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Abstract In this paper, exact travelling wave solutions of two higher order nonlinear Schrödinger
equations (NLSEs) are studied by using the first integral method. Firstly, two higher order nonlinear
Schrödinger equations are reduced to nonlinear ordinary differential equations (ODEs) by simple
travelling wave transformations. Then the division theorem of polynomial is used to calculate first
integrals of dynamic systems. Finally, the soliton wave solutions, kink wave solutions and periodic
wave solutions of two higher order nonlinear Schrödinger equations are obtained. The results show
that this method is effective for solving exact solutions of nonlinear partial differential equations
(PDEs).
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1 Introduction

The nonlinear PDE is an important model for describing the problems of physics, chemistry, engineering
and medicine. When we want to understand the principle of physical phenomena, the work to solve exact
solutions of nonlinear PDEs and to research their properties is significative. In order to find the exact
solutions of nonlinear PDEs, pioneers presented the following methods, such as tanh-sech function method
[1], projective Riccati equation method [2], Kudryashov method [3], sine-cosine method [4], Jacobi elliptic
function expansion method [5], F expansion method [6], exp-function method[7], Hirota bilinear method
[8], bifurcation theory method of dynamic systems [9] and so on.

One of these methods is called the first integral method, which is based on the ring theory of
commutative algebra. The integral method proposed by Feng [10] is reliable to solve nonlinear PDEs,
and Feng further developed the theory by himself [11-13]. The theory has been applied to handle various
PDEs by many scholars in science and engineering [14-16]. Here, we consider the higher order nonlinear
Schrödinger equation with derivative non-Kerr nonlinear terms[17] and the higher order dispersive
Cubic-quintic nonlinear Schrödinger equation [18]:

iEZ −
β2

2 Ett + γ1 | E |2 E = i
β3

6 Ettt + iα1(| E |2 E)t

+iα2E(| E |2)t − γ2 | E |4 E + iα3(| E |4 E)t + iα4E(| E |4)t,
(1)

and

iqZ −
β2

2 qtt + γ1 | q |2 q − i
β3

6 qttt −
β4

24qtttt + γ2 | q |4 q = 0. (2)

where α1,α2,α3,α4,β2,β3,β4,γ1,γ2 are real constants. E , q are complex functions.
For the higher order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms, Li

et.al employed the bifurcation theory method of dynamical systems to provide the equation bounded
traveling wave solutions [17]. Choudhuri and Porsezian analytically solved the high order NLSEs with
non-Kerr nonlinearity under some parametric conditions, and he investigated explicitly bright and dark
solitary wave solutions and periodic wave solutions [19]. In addition, other scholars have also used different
methods to obtain the solutions of the equation [20-24]. For the higher order dispersive Cubic-quintic
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nonlinear Schrödinger equation, Zayed and Nowehy combined the solution Ansatz method with the Jacobi
elliptic equation method to obtain several integrations denoted Jacobi elliptic function of the equation
[25]. Arshad et.al used a modified extended direct algebraic method to present bright and dark wave
solutions and soliton wave solutions of higher order dispersive Cubic-quintic NLSEs [26]. In addition,
there are some papers [27-29] where the various types of higher-order NLSEs are studied.

The structure of this paper is organized as follows: Section 2 is the description of the basic idea of the
first integral method briefly. In section 3, we use this method to solve two high order NLSEs in detail. In
section 4, some conclusions are given.

2 The First Integral Method

Consider the general nonlinear PDE in the form

P (u, ut, ux, uxx, utt, uxt, uxxx, ...) = 0. (3)

where P is a polynomial in its arguments.
In order to transform the equation (3) into ODE, we introduce the transformation

u(x, t) = u(ξ), ξ = x− ct. (4)

where c is a constant, then

∂

∂t
(·) = −c ∂

∂ξ
(·), ∂

∂x
(·) = ∂

∂ξ
(·), ∂

2

∂t2
(·) = c2 ∂

2

∂ξ2 (·), ....... (5)

Step 1: According to above transformation, the equation(3) has the following nonlinear ODE form:

Q(u, uξ, uξξ, ......) = 0. (6)

where the subscript denotes the derivation with respect to ξ.
Step 2: Suppose the solution of nonlinear ODE (6) can be written as

u(x, t) = u(ξ). (7)

Step 3: Let X and Y be a new independent variable

X(ξ) = u(ξ), Y (ξ) = uξ(ξ). (8)

we obtain the system of ODEs {
Xξ(ξ) = Y (ξ),
Yξ(ξ) = F (X(ξ), Y (ξ)). (9)

Step 4: According to the qualitative theory of ODEs [30], if we can find the first integrals to equation
(9) under the same conditions, then the general solutions to equation (9) can be found directly. However,
there is no systematic theory that can tell us how to find its first integrals, nor we know what these first
integrals are. Thankfully, for some equations we can apply the Division Theorem to reduce equation (6)
to a first order integrable ordinary differential equation. An exact solution to equation (3) is obtained by
solving this equation. Now, let us review the Division Theorem:

Division Theorem: Suppose that P (x, y) and Q(x, y) are polynomials in C(x, y), and make P (x, y)
is irreducible in C(x, y). If Q(x, y) vanishes at all zero points of P (x, y), then there exists a polynomial
G(x, y) in C(x, y), such that

Q(x, y) = P (x, y)G(x, y). (10)
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3 Application

In this section, we apply the first integral method based on the Division Theorem to solve the two higher
order nonlinear Schrödinger equations.

Firstly, for equation (1), suppose the form of solution to equation (1) is as following:

E(Z, t) = ψ(ξ)ei(kZ−wt). (11)

where ξ = βZ − λt. And β,λ,k,w are real parameters, ψ(ξ) is a real function.
Substituting equation (11) into equation (1), and making real and imaginary part zero respectively:

(3λ2β2 + 3λ2β3w)ψ′′ − (β3w
3 + 3β2w

2 − 6k)ψ

−(6γ1 − 6wα1)ψ3 − (6γ2 + 6α3w)ψ5 = 0, (12)

1
6β3λ

3ψ′′′ + (−1
2β3w

2λ− β2wλ+ β)ψ′ + (3α1λ

+2α2λ)ψ2ψ′ + (5α3λ+ 4α4λ)ψ4ψ′ = 0. (13)

Integrating equation (13) once, clearly equation (13) and equation (12) have the following forms:

ψ′′ − 3β3w
2λ+ 6β2wλ

2 − 6β
λ3β3

ψ + 6α1λ+ 4α2λ

λ3β3
ψ3 +

6α3λ+ 24
5 α4λ

λ3β3
ψ5 = 0. (14)

where satisfy the constraint condition

−3λ2(β2 + β3w)
β3λ3/6 = β3w

3 + 3β2w
2 − 6k

−(1/2)β3w2λ− β2wλ+ β
= 6γ1 − 6α1w

3α1λ+ 2α2λ
= 6γ2 − 6α3w

5α3λ+ 4α4λ
. (15)

Let d1 = 3β3w
2λ+ 6β2wλ

2 − 6β
λ3β3

, d2 = −6α1λ+ 4α2λ

λ3β3
and d3 = −

6α3λ+ 24
5 α4λ

λ3β3
.

Putting equation (8) in equation (14), we get{
X ′(ξ) = Y (ξ),
Y ′(ξ) = d1X(ξ) + d2X(ξ)3 + d3X(ξ)5.

(16)

Secondly, for equation (2). Suppose the form of solution to equation (2) is as following:

q(Z, t) = ϕ(ξ)ei(λZ−wt). (17)

where ξ = pZ − vt. And p, v, λ, w are real parameters, ϕ(ξ) is a real function.
Substituting equation (17) into equation (2), and making imaginary and real part zero respectively:

(β3 − β4w)v3ϕ′′′ + (6p− 6β2vw − 3β3vw
2 + β4vw

3)ϕ′ = 0, (18)

β4v
4ϕ′′′′ + (−6β4v

2w2 + 12β3v
2w + 12β2v

2)ϕ′′ + (−12β2w
2 + 24λ− 4β3w

3 + β4w
4)ϕ

−24γ1ϕ
3 − 24γ2ϕ

5 = 0.
(19)

Differentiating equation (18) once, and substituting the resultant equation into equation (19), we
make k1 = (β3 − β4w)v3, k2 = 6p− 6β2vw − 3β3vw

2 + β4vw
3, k3 = −6β4v

2w2 + 12β3v
2w + 12β2v

2 and
k4 = −12β2w

2 + 24λ− 4β3w
3 + β4w

4. Then we can obtain
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ϕ′′ − 24γ2k1

k1k3 − β4v4k2
ϕ5 − 24γ1k1

k1k3 − β4v4k2
ϕ3 + k4k1

k1k3 − β4v4k2
ϕ = 0. (20)

Taking equation (8) in equation (20), we getX ′(ξ) = Y (ξ),

Y ′(ξ) = − k4k1

k1k3 − β4v4k2
X(ξ) + 24γ1k1

k1k3 − β4v4k2
X(ξ)3 + 24γ2k1

k1k3 − β4v4k2
X(ξ)5.

(21)

If we let again d1 = − k4k1

k1k3 − β4v4k2
,d2 = 24γ1k1

k1k3 − β4v4k2
and d3 = 24γ2k1

k1k3 − β4v4k2
, then equation

(21) and (16) are equivalent to the first integral. In order to obtain their exact solution, we just need to
talk about system equation (16).

Now, according to the first integral method. Assume that X = X(ξ) and Y = Y (ξ) are the nontrivial
solutions of equation (16), and

P (X,Y ) =
m∑
i=0

ai(X)Y i, (22)

is an irreducible polynomial in the complex domain C[X,Y] such that

P (X(ξ), Y (ξ)) =
m∑
i=0

ai(X(ξ))Y (ξ)i = 0. (23)

where ai(X)(i = 0, 1, ...,m) are polynomial of X and am(X) 6= 0. Equation (23) is called the first integral
of the equation (16). Note that P (X(ξ), Y (ξ)) is a polynomial in X and Y, and dP

dξ
implies dP

dξ
|(22) = 0.

According to the division theorem, there exists a polynomial H(X,Y ) = h(X) + g(X)Y in C(X,Y ) , that
is,

dP

dξ
|(22) = ( dP

dX

dX

dξ
+ dP

dY

dY

dξ
)|(22) = (h(X) + g(X)Y )(

m∑
i=0

ai(X)Y i). (24)

Case 1: Assume that m = 1 in equation (23) and then from equation (24) we have

1∑
i=0

a′i(X)Y i+1 +
1∑
i=0

iai(X)Y i−1(Y ′(ξ)) = (h(X) + g(X)Y )(
1∑
i=0

ai(X)Y i). (25)

where prime denotes differentiating with respect to the variable X. By comparing with the coefficient of
Y i(i = 2, 1, 0) on both sides of equation (25), we have

a′1(X) = g(X)a1(X), (26)

a′0(X) = h(X)a1(X) + g(X)a0(X), (27)

a1(X)(d1X + d2X
3 + d3X

5) = h(X)a0(X). (28)

Since ai(X)(i = 1, 0) are polynomials, then from equation (26) we obtain that a1(X) is constant
and g(X) = 0. For simplicity, make a1(X) = 1. Balancing the degrees of h(X) and a0(X), we get that
deg(h(X)) = 2 only. Assume that h(X) = AX2 +BX + C, where A 6= 0, then
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a0(X) = 1
3AX

3 + 1
2BX

2 + CX +D. (29)

where D is an arbitrary integration constant.
Substituting a0(X), a1(X) and h(X) into equation (28) and setting all the coefficient of powers of X

equal to zero, we obtain a system of nonlinear algebraic equations, that is,

1
3A

2 = d3
5
6AB = 0
4
3AC + 1

2B
2 = d2

AD + 3
2BC = 0

BD + C2 = d1
CD = 0,

(30)

and using Maple solving them, we get

D = 0, B = 0, A =
√

3d3, C = −
√
d1, (31)

and

D = 0, B = 0, A = −
√

3d3, C =
√
d1, (32)

where d1, d3 < 0 satisfy the constraint condition

d1d3 = 3
16d

2
2.

Taking the conditions (31) in (23), we get

Y (ξ) = X(−1
3
√

3d3)X2 +
√
d1), (33)

and combining equation (33) with equation (16), we can obtain the exact solutions of the high order
NLSE (1) as

E1,2(ξ) = ±
√

3
√
d1e(2

√
d1ξ)+ξ0√

1−
√

3d3e(2
√
d1ξ)+ξ0

. (34)

where ξ0 is an arbitrary constant. And the travelling wave solutions of the high order NLSE (1) can be
written as

E1,2(Z, t) = ±ei(kZ−wt)
√

3
√
d1e(2

√
d1(βZ−λt))+ξ0√

1−
√

3d3e(2
√
d1(βZ−λt))+ξ0

. (35)

Similarly, taking the conditions (32) in (23), we get

Y (ξ) = X(1
3
√

3d3)X2 −
√
d1), (36)

from equation (16), we get
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E3,4(ξ) = ±
√

3
√
d1√

e(2
√
d1ξ)+ξ0 −

√
3d3

. (37)

where ξ0 is an arbitrary constant. And the travelling wave solutions of the high order NLSE (1) can be
written as

E3,4(Z, t) = ±ei(kZ−wt)
√

3
√
d1√

e(2
√
d1(βZ−λt))+ξ0 −

√
3d3

. (38)

Case 2: Suppose that m = 2 , by comparing with the coefficient of Y i(i = 3, 2, 1, 0) on both sides of
equation (24), we have

a′2(X) = g(X)a2(X), (39)

a′1(X) = h(X)a2(X) + g(X)a1(X), (40)

a′0(X) + 2a2(X)(d1X + d2X
3 + d3X

5) = h(X)a1(X) + g(X)a0(X), (41)

a1(X)(d1X + d2X
3 + d3X

5) = h(X)a0(X). (42)

Since ai(X)(i = 2, 1, 0) = 0 are polynomials, then from equation (39) we obtain that a2(X) is a
constant and g(X) = 0. For simplicity, make a2(X) = 1. Balancing the degrees of h(X), a1(X)and a0(X),
we get deg(h(X)) = 2, deg(a1(X)) = 3, deg(a0(X)) = 6 only. Assume h(X) = AX2 + BX + C, where
A 6= 0, then

a1(X) = 1
3AX

3 + 1
2BX

2 + CX +D,

a0(X) = ( 1
18A

2 − 1
3d3)X6 + (1

6AB)X5 + (1
3AC + 1

8B
2 − 1

2d2)X4

+(1
3AD + 1

2BC)X3 + (1
2BD + 1

2C
2 − d1)X2 + (DC)X + E.

(43)

where D is an arbitrary integration constant.
Substituting a0(X), a1(X), a2(X) and h(X) into equation (42), setting all the coefficient of powers of

X equal to zero, then we obtain a system of nonlinear algebraic equation, that is,

1
18A

3 = 2
3Ad3

2
9A

2B = 5
6Bd3

7
18A

2C + 7
24AB

2 = 5
6Ad2 + 4

3Cd3
1
3A

2D +ABC + 1
8B

2 = Bd2 +Dd3
7
6ABD + 5

6AC
2 + 1

8B
2C = 4

3Ad1 + 3
2Cd2

1
2DB

2 + 4
3ACD +BC2 = 3

2Bd1 + 2Dd2
3
2BCD + 1

2C
2 +AE = 2Cd1

DC2 +BE = Dd1
EC = 0,

(44)
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and using Maple solving them, we obtain

E = 0, D = 0, B = 0, A = 2
√

3d3, C = −2
√
d1, (45)

and

E = 0, D = 0, B = 0, A = −2
√

3d3, C = 2
√
d1, (46)

where d1, d3 < 0 satisfy the constraint condition

d1d3 = 3
16d

2
2.

Taking the conditions (45) in (23), we get

Y (ξ) = X(1
6
√

3d3)X2 − 1
2
√
d1), (47)

and combining equation (47) with equation (16), we can obtain the exact solutions of the high order
NLSE (1) as

E5,6(ξ) = ±
√

3
√
d1√

e(4
√
d1ξ)+ξ0 −

√
3d3

. (48)

where ξ0 is an arbitrary constant. And the travelling wave solutions of the high order NLSE (1) can be
written as

E5,6(Z, t) = ±ei(kZ−wt)
√

3
√
d1√

e(4
√
d1(βZ−λt))+ξ0 −

√
3d3

. (49)

Similarly, taking the conditions (46) in (23), we can obtain

Y (ξ) = X(−1
6
√

3d3)X2 + 1
2
√
d1), (50)

from equation(16), we have

E7,8(ξ) = ±
√

3
√
d1e(4

√
d1ξ)+ξ0√

1−
√

3d3e(4
√
d1ξ)+ξ0

. (51)

Where ξ0 is an arbitrary constant. And the travelling wave solutions of the high order NLSE (1) can
be written as

E7,8(Z, t) = ±ei(kZ−wt)
√

3
√
d1e(4

√
d1(βZ−λt))+ξ0√

1−
√

3d3e(4
√
d1(βZ−λt))+ξ0

. (52)

4 Conclusion

The first integral method successfully solved some important nonlinear PDEs, and the method is
implemented based on the ring theory of commutative algebra. Our works include two higher order
NLSEs, and the soliton wave solutions, kink wave solutions and periodic wave solutions with different
forms are obtained. Thus, for nonlinear PDEs, if we turn them into dynamic systems of five times by
properly travelling wave transformations, then the same type solutions can be obtained by using the first
integral method. Compared with other methods, it is an effective method to solve the exact traveling
wave solution, that is, we can easily use computer software to complete the complex algebraic calculation,
and more accurate traveling wave solution is obtained. Therefore, this method can be extended to solve
other nonlinear PDEs.
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