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Abstract Generalized hyperbolic distribution and some of its subclasses like normal, hyperbolic
and variance gamma distributions are used to fit daily log returns of eight listed companies in
Nairobi Securities Exchange and Montréal Exchange. EM-based maximum likelihood estimation
procedure is used to estimate parameters of the model. Kernel densities and empirical distribution
of data are compared. The goodness of fit statistics of proposed distributions are used to measure
how well model fits the data. Empirical results show that Generalized hyperbolic Distribution seems
to improve partially, the geometric Brownian assumption on modeling returns of the underlying
process, both in a developed and emerging market. Both markets seem to have different stochastic
time.
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1 Introduction

Geometric Brownian motion assumption for modeling log returns is used in the Black and Scholes[1]
and Merton[2] methodology. This has become the dominant paradigm for valuing options and other
derivatives. The method uses a delta hedging argument to value options based on the absence of arbitrage
strategies that profit instantaneously. Despite the success of the Black Scholes model assumption, there
is a non-negligible discrepancy between the model and the real market data. We set out to investigate
the geometric assumption of modeling the underlying asset in Kenya’s Nairobi securities exchange and
Canada Montréal exchange, as well as confirming some of the stylized facts documented by Cont[3].

To incorporate the asymmetric and leptokurtic features in asset pricing, Madan and Senata[4] and [5]
studied a time changed Brownian Motion in the context of asymmetric variance gamma process. Among
these models, (see Car and Wu[6],Eberlein and Keller[7] etc), several studies have applied the exponential
generalized hyperbolic Lévy motion and its subclasses to study log returns. We focus our attention to the
generalized hyperbolic(GH), Hyperbolic(HY) and Variance Gamma(VG) and normal(NM) distributions in
modeling log returns. The Generalized Hyperbolic distribution was first introduced by Barndoff-Nielsen[8]
in the context of the sand project. In 1995 Eberlein and Keller[7] introduced and applied the hyperbolic
distribution, to price vanilla options based on German stocks.

In this paper we use empirical evidence to investigate the basic geometric Brownian assumption on
modeling log returns. In addition, we compare kernel density estimates against the maximum likelihood
estimate of generalized hyperbolic distribution and some of its subclasses like the hyperbolic and the
variance gamma distributions of daily log returns of eight listed companies i.e. (four from each exchange)
in Montréal and Nairobi Securities Exchange.

The rest of this paper is organized as follows. Section 2 presents data description and empirical
evidence of imperfections log-normality assumption of modeling equities. In Section 3, the generalized
hyperbolic distribution and some of its subclasses, hyperbolic and variance gamma are defined. Details of
parameter estimation are presented. Section 4, Kolmogorov distance and frequency distribution are used
to test the normality assumption and proposed model fit. Section 5 concludes.

2 Normality Assumption on Log Returns

In the Black-Scholes world, the financial asset is modeled by geometric Brownian motion. For equities,
the model assumes that the price process S = {St, t ≥ 0} of an asset is governed by stochastic differential
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equation

dSt = µStdt+ σStdBt, ⇒ St = S0 exp
(

(µ− σ2

2 )t+ σBt

)
,

where µ is the drift, σ is the assumed market constant volatility and Bt is standard Brownian motion.
This implies that

loge St ∼ N
(

loge S0 + (µ− σ2

2 )t, σ2t

)
, ∀ t > 0.

2.1 Data Description and the Empirical Distribution
A sample of eight listed companies were collected from Nairobi Securities Exchange(NSE), Barclay’s Bank
of Kenya (BBK), Kenya Commercial Bank (KCB), East Africa Breweries ltd (EABL), Kenya Airways
(KQ and the restof the data was downloaded from yahoo finance for Montérial exchange(Mx),i.e) Angnico
Eagle Mines limited (AEM), Alcan Inc (AL), Royal Bank of Canada (RY)and Sun life Financial (SLF).
Daily adjusted closing prices from January 4th, 2000 to August 30th, 2005, were used to determine daily
log returns. Let Sj := S(tj) be the price on day tj , j = 0, 1, 2, ..., n− 1. Sample increments of log returns
is defined by xj = logSj − logSj−1, j = 1, 2, ..., n− 1. We are guided by the geometric Brownian motion
assumption that the sequence (xj)0<j≤n−1 is independent and identically distributed to model stock
prices S = (St)t≥0. The discrete financial time series data correspond to the value of the continuous time
process S at equidistant integer points. Therefore, to obtain a discrete time series from our continuous
model, we shall consider

Sn = S0 exp

 n∑
j=1

xj

.
As an illustration in Figure 1 we use the kernel density versus maximum likelihood fit of the normal
distribution of daily log returns for Kenya Commercial Bank (KCB) and Royal Bank of Canada (RY)
daily log returns respectively.

Figure 1. MLE of Normal distribution and Kernel densities for KCB and RY compared

Clearly the normal distribution does not reflect the empirical distribution. Similar results were
obtained for the other six equities. This supports the fact that the simplifying assumptions of geometric
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Brownian motion about the dynamics of the underlying assets, on many occasions, is dotted with several
shortcomings as pointed out in Schoutens[9]. Many modifications of modeling returns have been proposed
and among them is the generalized hyperbolic distribution(GH).

3 The Generalized Hyperbolic Distribution
The GH distribution possesses a lot of attractive properties, such as asymmetry, skewness and presence of
semi-heavy tails. Therefore, the classes of GH distribution appears to be a good candidate for modeling
log returns. In this section we provide a definition of the generalized hyperbolic distribution along with its
classical representation as a variance mean-mixture of the normal with Generalized Inverse Gaussian(GIG)
distribution. Hyperbolic and variance gamma distributions as special cases of GH are defined.

The random variable W is said to have a generalized inverse gaussian (GIG) distribution if its
probability density function is

fGIG(w;λ, γ, δ) = (γ/δ)λ

2Kλ(γδ)w
λ−1 exp

(
−1

2(δ
2

w
+ γ2w)

)
, w > 0

where Kλ is a modified Bessel function of the third kind with the index λ.

Kλ(ω) = 1
2

∫ ∞
0

exp
[
−ω2 (v−1 + v)

]
vλ−1dv

=
∫ ∞

0
exp (−ω cosh t) cosh (λt)dt

(1)

The parameters λ ∈ R, γ ≥ 0, δ ≥ 0 such that γ 6= δ if either of them takes the value zero.
The random variable X is said to have a normal mean-variance distribution if

X := µ+ βW + σ
√
WZ

where Z ∼ N(0, 1), W is a positive random variable independent of Z; µ and β are real numbers and σ is
a positive real number. From the definition, we can see that the conditional distribution of X given W is
normal with mean µ+ βW and variance σ2W .

Note that if the mixture variable W is GIG (λ, γ, δ) distributed, then X is a generalized hyperbolic
distribution with the (λ, α, β, δ, µ) parametrization, where α2 = γ2 + β2. The probability density function
of the one-dimensional generalized hyperbolic distribution is given by the following equation,

fGH(x;α, β, δ, µ, λ) = (γ/δ)λ√
2πKλ(δγ)

.
Kλ− 1

2
(α
√
δ2 + (x− µ)2)

(
√
δ2 + (x− µ)2/α) 1

2−λ
.eβ(x−µ) (2)

In all cases, µ is the location parameter and can take any real value, δ is a scale parameter; where α
and β determine the distribution shape and λ defines the subclasses of GH, and its related to the tail
flatness as well. see Barndoff-Nielsen[8], McNeil et al [10] etc for more information.

3.1 Hyperbolic Distributions and Variance Gamma Distribution
Limiting distributions of the generalized hyperbolic distribution is obtained by varying parameter λ.
When λ = 1, and using the fact that K1/2(x) =

√
π
2x
−1/2e−x, we obtain the subclass of hyperbolic

distribution with probability density function

fhyp(x;α, β, δ, µ) =
√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp
[
−α
√
δ2 + (x− µ)2 + β(x− µ)

]
. (3)

When δ = 0, in equation (2),and using the fact that Kλ(x) ∼ Γ (λ)2λ−1x−λ, as x→ 0, we obtain

fGH(x;α, β, µ, λ) =
(
α2 − β2)λ/2 |x− µ|λ−1/2
√

2παλ−1/22λ−1
eβ(x−µ)Kλ−1/2 (α|x− µ|) .

If we take β = θ
σ2 , λ = 1/ν and α =

√
β2 + (2λ/σ2), we obtain the probability density function of the

variance gamma process (see Raible[11])
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3.2 Parameter Estimation

Guided by the geometric Brownian motion assumption, that the daily log returns x1, x2, ..., xn are i.i.d.s,
let the parameters to be estimated be denoted by Θ = (λ, ᾱ, µ, σ, γ). We maximize

lnLX(Θ;x1, x2, ..., xn) =
n∑
i=1

ln fX(xi;Θ).

The parameters of the mixture are found by introducing EM algorithm concept. It is assumed that log
returns are the observed data and the incomplete data is generated by latent mixing variable w1, w2, ..., wn
which is GIG distributed. Thus the joint log likelihood function

lnLXW (Θ;x1, ..., xn, w1, ..., wn) =
n∑
i=1

ln fX|W (Xi|wi;µ, σ, γ) +
n∑
i=1

ln fW (wi;λ, ᾱ)

Calculate the conditional expectation E-step of the joint log-likelihood fuction given the data and the
current estimates of the parameters followed by M-step Maximizing the objective function with respect to
Θ to obtain an updated estimate. Repeating the E step and M step sequentially will obtain the maximum
likelihood estimation of the parameter set Θ ( see Hu[12] ).

4 Empirical Results

Parameter estimates of GH distribution and its subclasses

Estimated parameters for the variance gamma distribution are given in Table 1. It is clear from both
markets that the distributions are skewed. From Table 2, the absolute values of β are greater than zero
(|β| > 0) from both markets. One can observe that the underlying distribution is not only asymmetrical,
but also leptokurtic. Note that for all the samples from NSE, the value of the scale parameter δ is very
close to zero.

The variance gamma QQ-plots, GH QQ-plots, and their corresponding kernel densities are as shown
in Figure 2. AL RY and KCB log returns fit VG well. The value of θ determines the nature of skewness
for the variance gamma distribution. Most important, though we notice that both markets have different
stochastic time. The value of ν in lies between (0.52, 0.87) which implies a higher frequency of business
activity (time) compared to emerging market (1.5, 2.6) relatively lesser business activity in NSE in
comparison to Montérial.

In most cases, the log-likelihood value for the fitted generalized hyperbolic distribution is higher than
those of hyperbolic distribution and variance gamma. Table 3 gives the maximum likelihood estimates of
generalized hyperbolic parameters. BBK KCB and RY fit the data well as evidenced by the QQ plots
given in Figure 2.Therefore, the generalized hyperbolic distribution model, which is a five-parameter model,
seems to fit the returns better, from both markets than models with fewer parameters like hyperbolic,
variance gamma and gaussian distribution.

5 Goodness of Fit Test and Frequency Distribution

We analyze and compare the goodness of fit of the generalized hyperbolic distribution and some of their
subclasses, using Kolmogorov distance and frequency distribution.

Kolmogorov distance

Kolmogorov distance is the supremum over the absolute differences between two density functions. Its
expression is given by:

KS = sup
x∈R
|Femp(x)− Fest(x)| (4)
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Table 1. MLE parameters of Variance gamma density fitted Montérial and NSE data

Co. σ ν θ µ LLF
AEM 3.0731e-02 0.569706 4.0296e-03 −3.6020e-03 2960.673
AL 2.0313e-02 0.532999 1.2492e-03 −1.2469e-03 3547.072
RY 1.3709e-02 0.582838 7.0330e-04 2.9993e-04 4110.377
SLF 1.8965e-02 0.873982 1.1115e-03 −2.6059e-06 3543.324
BBK 1.5454e-02 1.543812 −4.1409e-04 1.00995e-03 4075.327
KCB 2.7678e-02 2.150426 2.0188e-03 4.11348e-10 3227.641
KQ 2.6047e-02 2.571561 6.9144e-04 3.8438e-10 3722.603
EABL 2.1660e-02 1.705037 1.68104e-03 1.01118e-03 3542.802

Table 2. MLE parameters of Hyperbolic distribution fitted for Montréal and NSE data

Co. α β δ µ LLF
AEM 53.4421 4.30726 1.837152e-02 −3.634096e-03 2963.292
AL 81.7215 3.00987 1.310892e-02 −1.241524e-03 3548.007
RY 118.0387 3.43599 7.72583e-03 3.571136e-04 4112.330
SLF 78.6708 3.53894 4.845935e-03 −1.421884e-04 3545.444
BBK 96.29101 −1.628226 9.984908e-08 9.5041e-08 4054.704
KCB 52.47160 0.457439 4.733096e-07 3.25479e-04 3171.505
KQ 74.35194 2.753337 2.399309e-07 5.68611e-4 3688.820
EABL 69.75716 2.761331 3.247389e-07 5.840876e-04 3509.165

where Femp and Fest are the empirical and the estimated CDFs respectively. Kolmogorov distance is used
because it pays more attention to the tails of distributions see Gyórfi et al. [13] and Prause [14]. The
Kolmogorov distances of the normal, the hyperbolic, the variance gamma and the generalized hyperbolic
distributions are presented in Table 4. From Table 4, we make inference based on the p-value being the
measure of how much evidence one can have against the null hypothesis. The general rule is that a small
p-value is evidence against the null hypothesis, while a large p-value means no evidence against the null
hypothesis. At 1% level of significance, level we accept the null hypothesis that the data fits the three
models for all the log returns from Montréal exchange. Generalized hyperbolic distribution appears to
fit well the data in both markets. BBK and EABL of the Nairobi Securities Exchange fit VG at 1%
level of confidence. Unfortunately at all levels, of all the four stocks from NSE considered, hyperbolic
distribution is rejected .

Frequency distributions

In each column of the table, the relative frequencies of the returns in the intervals (−kσ̂, kσ̂) i.e (P (|x| <
kσ̂), k = 1, 2, 3, 4, 5. and σ̂ is the standard deviation) are compared with the probabilities of the fitted
distributions. We observe from Table 5 and Table 6 that among the fitted distributions, the probabilities
of the generalized hyperbolic distribution are closer to the empirical (EMP) probabilities in most cases.

6 Concluding Remarks

In this study, we have tried to investigate geometric Browinan assumption of modeling univariate
underlying process from an empirical perspective. We fitted four asset prices from the Montréal exchange
and four asset prices from Nairobi Securities Exchange to models based on normality assumption and
generalized hyperbolic distribution and its subclasses. Empirical evidence suggest that the underlying
distribution of log returns is heavy-tailed in both markets and not normally distributed as provided for by
the geometric Brownian motion assumption. About 83-84% of empirical data from the Nairobi Securities
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Table 3. Generalized hyperbolic parameter estimates for Montréal and NSE data

Co. λ α β δ µ LLF
AEM −1.43421e-00 22.45251 3.182777 0.04385096 −3.10649e-03 2968.365
AL −4.47653e-02 66.30114 3.247621 0.0211068 −1.34398e-03 3548.421
RY −3.90192e-01 90.85274 3.480525 0.01536024 4.77593e-04 4113.503
SLF −9.69996e-01 24.72129 1.517417 0.01800045 3.79528e-04 3555.739
BBK −5.81346e-01 20.63537 −1.00749 7.77159e-03 9.05012e-04 4109.781
KCB 3.75006e-02 22.39679 9.50887e-02 5.91669e-03 5.78596e-04 3222.247
KQ −4.91616e-01 6.32854 1.66513 7.37481e-03 1.01943e-03 3764.946
EABL −1.75863e-01 23.86991 4.13654e-01 6.52984e-03 1.01915e-03 3559.446

Table 4. Kolmogorov distances

Normal Generalized H VGamma Hyperbolic
KDist p-value KDist p-value KDist p-value KDist p-value

AEM 0.0706 1.483e-06 0.0423 1.243e-02 0.0311 1.301e-01 0.0289 1.863e-01
AL 0.0459 5.143e-03 0.0261 2.888e-01 0.0282 2.088e-01 0.0233 4.258e-01
RY 0.0543 4.641e-04 0.0212 5.491e-01 0.0219 5.064e-01 0.0191 6.823e-01
SLF 0.0845 7.252e-09 0.0309 1.496e-01 0.0265 2.968e-01 0.0198 6.558e-01
BBK 0.1318 2.2e-16 0.0298 1.640e-01 0.0333 8.733e-02 0.0376 3.373e-02
KCB 0.1387 2.2e-16 0.0407 1.922e-02 0.0536 6.437e-04 0.0508 1.438e-03
KQ 0.1595 2.2e-16 0.0262 2.864e-01 0.0532 6.892e-04 0.0631 2.661e-05
EABL 0.1577 2.2e-16 0.0247 3.708e-01 0.0298 1.736e-01 0.0509 1.614e-03

Exchange lies between the first standard deviation compared to 72-75 % from Montérial Exchange instead
of 68% if log returns were to be normally distributed. This implies that the normality assumption may
not be the best option for modeling returns.

It is clear from our study that emerging market and developed market too are affected by shocks that
produce a diversity of jumps. One can argue, from the estimated Kolmogorov distance in addition to
calculated p-values and QQ plots, that normal distribution which is a two-parameter function, gives poor
fit. Variance gamma fit the log returns of developed market and only two of the companies from emerging
market. The hyperbolic distribution seems inferior when modeling returns from emerging market as
opposed to developed market. However Generalized hyperbolic distribution, which is a five-parameter
density seems to explain better the behavior of the empirical distribution of log returns from both markets.
This seems to confirm more about stylist facts observed in existing literature, in any market. The data
used was not large enough to make a generalized observation. Empirically, both markets are not operating
at the same business time and the log return are not normally distributed. It would be interesting to
incorporate serial joint dependency in the future studies.
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List of Abbreviations

The following set of notations were used throughout the article. They range from distributions and names
of the listed companies in Nairobi securities exchange and Montréal exchange respectively.

GH-generalised hyperbolic distribution
HY-hyperbolic distribution
NM- Normal distribution
VG-Variance gamma distribution
GIG-generalized inverse Gaussian distribution
EMP-Empirical density function
KS-Kolmogorov distance
QQ-Quantile-Quantile plots
NSE- Nairobi Securities Exchange
BBK-Barclays Bank of Kenya
KCB-Kenya Commercial Bank
EABL-East African Breweries Limited
KQ- Kenya Airways
Mx - Montréal Exchange
AEM-Angnico Eagle Mines limited
AL- Alcan Inc
RY-Royal Bank of Canada
SLF-Sun life financial
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Figure 2. VG and GH Q-Q plots and kernel densities for KCB and RY
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Table 5. Frequency distribution of log returns from Montérial Exchange

Co. Density |x| < σ̂ < 2σ̂ < 3σ̂ < 4σ̂ < 5σ̂ |x| > 5σ̂
AEM EMP 0.7558 0.9569 0.9894 0.9950 0.9971 1.07268e-01

NM 0.6826 0.9544 0.9973 0.9999 0.9999 5.7334e-07
HY 0.7493 0.9499 0.9902 0.9981 0.9996 3.7232e-04
VG 0.7465 0.9497 0.9907 0.9983 0.9997 2.8439e-04
GH 0.7560 0.9468 0.9869 0.9962 0.9988 1.1885e-03

AL EMP 0.7374 0.9484 0.9915 0.9957 0.9978 3.0345e-02
NM 0.6826 0.9544 0.9972 0.9999 0.9999 5.7406e-07
HY 0.7376 0.9462 0.9894 0.9979 0.9996 3.9088e-04
VG 0.7348 0.9461 0.9901 0.9982 0.9997 2.8777e-04
GH 0.7418 0.9479 0.9893 0.9977 0.9996 4.9973e-04

RY EMP 0.7459 0.9470 0.9872 0.9964 0.9985 7.0571e-03
NM 0.6816 0.9540 0.9972 0.9999 0.9999 6.0508e-07
HY 0.7426 0.9464 0.9892 0.9978 0.9995 4.2351e-04
VG 0.7395 0.9461 0.9897 0.9981 0.9996 3.2644e-04
GH 0.7518 0.9516 0.9901 0.9978 0.9995 4.7676e-04

SLF EMP 0.7972 0.9456 0.9779 0.9955 0.9977 3.6737e-02
NM 0.6821 0.9542 0.9972 0.9999 0.9999 5.8953e-07
HY 0.7647 0.9487 0.9888 0.9975 0.9994 5.3066e-04
VG 0.7627 0.9469 0.9883 0.9974 0.9994 5.5580e-04
GH 0.7793 0.9447 0.9820 0.9931 0.9971 2.8843e-03

Table 6. Frequency distribution of log returns from Nairobi Securities Exchange

Co. Density |x| < σ < 2σ < 3σ < 4σ < 5σ |x| > 5σ
BBK EMP 0.8454 0.9553 0.9787 0.9879 0.9929 2.5513e-02

NM 0.6825 0.9544 0.9972 0.9999 0.9999 5.7815e-07
HY 0.8153 0.9660 0.9937 0.9988 0.9997 2.1305e-04
VG 0.8141 0.9565 0.9892 0.9972 0.9993 6.9737e-04
GH 0.8410 0.9501 0.9790 0.9899 0.9947 5.2044e-03

EABL EMP 0.8364 0.9534 0.9811 0.9920 0.9934 5.0145e-02
NM 0.6818 0.9541 0.9972 0.9999 0.9999 5.9781e-07
HY 0.8204 0.9676 0.9941 0.9989 0.9998 1.9446e-04
VG 0.8169 0.9551 0.9882 0.9967 0.9991 8.9893e-04
GH 0.8324 0.9465 0.9792 0.9912 0.9960 3.9322e-03

KCB EMP 0.8255 0.9406 0.9771 0.9899 0.9964 9.5067e-02
NM 0.6826 0.9544 0.9972 0.9999 0.9999 5.7349e-07
HY 0.8094 0.9636 0.9930 0.9986 0.9997 2.5145e-04
VG 0.8272 0.9543 0.9868 0.9960 0.9987 1.2368e-03
GH 0.8191 0.9424 0.9787 0.9915 0.9965 3.4884e-03

KQ EMP 0.8454 0.9376 0.9666 0.9900 0.9971 5.8114e-02
NM 0.6819 0.9541 0.9972 0.9999 0.9999 5.9651e-07
HY 0.8201 0.9675 0.9941 0.9989 0.9998 1.9516e-04
VG 0.7759 0.9208 0.9695 0.9878 0.9949 5.0005e-03
GH 0.8298 0.9270 0.9588 0.9739 0.9822 1.7734e-02
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