduced by Robinson [1,2] as a general tool for describing, analyzing, and
solving different problems in a unified manner, has been studied extensively.

Let us recall that the inclusion (1) is an abstract model for various problems:

• when F = {0}, (1) is an equation.
• when F is the positive orthant in Rn, (1) is a system of inequalities.
• when F is the normal cone to a convex and closed set in X, (1) reduces to variational inequalities.
• When F = ∂ψC is the subdifferential of the function

ψC(x) =
{

0, if x ∈ C;
+∞, otherwise,

(1) is reduced to some minimization problems which has been studied by Robinson [3].

To solve (1), Dontchev [4] introduced the following classical Newton-type method, for each k = 0, 1, . . .,

0 ∈ f(xk) +∇f(xk)(xk+1 − xk) + F(xk+1),

under the assumptions the set-valued mapping is pseudo-Lipschitz and the Fréchet derivative of f is
Lipschitz on a neighborhood of the solution of (1) and established a quadratic convergence of the method.
In his subsequent paper [5], he proved the uniform convergence of the method. By following Dontchev’s
method, Piétrus [6] obtained a super-linear convergence when the Fréchet derivative of f is Hölder
continuous on a neighborhood of the solution of (1) and later he [7] established the uniform convergence
of this method in this mild differentiability context.
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Let x ∈ X. By D(x), we symbolize the subset of X which is defined by

D(x) :=
{
d ∈ X : 0 ∈ f(x) +∇f(x)d+ 1

2∇
2f(x)d2 + F(x+ d)

}
.

For finding an approximate solution of (1), the extension of Dontchev’s indigenous work [8] was done by
Geoffroy et al. [9]. Thus, we recall the following cubic method defined by Algorithm 1 which is introduced
in [9]:

Algorithm 1 (The Cubic Method)
Step 1. Select x0 ∈ X and put k := 0.
Step 2. If 0 ∈ D(xk), then stop; otherwise, go to Step 3.
Step 3. If 0 /∈ D(xk), choose dk such that dk ∈ D(xk).
Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

It is remarked that under some suitable conditions around a solution x∗ of the generalized equation
(1), the authors [9, Theorem 3.1] proved that there exists a neighborhood Ω of x∗ such that, for any point
in Ω, there exists a sequence generated by Algorithm 1 which is cubically convergent to the solution x∗.
This indicates that the convergence result, established in [9], guarantees the existence of a convergent
sequence. Therefore, for any initial point near to a solution, the sequences generated by Algorithm 1
are not uniquely defined and not every generated sequence is convergent. Hence, in view of numerical
computation, this kind of method is not convenient in practical application. This drawback motivates us
to propose a method ’so-called’ extended cubic method defined by Algorithm 2.

Algorithm 2 (The Extended Cubic Method)
Step 1. Select η ∈ [1,∞), x0 ∈ X and put k := 0.
Step 2. If 0 ∈ D(xk), then stop; otherwise, go to Step 3.
Step 3. If 0 /∈ D(xk), choose dk such that dk ∈ D(xk) and

‖dk‖ ≤ η dist (0,D(xk)).

Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

The distinction between Algorithms 1 and 2 is that Algorithm 2 generates at least one sequence and
every generated sequence is convergent but this does not happen for Algorithm 1. Since the sequences
generated by Algorithm 1 are not uniquely defined, in comparison with Algorithms 1 and 2, we can infer
that Algorithm 2 is more precise than Algorithm 1 in numerical computation.

It is also remarked that if we replace the set D(x) by

D(x) :=
{
d ∈ X : 0 ∈ f(x) +∇f(x)d+ F(x+ d)

}
,

the Algorithm 2 introduced in the present paper will be the same with the Algorithm given in [10]. There
have a lot of fruitful works on semilocal analysis for solving (1); see for example [11,12,13,14,15,16].

Rashid et al. [10] established semilocal convergence analysis for solving the generalized equation
problem (1), which was the extension of Dontchev’s work in [4]. Rashid [17] introduced a variant of
Newton-type Method for solving (1) and obtained its semilocal and local convergence results. The same
author [18] associated extended Newton-type method for solving a variational inclusion of the form

0 ∈ f(x) + g(x) + F(x),
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where g : X → Y admits first order divided difference and established its semilocal and local convergence
results for solving (1). As far we know, there doesn’t have any other study on semilocal analysis for the
Algorithm 1.

The aim of this study is to analyze the semilocal convergence for the extended cubic method defined by
Algorithm 2. More clearly, when ∇2f is continuous and the set-valued mapping (f +F )−1 is Lipschitz-like,
the sequence generated by Algorithm 2 converges quadratically to the solution of (1) where as the sequence
generated by Algorithm 2 converges cubically to the solution of (1) if ∇2f is Lipschitz continuous and
the set-valued mapping (f + F )−1 is Lipschitz-like.

The main results are the convergence criteria, established in Sect.3, which, based on the information
around the initial point, provides some sufficient conditions ensuring the convergence to a solution of any
sequence generated by Algorithm 2. As a consequence, local convergence results for the cubic method are
obtained.

This paper is organized as follows: In Section 2, we recall some necessary notations, notions and some
preliminary results. In Section 3, we consider the extended cubic method for solving the generalized
equation as well as using the concept of Lipchitz-like mappings, we establish existence results of solutions
of the generalized equation and convergence results of the extended cubic method. In the last section, we
give a summary of the major results presented in this paper.

2 Definitions and Preliminary Results

Assume that X and Y are two real or complex Banach spaces. Let x ∈ X and B(x, r) = {y : ‖y− x‖ ≤ r}
denote the closed ball centered at x with radius r > 0. Let Γ : X ⇒ 2Y be a set-valued mapping. The
domain of Γ , denoted by domΓ , is defined by

domΓ := {x ∈ X : Γ (x) 6= ∅}.

The inverse and the graph of Γ , denoted by Γ−1 and gphΓ respectively, are defined by

Γ−1(y) := {x ∈ X : y ∈ Γ (x)} for each y ∈ Y

and
gphΓ := {(x, y) ∈ X × Y : y ∈ Γ (x)}.

Let B ⊆ X. The distance from a point x ∈ X to a set B is defined by

dist(x,B) := inf
b∈B
‖x− b‖,

and the excess from the set A to the set B ⊆ X is defined by

e(B,A) = sup
x∈B
{dist(x,A)}.

The notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings are due to [10]. Aubin [19,20]
introduced these notions and studied extensively.

Definition 1. Let G : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphG. Let rx̄ > 0, rȳ > 0 and
M > 0. Then the mapping G is said to be

(a) Lipchitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M if the following inequality holds:

e(G(y1) ∩ B(x̄, rx̄), G(y2)) ≤M‖y1 − y2‖ for any y1, y2 ∈ B(ȳ, rȳ).

(b) pseudo-Lipschitz around (ȳ, x̄) if there exist constants a > 0, b > 0 and M ′ > 0 such that G is
Lipchitz-like on B(ȳ, b) relative to B(x̄, a) with constant M ′.

The following lemma has taken from [10]. This lemma employs a vital role for proving the convergence
analysis.
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Lemma 1. Let G : Y ⇒ 2X be a set-valued mapping and let (ȳ, x̄) ∈ gphG. Assume that G is Lipschitz-
like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M . Then

dist(x,G(y)) ≤Mdist(y,G−1(x))

holds for every x ∈ B(x̄, rx̄) and y ∈ B(ȳ, rȳ

3 ) satisfying dist(y,G−1(x)) ≤ rȳ
3 .

We would like to finish this section with the following lemma that is known in [21].

Lemma 2. Let Φ : X ⇒ 2X be a set-valued mapping. Let x̄ ∈ X, c > 0 and 0 < r < 1 be such that

dist(x̄, Φ(x̄)) < c(1− r); (2)

and
e(Φ(x1) ∩ B(x̄, c), Φ(x2)) ≤ r‖x1 − x2‖ for any x1, x2 ∈ B(x̄, c). (3)

Then Φ has a fixed point in B(x̄, c), that is, there exists x ∈ B(x̄, c) such that x ∈ Φ(x). Moreover, if
Φ is single-valued, then the fixed point of Φ in B(x̄, c) is unique.

3 Convergence Analysis of Extended Cubic Method

This section is devoted to prove the existence and convergence of the sequences generated by the extended
cubic method defined by Algorithm 2. To this end, let x ∈ X and let us define the mapping Tx by

Tx(·) := f(x) +∇f(x)(· − x) + 1
2∇

2f(x)(· − x)2 + F(·).

Then for the construction of D(x), we have that

D(x) =
{
d ∈ X : 0 ∈ Tx(x+ d)

}
=
{
d ∈ X : x+ d ∈ Tx−1(0)

}
. (4)

Moreover, for any v ∈ X and y ∈ Y , the inclusions

v ∈ T−1
x (y) and y ∈ f(x) +∇f(x)(v − x) + 1

2∇
2f(x)(v − x)2 + F(v). (5)

are equivalent. In particular,

x̄ ∈ T−1
x̄ (ȳ) for each (x̄, ȳ) ∈ gph (f + F). (6)

The following result is due to [22]. This result establishes the equivalence relation between (f +F)−1 and
T−1
x̄ .

Lemma 3. Let f : X → Y be a function and let (x̄, ȳ) ∈ gph (f+F). Assume that f is twice differentiable
in an open neighborhood Ω of x̄ and that its second-order derivative is continuous at x̄. Then the following
are equivalent:

(i) The mapping (f + F)−1 is pseudo-Lipschitz at (ȳ, x̄);
(ii) The mapping T−1

x̄ (·) is pseudo-Lipschitz at (ȳ, x̄).

Let rx̄ > 0, rȳ > 0 and (x̄, ȳ) ∈ gph (f + F). Then, the closed graph property of the set-valued
mapping f + F implies that f + F is continuous at x̄ for ȳ, that is,

lim
x→x̄

dist(ȳ, f(x) + F(x)) = 0. (7)

Assume that B(x̄, rx̄) ⊆ Ω ∩ domF . Moreover, by Lemma 3 we assume that the mapping T−1
x̄ is

Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M , that is,

e(T−1
x̄ (y1) ∩ B(x̄, rx̄), T−1

x̄ (y2)) ≤M‖y1 − y2‖ ∀ y1, y2 ∈ B(ȳ, rȳ). (8)
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Let ε > 0 and set
α := min

{
rȳ −

13
4 εrx̄

2,
rx̄(2− 5Mε)

20M

}
. (9)

Then
α > 0 if and only if ε < min

{ 4rȳ
13rx̄2 ,

2
5M

}
. (10)

The following lemma plays a principal role for convergence analysis of the extended cubic method. The
proof is a refinement of the one for [10, Lemma 3.1].

Lemma 4. Let T−1
x̄ be a Lipschitz-like mapping on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M . Let

x ∈ B(x̄, rx̄

2 ). Assume that ∇f and ∇2f are continuous at x̄ on B(x̄, rx̄

2 ) with the same constant ε defined
by (10). Let α be defined in (9) so that (10) is satisfied. Then the mapping T−1

x is Lipschitz-like on B(ȳ, α)
relative to B(x̄, rx̄

2 ) with constant 5M
2− 5Mε

i.e.

e(T−1
x (t1) ∩ B(x̄, rx̄2 ), T−1

x (t2)) ≤ 5M
2− 5Mε

‖t1 − t2‖ for every t1, t2 ∈ B(ȳ, α).

Proof. Since α is defined in (9) so that (10) is satisfied, then it is clear that α > 0. Now let

t1, t2 ∈ B(ȳ, α) and u′ ∈ T−1
x (t1) ∩ B(x̄, rx̄2 ). (11)

To complete the proof, it is sufficient to show that there exists u′′ ∈ T−1
x (t2) such that

‖u′ − u′′‖ ≤ 5M
2− 5Mε

‖t1 − t2‖.

To finish this, we need to verify that there exists a sequence {xk} ⊆ B(x̄, rx̄) such that

t2 ∈ f(x) +∇f(x)(xk−1 − x) +∇f(x̄)(xk − xk−1) + 1
2∇

2f(x)(xk−1 − x)2

+1
2∇

2f(x̄)
(

(xk − x̄)2 − (xk−1 − x̄)2
)

+ F(xk). (12)

and ‖xk − xk−1‖ ≤
5M
2 ‖t1 − t2‖

(5M
2 ε

)k−2
(13)

hold for each k = 2, 3, 4, . . .. We proceed by induction on k. Write

ai := ti − f(x)−∇f(x)(x′ − x)− 1
2∇

2f(x)(x′ − x)2 + f(x̄) +∇f(x̄)(x′ − x̄)

+1
2∇

2f(x̄)(x′ − x̄)2 for each i = 1, 2. (14)

Note by (11) that
‖x− x′‖ ≤ ‖x− x̄‖+ ‖x̄− x′‖ ≤ rx̄. (15)

Furthermore, we have, for (14), that

‖ai − ȳ‖ ≤ ‖ti − ȳ‖+ ‖f(x′)− f(x)−∇f(x)(x′ − x)− 1
2∇

2f(x)(x′ − x)2‖+ ‖f(x′)− f(x̄)

−∇f(x̄)(x′ − x̄)− 1
2∇

2f(x̄)(x′ − x̄)2‖. (16)

Since ∇f and ∇2f are continuous at x̄ with the same constant ε > 0, we have that

‖f(x)− f(x̄)−∇f(x̄)(x− x̄)‖ = ‖
∫ 1

0
[∇f(x̄+ t(x− x̄))−∇f(x̄)](x− x̄)dt‖

≤
∫ 1

0
‖∇f(x̄+ t(x− x̄))−∇f(x̄)‖‖x− x̄‖dt

≤ ε‖x− x̄‖
∫ 1

0
dt = ε‖x− x̄‖,
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and

‖f(x)− f(x̄)−∇f(x̄)(x− x̄)− 1
2∇

2f(x̄)(x− x̄)2‖

= ‖
∫ 1

0
[∇f(x̄+ t(x− x̄))−∇f(x̄)−∇2f(x̄)(x̄+ t(x− x̄)− x̄)](x− x̄)dt‖

≤
∫ 1

0
‖∇f(x̄+ t(x− x̄))−∇f(x̄)−∇2f(x̄)(x̄+ t(x− x̄)− x̄)‖‖x− x̄‖dt

≤ ε‖x− x̄‖2
∫ 1

0
dt = ε‖x− x̄‖2.

Then from (16), using the relations in (11), (15) and the relation r̄ ≤ rȳ −
13
4 εrx̄

2 by (9), we have that

‖ai − ȳ‖ ≤ α+ ε(‖x′ − x‖2 + ‖x′ − x̄‖2) ≤ r̄ + ε(rx̄2 + rx̄
2

4 )

= α+ 5
4εrx̄

2 ≤ rȳ.

That is ai ∈ B(ȳ, rȳ) for each i = 1, 2. Define x1 := u′. Then x1 ∈ T−1
x (t1) by (11) and it follows from (5)

that
t1 ∈ f(x) +∇f(x)(x1 − x) + 1

2∇
2f(x)(x1 − x)2 + F(x1).

This can be written in another form as follows:

t1 + f(x̄) +∇f(x̄)(x1 − x̄)) + 1
2∇

2f(x̄)(x1 − x̄)2 ∈ f(x) +∇f(x)(x1 − x) + 1
2∇

2f(x)(x1 − x)2

+F(x1) + f(x̄) +∇f(x̄)(x1 − x̄) + 1
2∇

2f(x̄)(x1 − x̄)2.

This, by the definition of a1, implies that

a1 ∈ f(x̄) +∇f(x̄)(x1 − x̄) + +1
2∇

2f(x̄)(x1 − x̄)2 + F(x1).

Hence x1 ∈ T−1
x̄ (a1) by (5). This together with (11) implies that

x1 ∈ T−1
x̄ (a1) ∩ B(x̄, rx̄).

By the assumed Lipschitz-like property of T−1
x̄ and noting that a1, a2 ∈ B(ȳ, rȳ), it follows from (8) that

there exists x2 ∈ T−1
x̄ (a2) such that

‖x2 − x1‖ ≤M‖a1 − a2‖ = M‖t1 − t2‖ <
5M
2 ‖t1 − t2‖.

Moreover, by the construction of t2 and noting x1 = u′, we have

x2 ∈ T−1
x̄ (a2) = T−1

x̄

(
t2 − f(x)−∇f(x)(x1 − x)− 1

2∇
2f(x)(x1 − x)2

+f(x̄) +∇f(x̄)(x1 − x̄) + 1
2∇

2f(x̄)(x1 − x̄)2),
which, together with (5), implies that

t2 ∈ f(x) +∇f(x)(x1 − x) +∇f(x̄)(x2 − x1) + 1
2∇

2f(x)(x1 − x)2

+1
2∇

2f(x̄)
(

(x2 − x̄)2 − (x1 − x̄)2
)

+ F(x2).

This shows that (12) and (13) hold with generated points x1, x2.
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Assume that x1, x2, ..., xn are obtained so that (12) and (13) hold for k = 2, 3, . . . , n. We need to
construct xn+1 such that (12) and (13) are also true for k = n+ 1. For this purpose, set

ani := t2 − f(x)−∇f(x)(xn+i−1 − x)− 1
2∇

2f(x)(xn+i−1 − x)2 + f(x̄)

+∇f(x̄)(xn+i−1 − x̄) + 1
2∇

2f(x̄)(xn+i−1 − x̄)2 for each i = 0, 1.

Then, for i = 0, 1, we obtain that

‖an0 − an1‖

= ‖(∇f(x)−∇f(x̄))(xn − xn−1) + 1
2∇

2f(x)
(
(xn − x)2 − (xn−1 − x)2)

−1
2∇

2f(x̄)
(
(xn − x̄)2 − (xn−1 − x̄)2)‖

= ‖(∇f(x)−∇f(x̄))(xn − xn−1) + 1
2∇

2f(x)
(
(xn − xn−1 + xn−1 − x)2

−(xn−1 − x)2)− 1
2∇

2f(x̄)
(
(xn − xn−1 + xn−1 − x̄)2 − (xn−1 − x̄)2)‖

≤ ‖∇f(x)−∇f(x̄)‖‖xn − xn−1‖+ 1
2‖∇

2f(x)−∇2f(x̄)‖‖xn − xn−1‖2

+‖∇2f(x)(xn−1 − x)−∇2f(x̄)(xn−1 − x̄)‖‖xn − xn−1‖.

For all z ∈ B(x̄, rx̄

2 ), x 7→ ∇f(x), x 7→ ∇2f(x) and x 7→ ∇2f(x)(z − x) are continuous at x̄, thus we have
that

‖an0 − an1‖ ≤ ε‖xn − xn−1‖+ 1
2ε‖xn − xn−1‖2 + ε‖‖xn − xn−1‖

= ε
(
2‖xn − xn−1‖+ 1

2‖xn − xn−1‖2
)

≤ ε
(
2‖xn − xn−1‖+ 1

2‖xn − xn−1‖
)
, if the ball

B(x̄, rx̄2 ) is sufficiently small

= 5
2ε‖xn − xn−1‖. (17)

Since ‖x1 − x̄‖ ≤
rx̄
2 by (11) and ‖t1 − t2‖ ≤ 2α by (11), it follows from (13) that

‖xn − x̄‖ ≤
n∑
j=2
‖xj − xj−1‖+ ‖x1 − x̄‖

≤ 5Mα
n∑
j=2

(5Mε

2

)j−2
+ rx̄

2 ≤
5Mα

1− 5Mε

2

+ rx̄
2

= 10Mα

2− 5Mε
+ rx̄

2 .

By (9), we have α ≤ rx̄(2− 5Mε)
20M and so

‖xn − x̄‖ ≤ rx̄. (18)

Therefore, we obtain that

‖xn − x‖ ≤ ‖xn − x̄‖+ ‖x̄− x‖ ≤ 3
2rx̄. (19)
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Furthermore, using (11) and (19), one has that, for each i = 0, 1,

‖ani − ȳ‖ ≤ ‖ti − ȳ‖+ ‖f(xn+i−1)− f(x)−∇f(x)(xn+i−1 − x)− 1
2∇

2f(x)(xn+i−1 − x)2‖

+‖f(xn+i−1)− f(x̄)−∇f(x̄)(xn+i−1 − x̄)− 1
2∇

2f(x̄)(xn+i−1 − x̄)2‖

≤ α+ ε
(
‖xn+i−1 − x‖2 + ‖xn+i−1 − x̄‖2

)
≤ α+ ε

(9
4rx̄

2 + rx̄
2)

= α+ 13
4 εrx̄

2.

It follows, from the definition of α in (9), that ani ∈ B(ȳ, rȳ) for each i = 0, 1. Since assumption (12) holds
for k = n, we have

t2 ∈ f(x) +∇f(x)(xn−1 − x) +∇f(x̄)(xn − xn−1) + 1
2∇

2f(x)(xn−1 − x)2

+1
2∇

2f(x̄)[(xn − x̄)2 − (xn−1 − x̄)2] + F(xn),

which can be rewritten as

t2 + f(x̄) +∇f(x̄)(xn−1 − x̄)) + 1
2∇

2f(x̄)(xn−1 − x̄)2 ∈ f(x) +∇f(x)(xn−1 − x)

+∇f(x̄)(xn − xn−1) + 1
2∇

2f(x)(xn−1 − x)2 + 1
2∇

2f(x̄)[(xn − x̄)2 − (xn−1 − x̄)2] + F(xn) + f(x̄)

+∇f(x̄)(xn−1 − x̄) + 1
2∇

2f(x̄)(xn−1 − x̄)2.

Then by the definition of an0 , we have that an0 ∈ f(x̄) +∇f(x̄)(xn − x̄) + 1
2∇

2f(x̄)(xn − x̄)2 + F(xn).
This, together with (5) and (18), yields that

xn ∈ T−1
x̄ (an0 ) ∩ B(x̄, rx̄).

Using (8) again, there exists an element xn+1 ∈ T−1
x̄ (an1 ) such that

‖xn+1 − xn‖ ≤M‖an0 − an1‖ ≤
5M
2 ‖t1 − t2‖

(5M
2 ε

)n−1
, (20)

where the last inequality holds by (17). By the definition of an1 , we have

xn+1 ∈ T−1
x̄ (an1 ) = T−1

x̄

(
t2 − f(x)−∇f(x)(xn − x)− 1

2∇
2f(x)(xn − x)2

+f(x̄) +∇f(x̄)(xn − x̄) + 1
2∇

2f(x̄)(xn − x̄)2
)
,

which, together with (5), implies that

t2 ∈ f(x) +∇f(x)(xn − x) +∇f(x̄)(xn+1 − xn) + 1
2∇

2f(x)(xn − x)2

+1
2∇

2f(x̄)
(

(xn+1 − x̄)2 − (xn − x̄)2
)

+ F(xn+1).

This, together with (20), completes the induction step and ensure the existence of a sequence {xn}
satisfying (12) and (13).

Since 5Mε

2 < 1, we see from (13) that {xk} is a Cauchy sequence and hence it is convergent, say
to x′′, that is x′′ := limk→∞ xk. Note that F has closed graph. Then, taking limit in (12), we get
t2 ∈ f(x) +∇f(x)(x′′ − x) + 1

2∇
2f(x)(x′′ − x)2 + F(x′′) and so x′′ ∈ T−1

x (t2). Moreover,

‖x′ − x′′‖ ≤ lim sup
n→∞

n∑
k=2
‖xk − xk−1‖ ≤ lim

n→∞

n∑
k=2

5M
2 ‖t1 − t2‖

(5M
2 ε

)k−2

= 5M
2− 5Mε

‖t1 − t2‖.
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This completes the proof of the Lemma 4.

Before going to demonstrate our main results, we define, for each x ∈ X, the mapping Jx : X → Y by

Jx(·) : = f(x̄) +∇f(x̄)(· − x̄) + 1
2∇

2f(x̄)(· − x̄)2 − f(x)−∇f(x)(· − x)− 1
2∇

2f(x)(· − x)2

and the set-valued mapping Φx : X ⇒ 2X by

Φx(·) = T−1
x̄ [Jx(·)]. (21)

Then, for any x′, x′′ ∈ X, we have that

‖Jx(x′)− Jx(x′′)‖ = ‖(∇f(x̄)−∇f(x))(x′ − x′′) + 1
2∇

2f(x̄)
(

(x′ − x̄)2 − (x′′ − x̄)2
)

−1
2∇

2f(x)
(
(x′ − x)2 − (x′′ − x)2)‖

= ‖(∇f(x̄)−∇f(x))(x′ − x′′) + 1
2∇

2f(x̄)
(

(x′ − x′′ + x′′ − x̄)2 − (x′′ − x̄)2
)

−1
2∇

2f(x)
(

(x′ − x′′ + x′′ − x)2 − (x′′ − x)2
)
‖

≤ ‖∇f(x̄)−∇f(x)‖‖x′ − x′′‖+ 1
2‖∇

2f(x̄)−∇2f(x)‖‖x′ − x′′‖2

+‖∇2f(x̄)(x′′ − x̄)−∇2f(x)(x′′ − x)‖‖x′ − x′′‖. (22)

3.1 Quadratic Convergence

This subsection is devoted to study the quadratic convergence of the sequence generated by Algorithm 2
for solving (1) when ∇2f is continuous. Thus, the first main theorem of this study, which gives some
sufficient conditions confirming the convergence of the extended cubic method with starting point x0,
read as follows:

Theorem 1. Suppose that η > 1 and that T−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with

constant M . Let ∇2f be continuous on B(x̄, rx̄

2 ) with constant ε and let α be defined by (9). Let δ > 0 be
such that

(a) δ ≤ min
{rx̄

4 ,
α

3ε ,
rȳ
14ε , 1

}
; (b) 5M(1 + 10ηδ)ε ≤ 2 and (c) ‖ȳ‖ < εδ2.

Suppose that f + F is continuous at x̄ for ȳ, i.e. (7) holds. Then there exists some δ̂ > 0 such that any
sequence {xn} generated by Algorithm 2 with starting point in B(x̄, δ̂) converges quadratically to a solution
x∗ of (1).

Proof. Let
t := 50ηMεδ

2− 5Mε
. (23)

Then by assumption (b), we obtain that
t ≤ 1. (24)

Since f + F is continuous at x̄ for ȳ, by assumption (c), we can choose δ̂ be such that 0 < δ̂ ≤ δ and

dist(0, f(x0) + F(x0)) ≤ εδ2 for each x0 ∈ B(x̄, δ̂). (25)

Let x0 ∈ B(x̄, δ̂). To complete the proof, we will proceed by mathematical induction and show that
Algorithm 2 generates at least one sequence {xn} and any sequence generated by Algorithm 2 satisfies
the following assertions:

‖xn − x̄‖ ≤ 2δ (26)
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and ‖xn+1 − xn‖ ≤ t

(
1
10

)2n

δ (27)

for each n = 0, 1, 2, .... Define

rx := 25
3

(
Mε‖x− x̄‖2 +M‖ȳ‖

)
for each x ∈ X. (28)

Since η > 1, it follows from assumption (b) that

5M(1 + 10δ)ε ≤ 5M(1 + 10ηδ)ε ≤ 2.

This yields
5Mε ≤ 2 and 50Mεδ ≤ 2. (29)

Thanks to the assumption (c). Combining the second inequality in (29) and assumption (c) we have, from
(28), that

rx <
25
3 (5Mεδ2) ≤ 2δ for each x ∈ B(x̄, 2δ). (30)

Furthermore, since δ ≤ 1 and 3εδ ≤ α in assumption (a), we have that

‖ȳ‖ < εδ2 = εδ · δ ≤ α

3 . (31)

It is obvious that (26) is true for n = 0. Firstly, we need to show that x1 exists and (27) holds for n = 0.
To finish this, we have to prove D(x0) 6= ∅ by applying Lemma 2 to the mapping Φ := Φx0 . Let us check
that both assumptions (2) and (3) of Lemma 2 hold with c := rx0 and r := 22

25 . By (6), we note that
x̄ ∈ T−1

x̄ (ȳ) ∩ B(x̄, δ). Thus, according to the definition of the excess e and the mapping Φx0 in (21), we
obtain

dist(x̄, Φx0(x̄)) ≤ e(T−1
x̄ (ȳ) ∩ B(x̄, δ), Φx0(x̄)) ≤ e(T−1

x̄ (ȳ) ∩ B(x̄, rx̄), T−1
x̄ [Jx0(x̄)]) (32)

With the help of continuity property of ∇2f , we obtain that

‖Jx0(x)− ȳ‖ = ‖f(x̄) +∇f(x̄)(x− x̄) + 1
2∇

2f(x̄)(x− x̄)2 − f(x0)−∇f(x0)(x− x0)

−1
2∇

2f(x0)(x− x0)2 − ȳ‖

≤ ‖f(x)− f(x0)−∇f(x0)(x− x0)− 1
2∇

2f(x0)(x− x0)2‖

+‖f(x)− f(x̄)−∇f(x̄)(x− x̄) + 1
2∇

2f(x̄)(x− x̄)2‖+ ‖ȳ‖

≤ ε
(
‖x− x0‖2 + ‖x− x̄‖2

)
+ ‖ȳ‖. (33)

We note here that ‖x0 − x̄‖ ≤ δ̂ ≤ δ, 14δε ≤ rȳ by assumption (a) and ‖ȳ‖ < εδ2 by assumption (c). It
follows from (33) that, for each x ∈ B(x̄, 2δ),

‖Jx0(x)− ȳ‖ ≤ ε
(
‖x− x0‖2 + ‖x− x̄‖2

)
+ ‖ȳ‖ ≤ 14εδ2

≤ 14εδ ≤ rȳ. (34)

Thus, for each x ∈ B(x̄, 2δ), (34) implies that Jx0(x) ∈ B(ȳ, rȳ). In particular, let x = x̄ in (33). Then, we
obtain, from (33), that

‖Jx0(x̄)− ȳ‖ ≤ ε‖x̄− x0‖2 + ‖ȳ‖.
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and therefore Jx0(x̄) ∈ B(ȳ, rȳ). Hence, by (32) and the Lipschitz-like property of T−1
x̄ , we have

dist(x̄, Φx0(x̄)) ≤M‖ȳ − Jx0(x̄)‖ ≤Mε‖x0 − x̄‖2 +M‖ȳ‖

=
(

1− 22
25

)
rx0 = c(1− r),

which means that the assumption (2) of Lemma 2 is satisfied.
To fulfill assumption (3) of Lemma 2, let x′, x′′ ∈ B(x̄, rx0). Then for (30) and assumption (a), we

have that x′, x′′ ∈ B(x̄, rx̄). Furthermore, for (33) we have that Jx0(x′), Jx0(x′′) ∈ B(ȳ, rȳ). This, together
with Lipschitz-like property of T−1

x̄ , implies that

e(Φx0(x′) ∩ B(x̄, rx0), Φx0(x′′)) ≤ e(Φx0(x′) ∩ B(x̄, rx̄), Φx0(x′′))
= e(T−1

x̄ [Jx0(x′)] ∩ B(x̄, rx̄), T−1
x̄ [Jx0(x′′)]) ≤M‖Jx0(x′)− Jx0(x′′)‖.

Applying (22) and continuous property of ∇2f , we get that

‖Jx0(x′)− Jx0(x′′)‖ ≤ ‖∇f(x̄)−∇f(x0)‖‖x′ − x′′‖+ 1
2‖∇

2f(x̄)−∇2f(x0)‖‖x′ − x′′‖2

+‖∇2f(x̄)(x′′ − x̄)−∇2f(x0)(x′′ − x0)‖‖x′ − x′′‖

≤ ε‖x′ − x′′‖+ 1
2ε‖x

′ − x′′‖2 + ε‖x′ − x′′‖

≤
(

2ε+ 2εδ
)
‖x′ − x′′‖.

Combining the above two inequalities we obtain that

e(Φx0(x′) ∩ B(x̄, rx0), Φx0(x′′)) ≤M
(

2ε+ 2εδ
)
‖x′ − x′′‖.

It follows, from (29), that

e(Φx0(x′) ∩ B(x̄, rx0), Φx0(x′′)) ≤ 22
25‖x

′ − x′′‖ = r‖x′ − x′′‖.

This shows that the assumption (3) of Lemma 2 is also satisfied. Thus, by applying Lemma 2 we
can deduce the existence of a fixed point x̂1 ∈ B(x̄, rx0) such that x̂1 ∈ Φx0(x̂1), which translates to
0 ∈ f(x0) +∇f(x0)(x̂1−x0) + 1

2∇
2f(x0)(x̂1−x0)2 +F(x̂1) and so D(x0) 6= ∅. Accordingly, we can select

d0 ∈ D(x0) such that
‖d0‖ ≤ η dist(0,D(x0)). (35)

Then by Algorithm 2, x1 := x0 + d0 is defined.
Now we are ready to show that (27) also holds for n = 0. Since ∇2f is continuous on B(x̄, rx̄

2 ) with
constant ε, we have the following inequality

ε ≥ sup
x∈B(x̄, rx̄

2 )
‖∇2f(x)−∇2f(x̄)‖.

Note that assumption (a) ensures α > 0. Therefore assumption (9) is satisfied by (10). The Lipschitz-like
property of T−1

x̄ on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M implies, through Lemma 4, that the

mapping T−1
x is Lipschitz-like on B(ȳ, α) relative to B(x̄, rx̄

2 ) with constant 5M
2− 5Mε

for each x ∈ B(x̄, rx̄

2 ).

Specifically, for x0 ∈ B(x̄, δ̂) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄

2 ) by assumption (a) and the choice of δ̂, we can say that

T−1
x0

is Lipschitz-like on B(ȳ, α) relative to B(x̄, rx̄

2 ) with constant 5M
2− 5Mε

. Furthermore, we can obtain,
for (25) and (31), that

dist(0, Tx0(x0)) = dist(0, f(x0) + F (x0)) ≤ εδ2

≤ α

3 . (36)
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As noted earlier that x0 ∈ B(x̄, rx̄

2 ) and 0 ∈ B(ȳ, α3 ) by (31)). This, together with (36), implies that
Lemma 1 is applicable and hence by applying it, we have that

dist(x0, T
−1
x0

(0)) ≤ 5M
2− 5Mε

dist(0, Tx0(x0)).

This, together with (4), yields that

dist(0,D(x0)) = dist(x0, T
−1
x0

(0)) ≤ 5M
2− 5Mε

dist(0, Tx0(x0)). (37)

Because of (37), (31) and (23), (35) convert to the following inequality

‖x1 − x0‖ = ‖d0‖ ≤ η dist(0,D(x0))

≤ 5ηM
2− 5Mε

dist(0, Tx0(x0)) ≤ 5ηMεδ2

2− 5Mε

= t

(
1
10

)
δ.

This shows that (27) holds for n = 0.
We assume that x1, x2, ..., xk are obtained and (26) as well as (27) are true for n = 0, 1, . . . , k − 1. We

show that there exists xk+1 such that assertions (26) and (27) hold for n = k. Since (26) and (27) are
true for each n ≤ k − 1 and t ≤ 1 by (24), we have the following inequality

‖xk − x̄‖ ≤
k−1∑
i=0
‖di‖+ ‖x0 − x̄‖ ≤ δ

k−1∑
i=0

t

(
1
10

)2i

+ δ

≤ δ
k−1∑
i=0

(
1
10

)2i

+ δ ≤ 2δ.

This shows that (26) holds for n = k. Finally, we will show that the assertion (27) holds for n = k. Now
with almost the same argument as we imposed for the case when n = 0, we can prove that D(xk) 6= ∅, that
is, the point xk+1 exists and T−1

xk
is Lipschitz-like on B(ȳ, α) relative to B(x̄, rx̄

2 ) with constant 5M
2− 5Mε

.
Therefore, we have that

‖xk+1 − xk‖ = ‖dk‖ ≤ η dist(0,D(xk)) ≤ 5ηM
2− 5Mε

dist(0, Txk
(xk))

= 5ηM
2− 5Mε

dist(0, f(xk) + F (xk))

≤ 5ηM
2− 5Mε

‖f(xk)− f(xk−1)−∇f(xk−1)(xk − xk−1)

−1
2∇

2f(xk−1)(xk − xk−1)2‖

≤ 5ηMε

2− 5Mε
‖xk − xk−1‖2 ≤

5ηMεδ

2− 5Mε

(
t

(
1
10

)2k−1)2

δ

≤ t
(

1
10

)2k

δ.

This implies that (27) holds for n = k and therefore the proof is completed.

Special case, when x̄ is a solution of (1) i.e. ȳ = 0, Theorem 1 is transformed to the following corollary,
which provides the local convergent result for the extended cubic method.
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Corollary 1. Let x̄ be a solution of (1) and η ∈ (1,∞). Suppose that T−1
x̄ is pseudo-Lipschitz around

(0, x̄). Let β > 0 and suppose that ∇2f is continuous on B(x̄, β) and that f + F is continuous at x̄ for
0, that is, (7) is true for ȳ = 0. Then there exists some δ̂ > 0 such that any sequence {xn} generated by
Algorithm 2 with starting point in B(x̄, δ̂) converges to a solution x∗ of (1).

Proof. By our assumption, T−1
x̄ is pseudo-Lipschitz around (0, x̄). Then there exist constants r0, β and M

such that T−1
x̄ is Lipschitz-like on B(ȳ, r0) relative to B(x̄, β) with constant M . Then, for each 0 < r ≤ β,

one has that

e(T−1
x̄ (y1) ∩ B(x̄, r), T−1

x̄ (y2) ≤M‖y1 − y2‖ for any y1, y2 ∈ B(0, r0)

i.e. T−1
x̄ is Lipschitz-like on B(0, r0) relative to B(x̄, r) with constant M . Let ε ∈ (0, 1) be such that

Mε ≤ 2
5 . Then by the continuity of ∇2f we can choose rx̄ ∈ (0, β) such that rx̄2 ≤ r, r0 −

13
4 εr

2
x̄ > 0 and

ε ≥ sup
x, x′∈B(x̄, rx̄

2 )
‖∇2f(x)−∇2f(x′)‖.

Then
α = min

{
r0 −

13
4 εr

2
x̄,
rx̄(2− 5Mε)

20M

}
> 0,

and
min

{rx̄
4 ,

α

3ε ,
r0

13ε

}
> 0.

Thus we can choose 0 < δ ≤ 1 such that

δ ≤ min
{rx̄

4 ,
α

3ε ,
r0

13ε

}
.

and
5M(1 + 10ηδ)ε ≤ 2.

Now it is one’s duty to check that inequalities (a)-(c) of Theorem 1 hold. Thus, we can apply Theorem 1
to complete the proof of the corollary.

3.2 Cubic Convergence

This subsection is aimed to study the convergence analysis of the extended cubic method. In the following
theorem we show that if ∇2f is Lipschitz continuous around x̄, then the sequence generated by Algorithm
2 is cubically convergent.

Theorem 2. Suppose that T−1
x̄ is Lipschitz-like on B(ȳ, rȳ) relative to B(x̄, rx̄) with constant M and that

∇2f is Lipschitz continuous on B(x̄, rx̄

2 ) with Lipschitz constant L. Let η ∈ (1,∞) and let

α := min
{
rȳ −

13
4 Lr

3
x̄,
rx̄(2− 5MLrx̄)

20M

}
. (38)

Let δ > 0 be such that

(a) δ ≤ min
{rx̄

4 ,
125rȳ

76 ,
125α

18 , 1
}
,

(b) 5(M + 1)L(ηδ2 + rx̄) ≤ 2,

(c) ‖ȳ‖ < Lδ3

6 .

Suppose that f + F is continuous at x̄ for ȳ, i.e. (7) holds. Then there exists some δ̂ > 0 such that any
sequence {xn} generated by Algorithm 2 with initial point in B(x̄, δ̂) converges cubically to a solution x∗
of (1).
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Proof. According to the continuity of f + F at x̄ for ȳ and assumption (c), we can choose 0 < δ̂ ≤ δ be
such that

dist(0, f(x0) + F (x0)) ≤ Lδ3

6 for each x0 ∈ B(x̄, δ̂). (39)

Setting

γ := 5ηMLδ2

2− 5MLrx̄
.

It follows, from assumption (b), that
γ ≤ 1. (40)

Let x0 ∈ B(x̄, δ̂). Analogous proof of Theorem 1, we use mathematical induction to show that Algorithm
2 generates at least one sequence and every sequence {xn} obtained by Algorithm 2 satisfies the following
assertions:

‖xn − x̄‖ ≤ 2δ (41)

and ‖dn‖ ≤ γ

(
1
6

)3n

δ (42)

for each n = 0, 1, 2, .... Now, define

rx := 25
96

(
ML‖x− x̄‖3 + 6M‖ȳ‖

)
for each x ∈ X. (43)

Because η > 1 and δ ≤ rx̄
4 by assumption (a), it follows, from assumption (b), that

5(M + 1)Lδ2 = (M + 1)L(δ2 + 4δ2) ≤ (M + 1)L(δ2 + 4δ)

≤ (M + 1)L(ηδ2 + rx̄) ≤ 2
5 .

This gives
MLδ2 ≤ 2

25 and Lδ2 ≤ 2
25 . (44)

Thus, by 18δ ≤ 125α in assumption (a) and second inequality in (44), we obtain that

‖ȳ‖ < Lδ3

6 = Lδ2

6 · δ ≤ 2
25 · 6 · 25α = α

3 , (45)

thanks to assumption (c). Thus, we obtain from (43), together with first inequality in (44) and assumption
(c), that

rx <
25
96

(
8MLδ3 +MLδ3

)
= 25

96

(
9MLδ3

)
≤ 3

16δ ≤ 2δ for each x ∈ B(x̄, 2δ). (46)

It is clear that α > 0 by assumption (a). Then we have from (38) that

α > 0⇒ 2− 5MLrx̄ > 0⇒ 5MLrx̄ < 2

⇒ 20MLδ < 5MLrx̄ < 2⇒ LMδ <
1
10 . (47)

Note that, for n = 0, (41) is trivial. To show that the point x1 exists and (42) holds for n = 0, it suffices
to prove that D(x0) 6= ∅. We will do that by applying Lemma 2 to the mapping Φ := Φx0 . To do this, let
us check that both assumptions (2) and (3) of Lemma 2 hold with c := rx0 and r := 9

25 . Here, we note
that x̄ ∈ T−1

x̄ (ȳ) ∩ B(x̄, δ). Then by the definition of the excess e, we obtain that

dist(x̄, Φx0(x̄)) ≤ e(T−1
x̄ (ȳ) ∩ B(x̄, δ), Φx0(x̄))

≤ e(T−1
x̄ (ȳ) ∩ B(x̄, rx̄), T−1

x̄ [Jx0(x̄)]). (48)
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By the Lipschitz continuity property of ∇2f , we obtain, for each x ∈ B(x̄, 2δ) ⊆ B(x̄, rx̄

2 ), that

‖Jx0(x)− ȳ‖ = ‖f(x̄) +∇f(x̄)(x− x̄) + 1
2∇

2f(x̄)(x− x̄)2 − f(x0)−∇f(x0)(x− x0)

−1
2∇

2f(x0)(x− x0)2 − ȳ‖

≤ ‖f(x)− f(x0)−∇f(x0)(x− x0)− 1
2∇

2f(x0)(x− x0)2‖

+‖f(x)− f(x̄)−∇f(x̄)(x− x̄) + 1
2∇

2f(x̄)(x− x̄)2‖+ ‖ȳ‖

≤ L

6
(
‖x− x0‖3 + ‖x− x̄‖3

)
+ ‖ȳ‖. (49)

Because of ‖x0 − x̄‖ ≤ δ̂ ≤ δ, 76δ ≤ 125rȳ by assumption (a), ‖ȳ‖ < Lδ3

6 by assumption (c) and second
relation in (44), (49) implies that

‖Jx0(x)− ȳ‖ ≤ L

6

(
‖(x− x̄) + (x̄− x0)‖3 + ‖x− x̄‖3

)
+ Lδ3

6

≤ L

6

(
(3δ)3 + (2δ)3

)
+ Lδ3

6 = 6Lδ3

= 6 · Lδ2 · δ ≤ rȳ. (50)

This means that, for each x ∈ B(x̄, 2δ), Jx0(x) ∈ B(ȳ, rȳ). Specifically, putting x = x̄ in (49). Then we
have that

‖Jx0(x̄)− ȳ‖ ≤ L

6 ‖x̄− x0‖3 + ‖ȳ‖ (51)

≤ Lδ3

6 + Lδ3

6 ≤ rȳ.

Hence, by (51) and the Lipschitz-like property of T−1
x̄ , we have, from (48), that

dist(x̄, Φx0(x̄)) ≤M‖ȳ − Jx0(x̄)‖ ≤ ML

6 ‖x̄− x0‖3 +M‖ȳ‖

=
(

1− 9
25

)
rx0 = c(1− r),

which shows that the assumption (2) of Lemma 2 is satisfied.
Next, we show that assumption (3) of Lemma 2 is satisfied. To do this, let x′, x′′ ∈ B(x̄, rx0). Then we

have that x′, x′′ ∈ B(x̄, rx0) ⊆ B(x̄, 2δ) ⊆ B(x̄, rx̄) by (46) and Jx0(x′), Jx0(x′′) ∈ B(ȳ, rȳ) by (50). This,
together with the Lipschitz-like property of T−1

x̄ , implies that

e(Φx0(x′) ∩ B(x̄, rx0), Φx0(x′′)) ≤ e(Φx0(x′) ∩ B(x̄, rx̄), Φx0(x′′))
= e(T−1

x̄ [Jx0(x′)] ∩ B(x̄, rx̄), T−1
x̄ [Jx0(x′′)])

≤M‖Jx0(x′)− Jx0(x′′)‖.

Since ∇2f and ∇2f(·)(z − ·) are Lipschitz continuous on B(x̄, rx̄

2 ) for all z ∈ B(x̄, rx̄

2 ), then ∇f is also
Lipschitz continuous on B(x̄, rx̄

2 ) and for simplicity we take the same Lipschitz constant L. Thus, for the
choice of x0, (22) yields that

‖Jx0(x′)− Jx0(x′′)‖ ≤ ‖∇f(x̄)−∇f(x0)‖‖x′ − x′′‖+ 1
2‖∇

2f(x̄)−∇2f(x0)‖‖x′ − x′′‖2

+‖∇2f(x̄)(x′′ − x̄)−∇2f(x0)(x′′ − x0)‖‖x′ − x′′‖

≤ L‖x̄− x0‖‖x′ − x′′‖+ L

2 ‖x̄− x0‖‖x′ − x′′‖2 + L‖x̄− x0‖‖x′ − x′′‖

≤
(

2L+ L

2 ‖x
′ − x′′‖

)
‖x̄− x0‖‖x′ − x′′‖

≤ 2L(δ + δ2)‖x′ − x′′‖.
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It follows, from (47) and first inequality of (44), that

e(Φx0(x′) ∩ B(x̄, rx0), Φx0(x′′)) ≤ (2MLδ + 2MLδ2)‖x′ − x′′‖

≤ 9
25‖x

′ − x′′‖ = r‖x′ − x′′‖.

This means that the assumption (3) of Lemma 2 is also satisfied. Thus by Lemma 2, we can deduce
the existence of a fixed point x̂1 ∈ B(x̄, rx0) such that x̂1 ∈ Φx0(x̂1), which translates to 0 ∈ f(x0) +
∇f(x0)(x̂1 − x0) + 1

2∇
2f(x0)(x̂1 − x0)2 + F(x̂1) and hence D(x0) 6= ∅. Consequently, we can choose

d0 ∈ D(x0) such that
‖d0‖ ≤ η dist(0,D(x0)). (52)

Therefore, according to the Algorithm 2, we can say that x1 := x0 + d0 is defined.
Below we show that assertion (42) also holds for n = 0. Since ∇2f is Lipschitz continuous on B(x̄, rx̄

2 )
with Lipschitz constant L, we have, for x′, x′′ ∈ B(x̄, rx̄

2 ), that

Lrx̄ ≥ L‖x′ − x′′‖ ≥ ‖∇2f(x′)−∇2f(x′′)‖
≥ sup
x∈B(x̄, rx̄

2 )
‖∇2f(x)−∇2f(x̄)‖. (53)

Since α > 0 by assumption (a), (10) and (53) imply that assumption (9) is satisfied with ε := Lrx̄.
Note by assumption (a) that x0 ∈ B(x̄, δ̂) ⊆ B(x̄, δ) ⊆ B(x̄, rx̄

2 ). Therefore, since T−1
x̄ is Lipschitz-like on

B(ȳ, rȳ) relative to B(x̄, rx̄), it follows from Lemma 4 that T−1
x0

is Lipschitz-like on B(ȳ, α) relative to

B(x̄, rx̄

2 ) with constant 5M
2− 5MLrx̄

. Moreover, (39) and (45) imply that

dist(0, Tx0(x0)) = dist(0, f(x0) + F (x0)) ≤ Lδ3

6 (54)

≤ α

3 .

It has been mentioned above that x0 ∈ B(x̄, rx̄

2 ) and by (45)) we have that 0 ∈ B(ȳ, α3 ). This, together
with (54), implies that Lemma 1 is applicable and hence by applying it we have that

dist(x0, Tx0
−1(0)) ≤ 5M

2− 5MLrx̄
dist(0, Tx0(x0)) (55)

Applying (55), we have from (4) that

dist(0,D(x0)) = dist(x0, T
−1
x0

(0))

≤ 5M
2− 5MLrx̄

dist(0, Tx0(x0)). (56)

Utilizing (56), (54) and then (40) in (52), we obtain that

‖x1 − x0‖ = ‖d0‖ ≤ η dist(0,D(x0))

≤ 5ηM
2− 5MLrx̄

dist(0, Tx0(x0)) ≤ 5ηMLδ3

6(2− 5MLrx̄)

= γ

(
1
6

)
δ.

This shows that (42) holds for n = 0.
We assume that the points x1, x2, ..., xk are generated by Algorithm 2, and (41) and (42) are true for

n = 0, 1, . . . , k − 1. We show that there exists xk+1 such that (41) and (42) hold for n = k. Since, for
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each n ≤ k − 1, (41) and (42) are true and γ ≤ 1 by (40), we have the following inequality

‖xk − x̄‖ ≤
k−1∑
i=0
‖di‖+ ‖x0 − x̄‖ ≤ δ

k−1∑
i=0

γ

(
1
6

)3i

+ δ

≤ δ
k−1∑
i=0

(
1
6

)3i

+ δ ≤ 2δ.

This shows that (41) holds for n = k. Finally, we will show that (42) holds for n = k. Now with almost
analogous arguments that we used for the case when n = 0, we can prove that D(xk) 6= ∅ and so by
Algorithm 2 we can choose dk ∈ D(0, xk) such that

‖dk‖ ≤ η dist(0,D(xk)),

that is, the point xk+1 exists. Moreover, we have that T−1
xk

is Lipschitz-like on B(ȳ, α) relative to B(x̄, rx̄

2 )

with constant 5M
2− 5MLrx̄

. Therefore, we have that

‖xk+1 − xk‖ = ‖dk‖ ≤ η dist(0,D(xk))

≤ 5ηM
2− 5MLrx̄

dist(0, Txk
(xk)) = 5ηM

2− 5MLrx̄
dist(0, f(xk) + F (xk))

≤ 5ηM
2− 5MLrx̄

‖f(xk)− f(xk−1)−∇f(xk−1)(xk − xk−1)− 1
2∇

2f(xk−1)(xk − xk−1)2‖

≤ 5ηML

6(2− 5MLrx̄)‖xk − xk−1‖3 ≤
5ηMLδ2

6(2− 5MLrx̄)

(
γ

(
1
6

)3k−1)3

δ

≤ γ
(

1
6

)3k

δ.

This implies that (42) holds for n = k and therefore the proof of the theorem is completed.

In the special case when x̄ is a solution of (1) (that is ȳ = 0 in Theorem 2), then we have the following
corollary which gives the cubically local convergence result for the extended cubic method. The proof of
this corollary is similar to that we have done for Corollary 1.

Corollary 2. Suppose that η > 1 and that x̄ is a solution of (1) and that T−1
x̄ is pseudo-Lipschitz around

(0, x̄). Suppose that ∇2f is Lipschitz continuous around x̄. Suppose that

lim
x→x̄

dist(0, f(x) + F(x)) = 0.

Then there exists some δ̂ > 0 such that any sequence {xn} generated by Algorithm 2 with initial point in
B(x̄, δ̂) converges cubically to a solution x∗ of (1).

4 Concluding Remarks

The semilocal and local convergence results for the extended cubic method are established when η > 1
and T−1

x̄ is Lipschitz-like as well as ∇2f is continuous or Lipschitz continuous. The results seem new for
the generalized equation problem (1). Though the results are true for the extended cubic method, this
method is little complicated for the case when η = 1. However, from the proofs of the main theorems, one
sees that all results obtained in the present paper remain true provided the following implication holds
for each x ∈ X:

D(x) 6= ∅ =⇒ ∃ d̄ ∈ D(x) such that ‖d̄‖ = min
d∈D(x)

‖d‖.

To see the detail proof of the above implication, one can refer to [10].
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