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Abstract The novel (%)—expansion method is applied to solve generalized Davey-Stewartson
equations with arbitrary power nonlinearities and obtain some exact traveling wave solutions. Via
this method, we obtain kink wave solutions, anti-kink wave solutions, exact solitary wave solutions,
periodic wave solutions. Also, it is shown that this method is influential for solving nonlinear partial
differential equations (PDEs) in mathematical physics and engineering.
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1 Introduction

In recent years, the study of the exact traveling wave solutions for nonlinear PDEs plays an important
role in the area of solid state physics, optical fibers, plasma elastic media. Finding some exact traveling
wave solutions has made great progression in mathematicians and physicists. Lots of methods have
been presented, such as the inverse scattering method, Darboux transformation, the Hirota bilinear
method, the homogeneous balance method and the tanh method [1]-[32]. Moreover, Kudryashov proposed
(G'/G)-expansion method to obtain some new exact traveling wave solutions of PDEs [33], which is

effective. ,

In this paper, we will use the novel (5)—expansion method[34] to receive some new exact solutions

for the following generalized Davey-Stewartson equations with arbitrary power nonlinearities[35]:
iUt + Ugg + Uy + Y|uPu + cuv + 0lul*Pu = 0, (1.1)
Vzz + Vyy — B(|ulP)zz = 0. '

where «, 3,7, 9 are real parameters, p is a positive integer, v is a real function, u is a complex function.
Generalized Davey-Stewartson equation with arbitrary power nonlinearities is effective, which describes
the short-wave and long-wave motion in water with limited depth. Many researchers have applied a
lot of methods for solving Eq.(1.1). For example, Ming Song[35] and Cao Jun[36] used the bifurcation
method of dynamical systems to obtain the traveling wave solutions for Eq.(1.1). M Mirzazadeh applied
the trial equation method and the ansatz approach to establish solitary waves soliton, dark soliton and
singular solitary waves soliton solutions of the Davey-Stewartson equation[37]. Ming Song studied the
Davey-Stewartson equation with power law nonlinearity and carried out several different solutions for the
bifurcation analysis[38]. Reza Farshbaf Zinati used He’s semi-inverse variational principle method (SIVPM),
the improved tan(¢/2)-expansion method (ITEM) and generalized (G’/G)-expansion method (GGM) for
seeking more exact solutions of the DS equation[39]. The generalized Kudryashov method is introduced
to obtain new soliton solutions of the Davey-Stewartson equation with power law nonlinearity by Seyma
Tuluce Demiray[40]. Mehdi Fazli Aghdaei applied the generalized tan(¢$/2) method and He’s semi-inverse
variational method (HSIVM) to seek the exact solitary wave solutions of the Davey-Stewartson equation
with power law nonlinearity[41].
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!
This paper is organized as follows: In sections 2, we mainly describe the novel (6)—expansion method.

In sections 3, we apply this method to solve Eq.(1.1). Some conclusions are given in sections 4.

/

G
2 Description of the Novel (E)-Expansion Method

Consider the following nonlinear PDEs:
P(t7xi7ut7u.’1’)7‘,7uzizi7u.’tixj7utt7 )? (21)

where i,7,=1,2,...,n. P is a polynomial in u(x,t), u(x,t) is an unknown function. The main steps of the
!

novel (— )-expansion method are as follows:
G

Step 1. Make a transformation:
n
u(t,xy,ug, -+ up) = ¢(§),€ = Z kix; — ct. (2.2)
i=1

Eq.(2.1) can be reduced to the following nonlinear ordinary differential equations(ODEs):
Qu,u’' v’ v, ...) =0, (2.3)

where Q is a function of u(§) and its derivatives.
Step 2. Suppose the solution of Eq.(2.3) can be denoted by a polynomial in (§):

n

u(@) = > a; (), (2.4)

j=—n

where

G'(§)

G(¢)

The constants «_,, and «, could not be zero simultaneously. «;(j = 0,+1,+2,...,£N) and d are

constants.
Step 3. Consider the second order nonlinear ODE:

P(§) =d+

(2.5)

GG" = MGG + uG? +v(G")?, (2.6)
where prime denotes the derivative with respect €. A, and ¢ are real parameters.
G/
The Cole-Hopf transformation (&) = e ((g reduces Eq.(2.6)to the following equation:
P'(&) = p+ AP(E) + (¢ = 1)P*(€) (2.7)

Thus, Eq.(2.7) has individual twenty five solutions (see[42]).

Step 4. The value of the positive integer n can be determined by balancing the higher order linear
terms with nonlinear terms of the higher order occurring in Eq.(2.3).

Step 5. Substitute Eq.(2.4) along with Eq.(2.5)and Eq.(2.6)into Eq.(2.3). Then, obtain polynomials
. G'(§) G'(§)
in (d+ and (d +

1 e U g

polynomials to be zero and receive a system of algebraic equations by Maple. Finally, we deserve the
exact solutions of Eq.(2.3).

)71, (5 =0,1,2,..., N). Furthermore, collect the coefficients of the resulted
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3 Applications of Novel (G’/G)-Expansion Method

In this section, we use the novel (G’/G)-expansion method to solve Eq.(1.1). First, we suppose Eq.(1.1)
as follows: _
U($7yat) = f(f)em7v(xay7t) = f0(§)7 (31)
where £ = +y — 2(k + \)t, n = kx + Ay — wt. A, k,w are real parameters, f(§) is real function.
Making Eq.(3.1) into Eq.(1.1), then letting real and imaginary part be zero respectively:

{ (w =k = N)f 4+ 2f" + 4 fPT +af fo+ 6T =0, (3.2)
fo= %fp- ’
Substituting the second equation of (3.2) into the first equation of (3.2), we obtain
1 1 1
[ =P L S S R )], (33)
2 2 2 2
For simplification, we draw
F"+ ks f? + ksf® + ki f =0, (34)
where ks = 30, ks = $(v+ %’B), ki = —3(A* 4+ k* —w),p = 1. From Eq.(3.4), we obtain
pd" +qP +28° =0 (3.5)
2k _ . . . ey
where p = 9= T Substituting (3.1) into (3.5) and balancing the higher order derivative u” with
3 3
the nonlinear term of the highest order u?®, we receive n = 1. Thus, the solution of Eq.(3.5) have

u(€) = a1 (¥(§) ™" + ao + a1 ((€)). (3.6)

!
Inserting Eq.(3.6) into Eq.(3.5), the left hand side becomes polynomials of (d + Cé((g))) and (d +

G/
G((f)) )7L, (j =0,1,2,..., N). Setting the coefficients of these polynomials to be zero, we deserve a set of
algebraic equations for oy, ap, a—1,d and c as follows:
G/
(6)6 :2pag (v —1)%2 + 203 =0,
GI
(5)5 :p[BasA(v — 1) + 6a1d(v — 1)) + 2(6da? + 3apa?) = 0,

G .
(6)4 s plog (2uv — 2u 4+ A?) 4 6a1dA\(v — 1) + 6a1d? (v — 1)?] 4 2(15d%a3 + 15dapa?

+3afa_1 + 3a10d) + qaq = 0,
()2 : plas Ay + 3o d(2pv — 2p 4+ A2) + (9 d? + a1 A) (v — 1) + 2(v — 1) (a1d®

—a_1d)] +2(20d3 a3 + 30d3apa? + 12dada_1 + 12dadag + 6agara_q

(E)2 plBardAi + (Bard? + 1) (2pv — 21 + A?) + 3X (v — 1)(1d® — a_1d)]
+2[15d404f -+ 30d304004% -+ 18d204_104% -+ 18d20élOé% -+ 18d04_1040011

+3dad + 3a10? | + 3a_103] + q(ap + 3apd + 6a1d?) = 0,
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GI
(5)1 s p[Ban Apd? + 3a_1 Apu+ (2uv — 2 + M) (a1d® — a_1d)] + 2[6d°a3 + 15apaid?
—|—12a,1a%d3 + 12a1a8d3 + 18aapv_1d% + 3a8d2 + Galazld + 6a,1a3d

+3a00? ] + q[2a1d + 3apd? + 4ard?] = 0,

G/

( e )0 pAu(ard® — a_1d) + 2a_1 %] + 2[a3d® + 3apald® + 3a_1aid* + 3araddt

+6apara_1d® + add? + 3ar0? 1d? + 3a_103d? + 3apa? 1 d + a2 ] + q(ard?
+Oz()d3 + Oéld4) =0.

Solving the algebraic equations by Maple ,we obtain

Case 1:
a =420 1) )— L
8u(v — 1) — 2X2
ag=+(A—2d(v—1)) 4
8u(v—1) —2A2
a_1 = 0
_ —2q
b dp(v—1) = A2
d=d (3.7)
Case 2:
1 = 0
ag=+(N—2d(v—1)) 4
8u(v — 1) — 2X2
_ 20, _ q
a1 ==22(d(v—1)+ p— Ad) Siu(v—1) =202
—2q
P dp(v —1) = A2
d=d (3.8)
Case 3:
. _ q
o=+ -1) Su(v —1) — 22
Qo = 0
4pu(v —1) — A2
R ¢ (Ve
4v2(v - 1)
- -4
D= Suv —1) — 222
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A
d =
2(v—1)
Case 4:
—2¢

=t —1) ) ——
o =Fv- T —o

Qo = 0

-1 A(v—1
b q
dp(v —1) = A2
A
d_2(vf1)

where p, q,d, A\, p and v are arbitrary constants.
Substituting (3.7)-(3.10) into solution Eq.(3.5), we derive

wa(z.8) = £ = 240 - )y [
+2(0— 1),/ = (d+ (G'/Q))

Su(v —1) — 222

dp(v—1) =A% =2
where £ = az F \/ pv ) qt, D,q,d, A\, p and v are arbitrary constants.

dp(v —1) = N°
q

ua(xt) = FO = 20 = D)y [ gm— o5

£2(d2(v — 1) + g — Ad) m(w (@ /G))~

dp(v—1) =A% -2
where £ = az F \/ #v ) qt, D,q,d, A\, p and v are arbitrary constants.

dp(v—1) = N°
q A
8u(v—1) — 2)\2(2(1} -1 *+

us(z,t) = £(v — 1) G'/G))

Va(dplv —1) = X2) A ) 1
I (g + €/6)

8 —1)—2X2 —
where £ = az F \/ plv ) 5 qt, D,q,d, A\, p and v are arbitrary constants.

8u(v —1) —2A
—2q A
8u(v—1) — 22 (2(11 -1)

V-dgu(v —1) —g)? A
+ 4(v—1) ST

ug(z,t) = (v —1) +(G'/@))

+(G'/G) ™

dp(v—1) = N2
where £ = az F pv ) th, p,q,d, \, p and v are arbitrary constants.
dpufv —1) — A

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Substituting the value of (G’/G) into Eq.(3.14), we obtain solutions of Eq.(1.1) as follows:
When 2 = A2 — 4pv +4p > 0, A(v —1) # 0 (or p(v — 1) # 0 ), we have

un, (2,8) =+ = 2d(v \/8uv—1 e T \/ 11—1 Su(v —1) — 222

x{d — m()\ + \anh( V026)} (3.15)

U1, (z,t) = £(A —2d(v \/m m
x{d — W(A + fcoth( VE))} (3.16)

ui,(z,t) = £(A —2d(v \/m m
x{d — oo )()\ + VQ(tanh(V02€) + isech(V2¢)))} (3.17)

u, (z,t) = £(A = 2d(v — 1)) m +2(v—1) m
x{d — ﬁ()\ + VQ(coth(VQ2€) + esch(V2€)))} (3.18)

U15(2,t) ::I:()\—Qd(’l)— 1)) miZ(v_ 1) m
il = oy (A VEB{tanh(1VR) + coth(3V29))} (319)

ung (2, 1) = £(A — 2d(v — 1)) m +2(v—1) m

1 E/OmE Fm3) — miVQcosh(V2)
Ad+ 2(v — 1)( At masinh(vV/2€) +mo & 320
q
ur, () = £(A - 2d(v \/m - m

where m; and ms are real non-zero constants.

q
)=+ —2d(v—1)))—9d 4
(2, 8) = (v 8uv—1 J o T Su(v— 1) — 222

Qucosh( \/>§
ld+ ) (322)
\/ﬁsmh(§\/>§) - )\cosh(i\/ﬁf)
Uy (2,8) = £(A — 2d(v — 1)) m + 20— 1) m
2usinh(%\/§§)
x{d + } (3.23)

\/ﬁcosh(%\/ﬁf) - )\smh(%\/ﬁf)
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1, (2,t) = £(A = 2d(v - 1)) m +2(v-1) m
2ucosh(v/02¢€)
xAd+ \/ﬁsmh(\/ﬁg) — Acosh(V/02€) + ’L\/ﬁ} (324
uyy, (2,t) = £(A = 2d(v — 1)) m +2(v—-1) m
2usinh(v/2€)

d+ VQcosh(v/02€) — \sinh(v/Q2€) + \/ﬁ} (3.25)

When 2 = A2 —4pv +4p < 0, A(v — 1) # 0 (or p(v — 1) # 0 ), we have

Utyy (Z’ t) = i()‘ - 2d<’U - 1)) m + 2(’0 B 1) m
x{d+ 3T (=X + \/Emn(%@@)} (3.26)
Uy (Zat) = :l:()‘ - 2d(1) - 1)) m - Q(U o 1) m
< {d— ﬁ(x + @m(%@g))} (3.27)
(1) = A = 2d(0 = 1)y e oy £ 20 - D)y e o
“{d - ﬁ(—x + V= D(tan(V=52€) £ sec(vV=12€)))} (3.28)
Ulys (Za t) = i()\ - Qd(’l) - 1)) m + 2(’() — 1) m
«{d— ﬁ@ + V= R(cot(V=0E) £ ese(v/—12€)))} (3.29)
U1, (2,t) = £(A = 2d(v — 1)) Sa(o—1) —2n +2(v—1) Su(o —1) — 222
x{d + 4(1)1— ) (—2) + M(tan(i\/EQ - cot(img)))} (3.30)
e (2,8) = 2 =2dw =)y forr o 22 - Dy g T e
BV 02(mE = m3) — my/=0cos(vV=12)
x{d+ 2(v—1) (=A+ my sin(yv/—2€) + ma )} (3:51)
Uy (2,1) = £(A = 2d(v — 1)) m +2(v—1) m
1 L BV 0R(mE —m3) + muy/=Qcos(vV-2)
x{d + 2(v—1)( A+ iy sin(v—12€) + ma )} (3.32)
where m; and ms are arbitrary constants such that p? — ¢% > 0.
Uy (Zat) = :l:()‘ - 2d(1) - 1)) m - Q(U - 1) m
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2ucos(%\/—95)
x{d — T i } (3.33)
v stin(ix/f.Qﬁ) + )\cos(ﬁvfﬁf)

Uiy (2,) = (A — 2d(v — 1>>\/m +2w-1) m

2,usin(%\/—(2§)
v 79005(7\/ —0¢) — )\sin(f\/ —0¢)

q q
t (A — 2d(v - i —1) — 92
Uty (Za ) 8u v — 1 — 2/\2 8,u v — 1) —2)2

241c05(v/—12€)
V=02sin(v/=02) + Acos(vV—02¢) £V

U1y, (2,1) = £(A = 2d(v - 1)) m +2(v - Um

2usin(%v—()§)
s {d + - - } (3.36)
\/—9005(5\/—95) - )\sin(§\/—(2§) +/0

When =0 and A(v—1) #0,

x{d —

} (3.35)

U1y, (2,1) = £(A — 2d(v — 1)) m +2(v—1) m
Nk
= D T cosh(08) —sinh(00) (337)
Uty (Z’ t) = i()‘ - 2d<’l) - 1)) m + 2(’0 B 1) m

Acosh(AE) + sinh(AE)) )
(v —1)(k + cosh(A§) + sinh(XE))

x{d — (3.38)

where k is an arbitrary constant.
Similarly, substituting the value of (G’/G) into Eq.(3.15), we achieve the solutions of Eq.(1.1):
When 2 = A2 —4pv+4p > 0, AM(v —1) # 0 (or p(v —1) #0 ), we get

t A\ —2d(v —1)) 2(d*(v — 1) Ad)
Uz (2,1) = w="1)y 8/“}—1 S e TAT D Hp- 8;“)—1 Sulv—1) — 222

x{d — ﬁ<A+\F tanh( Lva Q€)1 (3.39)
Uz, (2,8) = F(A — 2d(v — 1)) m +£2(d?(v — 1) + p — Ad) m

{d— ﬁ(ﬁ \/ﬁcoth(%\/ﬁf))}_l (3.40)
Uy (2,1) = F(\ — 2d(v — 1)) m +£2(d%(v — 1) + p — Ad) m
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1

A= 50T

(A + V2(tanh(VQ€) + isech(V2€)))} (3.41)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When 2 = A2 —4pv +4p < 0, AM(v —1) # 0 (or p(v —1) #0 ), we get

Uz, (2,) = F(A = 2d(v — 1)) m £2(d* (v —1) +p— Ad)m
o+ gy (A V= Rtan( V=) (3.42)

U5 (2,t) = F(A — 2d(v — 1)) m £2(d*(0 — 1)+ p— Ad)m
= gy (A VTt (V=B (3.43)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When g =0 and A(v—1) #0,

Uy (2,1) = F(A = 2d(v — 1)) m +2(d*(v 1)+ p - Ad)W

Ak

A= T F cosh () = simh(08))

-t (3.44)

where k is an arbitrary constant.
The other families of exact solutions of Eq.(1.1) are omitted for convenience.
Again, substituting the value of (G’/G) into Eq.(3.16), we achieve the solutions Eq.(1.1):
When 2 = A2 — 4pv +4p > 0, Mv — 1) # 0 (or p(v — 1) # 0 ), we receive

g, (2:8) = (0 = 1)y [ ‘i) —5 ¥ {Q(UA_ 5 2(1}1— G+ \/ﬁtanh(%\/ﬁé))}
- ‘/Q(j’\‘/(g(v_l)w M) {Q(UA_ 5~ 2(111— 5 (A + \/ﬁtanh(%\/ﬁg))}*l (3.45)

O N ‘i) 57 ¥ {2(UA_ - 2(v1_ GOt \/ﬁcoth(%\/ﬁﬁ))}
\/Q(i‘&%}(;”l)‘ M) - (UA_ 53 (vl_ O \/ﬁcom(%m@)}*l (3.46)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When 2 = A2 —4pv + 4 < 0, AM(v — 1) # 0 (or p(v —1) # 0 ), we receive

Uz, (2,1) = £(v —1) e _(i) EEYYRe {2(1})\— 0 + Q(Ul_ 0 (=2 + \/Etan(%ma)}

Valdu(v —1) = 2?2 A 1 1 »
- 4v/2(v — 1) 8 {2(1; -1) + 2(v—1) (=A+ mm”(§m§))} (3.47)

g A 1
sio—1—22 o 2o

us,, (2,t) = £(v — 1) A+\/Wcot(%\/35))}
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Valdpv —1) - 3% A 1 ] »
+ W= T) X {Q(U sy T (A + mcot(§m§))} (3.48)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When =0, A(v — 1) # 0, we receive

0 3 Ak
Usas (1) (v \/ (v — 1 o (v—1) (v—1)(k+ cosh(A§) — sinh()\g))}

Vil - =2, Ak
4v/2(v — 1) 2(v — 1) (v—1)(k + cosh(Af) — sinh(E))

where k is an arbitrary constant.
The other families of exact solutions of Eq.(1.1) are omitted for convenience.
Finally, substituting the value of (G’/G) into Eq.(3.17), we achieve the solutions Eq.(1.1):
When 2 = A2 —4pv +4p > 0, A(v — 1) # 0 (or p(v — 1) # 0 ), we know

! (3.49)

un, (0) = 0 = 1y oo :f)q_ 57 % {2(UA_ 5 - 2(01_ 1)(/\+\/§tanh(%\/§§))}
V- 4‘12‘( 1) Dl 25 {Q(UA_U _ 2(1}1_1)(>\+\/§tanh(%\/§§))}_1 (3.50)

wi(e1t) = (0= 1) [ :12){ . {Q(UA - 2(1)171)()\4—\/50075]1(%\/55))}
jF\/_MZ((S:B —aX {2(UA_ 5 2(01_ 5 ()\+\/§coth(%\/§£))}’1 (3.51)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When 2 = A2 —4pv +4p <0, AM(v —1) #0 (or u(v —1) #0 ), we know

s (2:0) = 0 = Dy | g (s o s (A + V= Btan (V7))

Y 4qZ( 1) = {2(1;)\ 0 2(1)1 p(At mw”(%m’f))}_l (3.52)

iy () = 0 = 1)y s % (s = gy (A VotV =136)))

T ¢_4qi((z = 11)) 1 x {2(UA_ ) 2(1)1— At mwt(%mg))}_l (3:53)

The other families of exact solutions of Eq.(1.1) are omitted for convenience.
When p =0 and A(v — 1) # 0, we know

_ —2q9 A Ak
Uty (2,t) = £(v —1) 8u(v—1) —2x° {g(v — 1) (v—1)(k+ cosh(Af) — sinh()\g))}
V—dgu(v —1) — gA? A \E »
4v-1) 1)~ 00k T cosh(3) — sinh(30)) (3.54)

where k is an arbitrary constant.
The other families of exact solutions of Eq.(1.1) are omitted for convenience.

Copyright © 2019 Isaac Scientific Publishing JAAM



20 Journal of Advances in Applied Mathematics, Vol. 4, No. 1, January 2019

4 Conclusion

!
In this paper, we have used the novel (6)—expansion method to obtain some exact traveling wave

solutions for generalized Davey-Stewartson equations with arbitrary power nonlinearities. Comparing
the results with the effective result of [35]-[41] by Maple, we know that our results are new. Hence, the
performance of this method is reliable. Finally, it also can be applied to solve other nonlinear PDEs for
deriving some new exact solutions.
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