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Abstract This paper is concerned with the existence of invariant manifolds for dynamical equa-
tions on a periodic time scale when the nonlinear perturbation has a small global Lipschitz con-
stant. Particularly, for time-varying non-regressive dynamical equations, which have exponential
dichotomies on a periodic time scale with bounded graininess, we use the method of graph trans-
forms as in [1] to prove that there exists a unique integral manifold of that systems.
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1 Introduction and Preliminaries

Exponential dichotomy is at the heart of the fundamental perturbation results for linear systems of Coppel
(see [2-3]) and Palmer (see [4-8]), of the spectral theory of Sacker and Sell [9-10], of the geometric theory of
Fenichel [11], of perturbation results for invariant manifolds [12], of the fundamental perturbation results
for connecting orbits of Beyn and Sandstede (see [13-15]), and it has also proven a formidable ally to
justify and gain insight into the behavior of various algorithmic approaches for solving boundary value
problems, for approximating invariant surfaces and for computing traveling waves, among other uses
(see [16-18]). Using this concept for nonuniform exponential dichotomies case is presented by Barreira,
Dragicevic and Valls (see [19-20]).

Theory of dynamic equations on time scales was introduced by Stefan Hilger [21] in order to unify
and extend results of differential equations, difference equations, q-difference equations, etc. There are
many works concerned with dichotomies of dynamic equations on time scales (see [22-24]). In this paper,
we want to go further in the exponential dichotomy of dynamic equations. More precisely, we use the
method of graph transforms to prove that there exists a unique integral manifold of the exponential
dichotomous systems on periodic time scales.

We now introduce some basic concepts of time scales, which can be found in [25-26]. A time scale T
is defined as a nonempty closed subset of the real numbers. Define the forward jump operator σ : T → T
is defined by σ(t) = inf{s ∈ T : s > t} and the graininess function µ(t) = σ(t) − t for any t ∈ T. In
the following discussion, the time scale T is assumed to be unbounded above and below. We have the
following several basis definitions (see [25-26]). One has the definition of the exponential function on time
scales by

ep(t, s) = exp


t∫

s

ξµ(τ)(p(τ))∆τ

 with ξh(z) =
{

z if h = 0
log(1 + hz)/h if h ̸= 0 .

For any p ∈ R(T,R) and s, t ∈ T, where log is principal logarithm.
Throughout this paper, we assume that the graininess of the underlying time scale is bounded on T+,

i.e., G = supt∈T+ µ(t) < ∞. This assumption is equivalent to the fact that there exist positive numbers
m1, m2 such that for every t ∈ T+, there exists c = c(t) ∈ T+ satisfying m1 6 c − t < m2 (also see [27,
pp. 319]). We refer [25-26] for more information on analysis on time scales.

We now consider the equation
x∆ = A(t)x (1)

Journal of Advances in Applied Mathematics, Vol. 4, No. 2, April 2019 
https://dx.doi.org/10.22606/jaam.2019.42001 37

Copyright © 2019 Isaac Scientific Publishing JAAM



and the pertubation equations
x∆ = A(t)x + f(t, x), (2)

where A ∈ R and f(t, x) : T × Rn → Rn is rd−continuous in the first variable. We also suppose that f
satisfies all conditions such that (2) has a unique solution. One can certainly assume that X(t) and ϕt

are the families of operators from Rn to Rn such that X(t)x and ϕt(x) are the coresponding solutions
of the equations (1) and (2) satisfies X(0)x = x and ϕ0(x) = x. Throughout this paper, we assume that
the graininess of underlying time scale is bounded on T, i.e., M = sup{t : t ∈ T} < ∞.

Definition 1.1. The equation (1) is said to be bounded growth if there exists constants N, ω such that

||X(t)X−1(s)|| 6 Neω(t, s).

For the equations which have bounded growth, we have the following proposition, which is useful
later.

Proposition 1.1. Suppose that f is Lipschitz continuous functions in the second argument, i.e. there
exists the constants L such that

||f(t, x) − f(t, y)|| 6 L||x − y||.

Then

||
(
ϕt ◦ ϕ−s(x) − X(t)X−1(s)x

)
−

(
ϕt ◦ ϕ−s(y) − X(t)X−1(s)y

)
|| 6 Neω⊕LN (t, s)||x − y||.

Proof.. First of all, the solution of (2) satisfies the variation of constants formula

ϕt ◦ ϕ−s(x) = X(t)X−1(s)x +
t∫

s

X(t)X−1(σ(τ))f(τ, ϕτ ◦ ϕ−s(x))dτ, t > s.

We have estimate

||ϕt ◦ ϕ−s(x) − ϕt ◦ ϕ−s(y)||

6||X(t)X−1(s)||||x − y|| +
t∫

s

||X(t)X−1(σ(τ))(||f(τ, ϕτ ◦ ϕ−s(x)) − f(τ, ϕτ ◦ ϕ−s(x))||)dτ

6Neω(t, s)||x − y|| + NL

t∫
s

1
1 + µ(τ)

eω(t, τ)||ϕτ ◦ ϕ−s(x) − ϕτ ◦ ϕ−s(y)||dτ.

This implies
e⊖ω(t, s)||ϕt ◦ ϕ−s(x) − ϕt ◦ ϕ−s(y)||

6N ||x − y|| + NL

t∫
s

eω(s, τ)||ϕτ ◦ ϕ−s(x) − ϕτ ◦ ϕ−s(y)||dτ

Using the Corollary 6.7 in [25], it reduces that

e⊖ω||ϕt ◦ ϕ−s(x) − ϕt ◦ ϕ−s(y)|| 6 NeNL(t, s)||x − y||.

The last equation implies the complete proof.

The following concepts almost according to notation in [28] will be needed in our main results.

Definition 1.2. The equation (1) is said to have an exponential dichotomy or to be exponentially di-
chotomous on T, if there exist a projection matrix P (i.e., P 2 = P ) on Rn and positive constants K and
α such that

||X(t)PX−1(s)|| 6 Ke⊖α(t, s), t > s,

||X(t)(I − P )X−1(s)|| 6 Ke⊖α(s, t), t 6 s.
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In this paper we only consider the equations (1), which have a projection P satisfies ||X(t)PX−1(t)|| 6
M , ∀t ∈ T. Let V1 and V2 be a pair of nonzero subspaces of Rn that are disjoint. We set

∠(V1, V2) = inf {||x1 + x2|| : xi ∈ Vi, ||xi|| = 1, i = 1, 2} ,

where the infimum is taken over all pairs of unit vectors belonging to V1 and V2 respectively. One can
easily verify that in this case

∠(V1, V2) = 2 sin(θ/2),

where θ is the minimal angle between the subspaces V1 and V2. In general case we call the quantity
∠(V1, V2) the angular distance between V1 and V2.

Definition 1.3. A set M ⊂ T × Rn is said to be an integral manifold of the equation (2) if for every
t ∈ T, we have decomposition Rn = V1(t) ⊕ V2(t) such that

inf
t∈T

∠(V1(t), V2(t)) > 0

and if there exists a family of Lipschitz continuous mapping

gt : V1(t) → V2(t), t ∈ T

with Lipschitz constants independent of t such that

M = {(t, x, gt(x)) ∈ T × (V1(t) ⊕ V2(t)) : t ∈ T, x ∈ V1(t)}

and
ϕt ◦ ϕ−s(gr(gs)) = gr(gt), t > s,

where
gr(gt) := {(x, gt(x)) : x ∈ V1(t)}.

We propose in this paper to show that there exists the unstable integral manifold for the equation (2)
with several conditions of the equation (1) and a function f . Let lip(gt) denote the Lipschitz constant of
gt. We shall adopt the following metric space

L(δ) := {g = (gt)t∈R|gt : V2(t) → V1(t), gt(0) = 0, lip(gt) 6 δ}

with the metrix

d(g, h) :=
∞∑

k=1

1
2k

sup
t∈T,||x||6k

||gt(x) − ht(x)||, g, h ∈ L(δ).

It is easy to see that (L(δ), d) is complete metric space. Under the above notation, we have a following
main theorem.

Theorem 1.1. Let (1) has exponential dichotomy on time scale T which is periodic (see [29]) with
the constants K, α and the projection P . Suppose (1) has bounded growth with suitable constants N, ω
(chose later). Then, there exists positive constants L, δ such that there exists a unique integral manifold
M ⊂ T × Rn of equation (2) determined by the family of Lipschitz continuous mappings (gt)t∈T ⊂ L(δ)
where

gt : V2(t) → V1(t)

with V2(t) = X(t)(I − P )X−1(t)Rn and V1(t) = X(t)PX−1(t)Rn.

In this paper, we always denote P (t) = X(t)PX−1(t).
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2 Proof of the Main Theorem

In this section, we wish to prove the Theorem 1.1. First, we need some following helpful lemmas.

Lemma 2.1. Let A : Rm → Rm is an invertible matrix. Assume that h : Rn → Rm be a Lipschitz
continuous functions with

lip(h) <
1

||A−1||
.

Then the map A + h is also invertible and that inverse is Lipschitz continuous.

Proof.. See [30-31] for proof.

Lemma 2.2. Under the above notation. For any h0 > 0, if

δ 6 (1 + M)
(

K−2eαh0 − Ne(ω+LN)h0
)

eαh0 and K−2eαh0 > Ne(ω+LN)h0

then for all g ∈ L(δ) and 0 6 t − s 6 h0 we have

(I − P (t))ϕt ◦ ϕ−s(gs(·) + ·) : V2(s) → V2(t)

is a homeomorphism.

Proof.. First, for all t, s ∈ T, t > s we set h(t, s) : V2(s) → V2(t) is defined

h(t, s)x = (I − P (t))X(t)X−1(s)gs(x).

Then, for all x, y ∈ V2(s), we have the following estimation

||h(t, s)x − h(t, s)y|| 6||(I − P (t))X(t)X−1(s)(gs(x) − gs(y))||
6(1 + M)||X(t)X−1(s)(gs(x) − gs(y))||
=(1 + M)||X(t)PX−1(s)(gs(x) − gs(y))||
6(1 + M)Ke⊖α(t, s)||gs(x) − gs(y)||
6(1 + M)Kδe⊖α(t, s)||x − y||

Hence,
lip(h(t, s)) 6 (1 + M)Kδe⊖α(t, s). (3)

Next, we also have ∥∥∥∥(
X(t)X−1(s)

∣∣
KerP(s)

)−1
∥∥∥∥−1

=
∥∥∥X(s)X−1(t)

∣∣
KerP(t)

∥∥∥−1

> K−1eα(t, s).

Finally, let
k(t, s)x = (I − P (t))ϕt ◦ ϕ−s(g(x) + x) − (I − P (t))X(t)X−1(s)x

Then

k(t, s)x = (I − P (t))ϕt ◦ ϕ−s(g(x) + x) − (I − P (t))X(t)X−1(s)(gs(x) + x) + h(t, s)x.

By Proposition 1.1, one has

||k(t, s)x − k(t, s)y|| 6 (M + 1)||(ϕt ◦ ϕ−s(g(x) + x) − X(t)X−1(s)(gs(x) + x))
− ϕ−s(g(y) + y) − X(t)X−1(s)(gs(y) + y))|| + (1 + M)Kδe⊖α(t, s)||x − y||
6 ((M + 1)Neω⊕LN (t, s) + (1 + M)Kδe⊖α(t, s)) ||x − y||.

Apply the previous lemma again where h = k(t, s) and A = (I − P (t))X(t)X−1(s) then by hypothesis
we obtained the map

(I − P (t))ϕt ◦ ϕ−s(g(x) + x) : V2(s) → V2(t)
is a homeomorphism.
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Lemma 2.3. Under the assumptions and notations above. If δ satisfies

δ||(I − P (t))(x − y)|| > ||P (t)(x − y)|| (4)

then the mapping T (t, s) with 0 6 t − s 6 h0 given by the formula

gr((T (t, s)g)t) = ϕt ◦ ϕ−s(gr(gs)) ∈ L(δ′)

for all g ∈ L(δ) and t, s ∈ T, is well defined, where

δ′ = δKe⊖α(t, s) + Meω⊕LN (t, s)
K−1eα(t, s) − (1 + M)Neω⊕LN (t, s)

lip((I − P (t))ϕt ◦ ϕ−s(gs(·) + ·))

Proof.. We note that
(T (t, s)g)t(x) = P (t)ϕt ◦ ϕ−s(gs(x) + x). (5)

It is necessary and sufficient to show that (T (t, s)g)t are Lipschitz continuous for all t ∈ T. Indeed,
without loss of generality, we assume that P = diang(1, . . . , 1, 0, . . . , 0). From the second relation in
Definition (1.2) we obtained

|| (I − P (t))X(t)X−1(s)
∣∣
KerP (s) || >|| (I − P (s))X(s)X−1(t)

∣∣
KerP (t) ||−1

>K−1eα(t, s).

Hence, from Lemma 1.1, the last inequality and Definition 2.9 in [32], we have the following estimation

||(I − P (t))ϕt ◦ ϕ−s(x) − (I − P (t))ϕt ◦ ϕ−s(y))||
=||((I − P (t))X(t)X−1(s)(I − P (s))x − (I − P (t))X(t)X−1(s)(I − P (s))y)+

(I − P (t))(ϕt ◦ ϕ−s(x) − X(t)X−1(s)x) − (I − P (t))(ϕt ◦ ϕ−s(y) − X(t)X−1(s)y)||
>K−1eα(t, s)||(I − P (t))(x − y)|| − (1 + M)Neω⊕LN (t, s)||(I − P (t))x − y||

Because P (t) is projection and (4), with δ 6 1/2 we obtain

||x − y|| 6 ||P (t)(x − y)|| + ||(I − P (t))(x − y)|| 6 2δ||(I − P (t))(x − y)|| 6 ||(I − P (t))(x − y)||. (6)

Therefore,
||(I − P (t))ϕt ◦ ϕ−s(x) − (I − P (t))ϕt ◦ ϕ−s(y))||

>(K−1eα(t, s) − (1 + M)Neω⊕LN (t, s))||(I − P (t))(x − y)||.
(7)

On the other hand, by (4) and (6) one has

||P (t)ϕtϕ−s(x) − P (t)ϕtϕ−s(y)||
=||(P (t)X(t)X−1(s)x − P (t)X(t)X−1(s)y)+

P (t)(ϕt ◦ ϕ−s(x) − X(t)X−1(s)x) − P (t)(ϕt ◦ ϕ−s(y) − X(t)X−1(s)y)||
6Ke⊖α(t, s)||P (t)(x − y)|| + ||P (t)||eω⊕LN (t, s)||x − y||
6δKe⊖α(t, s)||(I − P (t))(x − y)|| + Meω⊕LN (t, s)||(I − P (t))(x − y)||
6(δKe⊖α(t, s) + Meω⊕LN (t, s))||(I − P (t))(x − y)||

(8)

Combining (7) and (8), it implies

||P (t)ϕt ◦ ϕ−s(x) − P (t)ϕt ◦ ϕ−s(y)||

6 δKe⊖α(t, s) + Meω⊕LN (t, s)
K−1eα(t, s) − (1 + M)Neω⊕LN (t, s)

||(I − P (t))ϕt ◦ ϕ−s(x) − (I − P (t))ϕt ◦ ϕ−s(y)||
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Hence,

||P (t)ϕt ◦ ϕ−s(gs(x), x) − P (t)ϕt ◦ ϕ−s(gs(y), y)||

6 δKe⊖α(t, s) + Meω⊕LN (t, s)
K−1eα(t, s) − (1 + M)Neω⊕LN (t, s)

||(I − P (t))ϕt ◦ ϕ−s(gs(x), x) − (I − P (t))ϕt ◦ ϕ−s(gs(y), y)||

6 δKe⊖α(t, s) + Meω⊕LN (t, s)
K−1eα(t, s) − (1 + M)Neω⊕LN (t, s)

lip((I − P (t))ϕt ◦ ϕ−s(gs(·) + ·))||x − y||.

This completes the proof of the lemma.

With the above notation and if the following conditions satisfy
δ′ = δKe⊖α(t, s) + Meω⊕LN (t, s)

K−1eα(t, s) − (1 + M)Neω⊕LN (t, s)
lip((I − P (t))ϕt ◦ ϕ−s(gs(·) + ·)) 6 δ,

δ 6 (1 + M)
(

K−2eαh0 − Ne(ω+LN)h0
)

eαh0 with K−2eαh0 > Ne(ω+LN)h0 ,

MNeω⊕LN (t, s) + Ke⊖α(t, s) + δ < 1.

(9)

Then we have the following proof.

Proof of the main theorem.

First of all, we prove that T (t, s) is a contraction mapping in δ when δ is small enough. Indeed, by
Proposition 1.1 and definition of the exponential dichotomy, we get

||P (t)ϕt ◦ ϕ−s(x) − P (t)ϕt ◦ ϕ−s(gs((I − P (s))x) + (I − P (s))x)||
6||P (t)(ϕt ◦ ϕ−s − X(t)X−1(s))(x) − P (t)(ϕt ◦ ϕ−s − X(t)X−1(s))(gs((I − P (s))x) + (I − P (s))x)||

+ ||P (t)X(t)X−1(s)(x) − P (t)X(t)X−1(s)(gs((I − P (s))x) + (I − P (s))x)||
6MNeω⊕LN (t, s)||x − (gs((I − P (s))x) + (I − P (s))x)||

+ Ke⊖α(t, s)||x − (gs((I − P (s))x) + (I − P (s))x)||
6(MNeω⊕LN (t, s) + Ke⊖α(t, s))||P (s)x − gs((I − P (s))x)||.

(10)
Combining (10), (9) and Lemma 2.3, we get

||P (t)ϕt ◦ ϕ−sx − (T (t, s)g)t((I − P (t))ϕt ◦ ϕ−sx)||
6||P (t)ϕt ◦ ϕ−sx − P (t)ϕt ◦ ϕ−s(gs((I − P (s))x) + (I − P (s))x)||

+ ||P (t)ϕt ◦ ϕ−s(gs((I − P (s))x) + (I − P (s))x)
− (T (t, s)g)t((I − P (t))ϕt ◦ ϕ−sx)||

6γ||P (s)x − gs((I − P (s))x)||

where γ = MNeω⊕LN (t, s) + Ke⊖α(t, s) + δ < 1 (since (9)).
Suppose that g1, g2 ∈ L(δ). From the last relation, we obtain

||(T (t, s)g1)t(I − P (t))ϕt ◦ ϕ−sx − (T (t, s)g2)t(I − P (t))ϕt ◦ ϕ−sx||
6γ||g1

s(I − P (s))x − g2
s(I − P (s))x||

for all x ∈ Rn and t ∈ T. Thus, for every n ∈ N then

sup
t∈T,||x||6n

||(T (t, s)g1)tx − (T (t, s)g2)tx|| 6 γ sup
t∈T,||x||6n

||g1
t (x) − g2

t (x)||.

Hence T (t, s) is a contraction mapping.
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Supposing that g is the fixed point of T (t, s) (where 0 6 t − s 6 h0/2) in L(δ). Next, we show that
g is also the fix point of T (t′, s′) for all t′, s′ ∈ T and 0 6 t′ − s′ 6 h0/2. Indeed, since T is periodic, we
get s′ − t + s, t′ − t + s, ∈ T and hence,

T (t′, s′)T (s′, s′ − t + s)g = T (t′, t′ − t + s)T (t′ − t + s, s′ − t + s)g = T (t′ − t + s, s′ − t + s)g

and
T (t′, s′)T (s′, s′ − t + s)g = T (t′, s′)g.

From the uniqueness of the fixed point of T (t, s) it implies T (t′, s′)g = g. This proves theorem.
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