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Abstract In this paper, the fixed-time synchronization for drive-response coupled system(DRCS)
with impulsive effects is investigated. More general controllers are designed to synchronize drive-
response coupled system(DRCS) within fixed-time. By using graph theory and Lyapunov method,
strongly and non-strongly connected of topological structure of DRCS are studied deriving different
criteria. What’s more, some control strategies are provided for special cases of DRCS. Furthermore,
some numerical simulations are offered to demonstrate the validity of theoretical results.
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1 Introduction

During the past decade, coupled systems have received increasing attracted attention. The main reason
is that many real system can be described as coupled systems in many fields including mathematic [1,2],
biology [3,4,5], physics [6,7]. Actually, coupled systems also can be found in engineering including pattern
recognition, image processing, big data and so on [8,9,10].

Synchronization, an important dynamical behavior, indicates that two or more systems, which are
either equivalent or nonequivalent systems, tend to a common state as the network evolves by a suitable
coupling or forcing [11]. What’s more, many kinds of synchronization have been extensively studied due to
its various applications, such as complete synchronization [12], projective synchronization [13], exponen-
tial synchronization [14], asymptotic synchronization [15]. Recently, synchronization of coupled systems
has been a subject of active research due to the fact that many natural phenomena have close relation-
ships with system synchronization [16]. For its potential applications in various fields, some intriguing
results have been reported [17,18,19,20]. Pecora and Carroll were the first to study the synchronization
of drive-response systems in [21]. This method requires that the drive system can break down a sub-
system and then copy it, and the resulting system is called a response system. Studying classic chaos
systems often uses this method, such as Lorenz system, chua circuit system. In communication security
and neuroscience, the synchronization of the drive-response systems has been extensively investigated
in view of its wide applications. An example comes from the computer world. All educators’ computers
form educational networks, while networks of all researchers form research networks. The two networks
are coupled over the Internet. If all educators and researchers explore the same source of the Internet,
congestion will occur, which is harmful and should be avoided. Therefore, it is necessary to study the
synchronization between coupled networks. Therefore, [20] study synchronization between two coupled
complex network with same topologies.

The convergence rate of the synchronization problem, which means that synchronization can be
achieved as quickly as possible, is an important topic in numerous practical applications. Many researchers
investigated asymptotical and exponential synchronization of network [15,22]. Whereas most of the exist-
ing important results on asymptotic and exponential synchronization were defined over an infinite time
interval. Only when time approaches to infinity, the drive-response system can realize synchronization.
Since the life span of biologies and machine are limited, minimizing the synchronization time is of essence
in achieving fast communication synchrony. In order to enhance convergence, finite-time synchronization
proposed in [23] had optimal convergence time. Moreover, finite-time control exhibits better disturbance
rejection properties compared with asymptotic control [24]. Hence, finite-time synchronization has been
widely studied in recent years [25,26,27,28].
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It should be noted that the convergence time of finite-time control approach is heavily dependent on
the initial conditions of considered systems, which means the convergence time not fixed for different
initial values. Moreover, it is too hard to adjust or even impossible to estimate the initial conditions of
many practical systems. This deteriorate the systems’ performance. These drawbacks prohibit the prac-
tical application of finite-time techniques. To overcome this setback, the definition of fixed-time control
was firstly introduced in [29], which proposed nonlinear feedback design for the fixed-time stabilization
of linear control systems. The advantage of fixed-time techniques over finite-time ones is that the con-
vergence time is independent on the initial states of considered systems, Therefore, the parameters of
designed controllers completely determine the convergence time of fixed-time techniques. In view of the
framework of fixed-time techniques, many new control schemes are established in [30,31,32,33]. Especially,
fixed-time derive-response synchronization of Cohen-Grossberg neural networks was considered in [32].

In the process of signal transmission, networks may experience abrupt changes in their structure and
parameters caused by component failures or repairs. This is, the controlled network may exhibit impul-
sive effects [34,35]. Impulsive system is comprised of three necessary parts, i.e., a continuous differential
equation, which governs the evolution of the system between impulsive events; an impulse state jumping
function, which describes the way the states of the system are instantaneously jumped; and a criterion
which determines when the states of the system are to be changed. A good deal of literature has been
available to discuss the theory for impulsive different systems, see [36,37,38]. In [36], the authors stud-
ied the periodic solutions problem for impulsive differential equations. The fixed-time stabilization for
impulsive Cohen-Grossberg BAM neural network in paper [37]. Hence, it is of great significance to take
impulsive effects into consideration when studying the synchronization problem for DRCS. To the best
of our knowledge, fixed-time synchronization of DRCS with impulsive effects has not been investigated
in the exiting literature.

Motivated by the above discussions, synchronizing the drive-response coupled network with impulsive
effects within fixed-time will be studied in this paper. The main contributions are as follows: (1) It is the
first time that the fixed-time synchronization for the drive-response coupled network with impulsive ef-
fects is considered and some effective fixed-time synchronization criteria are derived; (2) Less conservative
controllers are designed to cope with the difficulties induced by impulsive perturbations; (3) This paper
considers two cases of topological structure of system, which are strongly connected and non-strongly
connected graphs.

The remainder of this paper is outlined as follows. In section 2, some preliminaries and the model
description are presented. In Section 3, the control strategies are considered for strongly connected and
non-strongly connected topological structure of the drive-response coupled system with impulsive effects,
respectively. Some simulation examples are given to confirm the efficiency of the proposed method in
Section 4. Finally, Section 5 provides some conclusions.

Notation Let R = (−∞,+∞) and R+ = [0,+∞), Rn×n denotes the set of n × n real matrix. N+

denotes the sets of positive integers. For the vector v ∈ Rn, vT is defined as its transpose, ∥v∥ is Euclidean
norm and ∥v∥r = (

∑n
i=1 |vi|r) 1

r . For the matrix A ∈ Rn×n, As = (A+AT )/2, ∥A∥ =
√
λmax(ATA), where

λmax(ATA) is the maximum eigenvalue of ATA. diag[α]n := diag(α1, α2, . . . , αn) ∈ Rn×n is the diagonal
matrix with diagonal entries αi, i = 1, 2, . . . , n. In ∈ Rn×n is the identity matrix. sign(z)(z ∈ R) is the
sign function. Let f(x) = (f1(x1), f2(x2), · · · , fn(xn))T , where fi : R → R, x = (x1, x2, · · · , xn)T ∈ Rn.
The sign matrix function f is defined as

Sign[f(x) − f(y)] :=diag[sign(fi(xi) − fi(yi)]n,
|f(x) − f(y)|θ :=(|f1(x1) − f1(y1)|θ, . . . , |fn(xn) − fn(yn)|θ)T ,

sign(f(x) − f(y))θ :=Sign[f(x) − f(y)] · |f(x) − f(y)|θ.

2 Model Formulation and Preliminaries

In this paper, G = (L, E) is introduced as a directed graph which contains a set L = {1, 2, . . . , N} of
vertices and a set E of arcs (i, j) leading from vertex j to i. B = (bij)N×N is the weight matrix, where
bij > 0 if and only if (i, j) ∈ E . The weight matrix B is irreducible if and only if a weighted digraph
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(G, B) is strongly connected. The Laplacian matrix of (G, B) is defined as

L =


∑

j ̸=1 b1j −b12 · · · −b1N

−b21
∑

j ̸=2 b2j · · · −b2N

...
...

. . .
...

−bN1 −bN2 · · ·
∑

j ̸=N bNj

 ,
and ci is the cofactor of the ith diagonal element of L. In particular, if (Q, B) is strongly connected, the
ci > 0 for i ∈ L.

Lemma 1. [1] Assume N ≥ 2, then the following identity holds:

N∑
i,j=1

cibijFij(xi, xj) =
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Fij(xi, xj),

where Fij(xi, xj) : Rmi × Rmj → R are arbitrary functions, for any i, j ∈ L, Q is the set of spanning
unicyclic graphs of (G, B), W (Q) is the weight of Q, and CQ stands for the directed cycle of Q.

The following drive system, which is considered in this paper, define on a digraph G with N(N ≥ 2)
vertices

ẋi(t) = fi(xi(t)) + ρ
N∑

j=1
bijHij(xi(t), xj(t)) + ui(t), i ∈ L, (1)

where xi(t) = (xi1(t), xi2(t), . . . , ximi(t))T ∈ Rmi is the state variables of the ith vertex system, fi ∈ Rmi

is the continuous function, ρ > 0 is the coupling strength, B = (bij)N×N is the weight configuration
matrix, which stands for coupling strength. Hij : Rmi ×Rmj → Rmi is the continuous function describing
coupling form. ui(t) ∈ Rmi is the controller designed for the system (1). The initial value of the network
(1) is xi(0) = xi0.

We refer to model (1) as the drive coupled system and consider the following response system:

ẏi(t) = fi(yi(t)) + ρ
N∑

j=1
bijHij(yi(t), yj(t)), (2)

where yi(t) = (yi1(t), yi2(t), . . . , yimi(t))T ∈ Rmi is the response state of the ith node with initial value
yi(0) = yi0.

The aim of this paper is to synchronize the drive-response systems (1) and (2). More precisely, the
synchronization goal is described as following.

Definition 1. [30] The drive network (1) is said to be synchronized onto the response network (2) in
a fixed time, if there exists a settling time T > 0, which is independent of the initial value xi0 and yi0,
such that

lim
t→T

∥ xi(t) − yi(t) ∥= 0.

Then we define the synchronization error ei(t) = xi(t) − yi(t), i ∈ L. In the process of signal trans-
mission, the states, ei(t), i = L, may be suddenly changed at some discrete time instants which can
be described as a differential equation with impulses [26][39]. Hence, we have the following model with
impulsive effects: 

ẋi(t) =fi(xi(t)) + ρ
N∑

j=1
bijHij(xi, xj) + ui(t), t ̸= tk,

△xi(tk) = −λk
i ei(t−k ), t = tk,

(3)
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where λk
i are constants which denote the impulsive strength; the time sequence {tk, k ∈ N+}, which

satisfies 0 < t1 < t2 < . . . < tk . . . , limk→∞ tk = ∞, denotes the impulsive instants; △xi(tk) = xi(t+k ) −
xi(t−k ), xi(t+k ) and xi(t−k ) denote the limit from the left and the right at time tk, respectively. Without
loss of generality, throughout this paper, we assume that xi(t+k ) = limt→tk+0 xi(t) = xi(tk), and t0 = 0.
Note that the impulsive effects λk

i not only depend on the node i, but also rely on the impulsive instant
tk, which means that the impulsive effect can be distinct in both time domain and space domain [38].

The error dynamical system, which follows from the continuity of yi(t), is governed as follows:

ėi(t) =fi(xi(t)) − fi(yi(t)) + ui(t)

+ ρ
N∑

j=1
bij(Hij(xi, xj) −Hij(yi, yj)), t ̸= tk,

△ei(tk) = −λk
i ei(t−k ), t = tk,

(4)

where △ei(tk) = ei(tk) − ei(t−k ).
According to Definition 1, synchronizing the drive-response systems (3) and (2) within fixed-time is

equivalent to stabilizing the origin of error system (4) in a fixed time.
In order to obtain the main results, The following definition, lemmas and assumptions are needed.

Definition 2. [40] Function V : Rn → R+ is said to belong to class V if
(i) V is continuous on each of the sets [tk, tk+1)×Rn for x ∈ Rn, k ∈ N+, and lim(t,u)→(t−

k
,v) V (t, u) =

V (t−k , v) exists;
(ii) V is locally Lipschitzian in x.

Lemma 2. [41] If a positive definite, radially unbounded function V (e(t)) ∈ V such that any solution
e(t) of (4) satisfies

V̇ (e(t)) ≤ −βV q(e(t)) − γV p(e(t)), t ̸= tk, t ∈ R+,

V (e(tk)) ≤ V (e(t−k )), k ∈ N,

where β > 0, γ > 0, 1 > p > 0, q > 1. Then, system (4) is globally fixed-time stable, when

t ≥ 1
β(q − 1)

+ 1
γ(1 − p)

.

Lemma 3. [42] For any vector x ∈ Rn and 0 < r < l

∥ x ∥l≤∥ x ∥r≤ n
1
r − 1

l ∥ x ∥l .

(A1): Function fi : Rn → Rn, i ∈ L, satisfies the following QUAD condition, denoted as fi ∈
QUAD(ωi), if:

(x− y)T (fi(x) − fi(y)) ≤ ωi(x− y)T (x− y), ωi > 0.

(A2): Assume that Hij(xi, xj) satisfies the global Lipschitz condition for any i, j ∈ L, in other words,
there are positive constants πi and υi(i ∈ L), such that

∥Hij(xi, xj) −Hij(yi, yj)∥ ≤ πi∥xi − yi∥ + υi∥xj − yj∥,

for any (xi, xj), (yi, yj) ∈ Rmi ×Rmj .
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3 Main Results

In this section, the fixed-time synchronization problem of the drive-response systems with impulsive
effects are discussed. The main objective of this section is to design appropriate controllers ui(t) for the
drive system (3) so that one can synchronize with the response system (2) within fixed-time.

To achieve the control goal, the following controllers are constructed :

ui(t) = − γi · ei(t) − hi · sign[ϕi(xi(t)) − ϕi(yi(t))]q − di · sign[ϕi(xi(t)) − ϕi(yi(t))]p, i ∈ L, (5)

where ϕi(z) = (ϕi1(z1), ϕi2(z2), · · · , ϕimi(zmi))T for z ∈ Rmi , γi,hi,di > 0 are constants called control
gains, q > 1, 0 < p < 1 are constants to be determined.

To ensure the existence, uniqueness of the solution, the nonlinear function ϕij(t) satisfy Assumption
3.

(A3) For any i ∈ L, there are positive constants µi and σi such that θi ≤ ϕij(x)−ϕij(y)
x−y ≤ σi, ∀x ̸= y ∈

R, j = 1, 2, . . . ,mi.
We denote some notation in the following of this paper:

Ω =diag[ωi]N ,Π = diag[πi]N , Γ = diag[γi]N ,

Υ = diag[υi]N , B̄ = diag[
N∑

j=1
bij ]N , ηi = ci

υi
,

Π̄ =2µIN , υ̃ =
N∏

i=1
υi, m̃ =

N∑
i=1

mi,

ȟ =min{hi, i ∈ L}, ď = min{di, i ∈ L},

θ̌ =min{θi, i ∈ L}, η̌ = min{ηi, i ∈ L}.

3.1 Strongly Connected Digraph

Theorem 1. Under Assumptions (A1) − (A3), if the weighted matrix B is irreducible and the following
assumptions are fulfilled:

(A4)Ω + ρ(Π + Υ )B̄ − Γ ≤ 0;
(A5)λ̃ = max1≤i≤N (−λk

i + 1)2 ≤ 1,
then, under the controller (5), the drive-response system (3) and (2) can achieve synchronization within
fixed-time, which is

T = 1
2ȟθ̌q(m̃η̌υ̃) 1−q

2 (q − 1)
+ 1

2ďθ̌p(η̌υ̃) 1−p
2 (1 − p)

.

Proof. Select a Lyapunov function as

V (t) =
N∑

i=1
c̃ie

T
i (t)ei(t). (6)

where c̃i is the cofactor of the ith diagonal element of L̃ := diag[υi]N · L. Obviously, c̃i = υ̃ηi .
The derivative of V (t) along the trajectories of (4) gives that, for t ̸= tk,

V̇ (t) =
N∑

i=1
2c̃ie

T
i (t)(fi(xi(t)) − fi(yi(t))) +

N∑
i=1

2c̃ie
T
i (t)ui(t)

+ ρ
N∑

i=1

N∑
j=1

2c̃ie
T
i (t)bij(Hij(xi, xj) −Hij(yi, yj)).
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In view of fi(·) ∈ QUAD(ωi), i ∈ L and Assumptions (A2)(A3), we can show that

V̇ (t) ≤
N∑

i=1
2c̃iωie

T
i (t)ei(t) −

N∑
i=1

2c̃iγiei(t)T ei(t) + 2ρ
N∑

i=1

N∑
j=1

c̃ibij∥ei(t)∥(πi∥ei(t)∥ + υi∥ej(t)∥)

−
N∑

i=1
2c̃ihi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|q −

N∑
i=1

2c̃idi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|p.

Since

2
N∑

j=1
bij∥ei(t)∥(πi∥ei(t)∥ + υi∥ej(t)∥) ≤ 2(πi + υi)

N∑
j=1

bij∥ei(t)∥2 + υi

N∑
j=1

bij(∥ej(t)∥2 − ∥ei(t)∥2) (7)

By the Assumption (A3) and Lemma 3, we obtain
N∑

i=1
c̃ihi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|q

=
N∑

i=1

mi∑
j=1

c̃ihi|eij(t)||ϕij(xij(t)) − ϕij(yij(t))|q

≥
N∑

i=1

mi∑
j=1

c̃ihiθ
q
i |eij(t)|q+1

≥ȟθ̌qm̃
1−q

2 (η̌υ̃)
1−q

2 (
N∑

i=1

mi∑
j=1

c̃i|eij(t)|2)
q+1

2 ,

(8)

N∑
i=1

c̃idi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|p

=
N∑

i=1

mi∑
j=1

c̃idi|eij(t)||ϕij(xij(t)) − ϕij(yij(t))|p

≥
N∑

i=1

mi∑
j=1

c̃idiθ
p
i |eij(t)|p+1

≥ďθ̌p(η̌υ̃)
1−p

2 (
N∑

i=1

mi∑
j=1

c̃i|eij(t)|2)
p+1

2 ,

(9)

By the inequalities (7)-(9), yields

V̇ (t) ≤
N∑

i=1
2c̃iωie

T
i (t)ei(t) −

N∑
i=1

2c̃iγiei(t)T ei(t) + 2ρ
N∑

i=1

N∑
j=1

c̃i(πi + υi)bij∥ei(t)∥2

+ ρ

N∑
i=1

N∑
j=1

c̃iυibij(∥ej(t)∥2 − ∥ei(t)∥2) − 2ȟθ̌qm̃
1−q

2 (η̌υ̃)
1−q

2 (
N∑

i=1

mi∑
j=1

c̃i|eij(t)|2)
q+1

2

− 2ďθ̌p(η̌υ̃)
1−p

2 (
N∑

i=1

mi∑
j=1

c̃i|eij(t)|2)
p+1

2

= 2ẽ(t)T C̃(Ω + ρ(Π + Υ )B̄ − Γ )ẽ(t) + ρ
N∑

i=1

N∑
j=1

c̃iυibij(∥ej(t)∥2 − ∥ei(t)∥2)

− 2ȟθ̌qm̃
1−q

2 (η̌υ̃)
1−q

2 V
q+1

2 (t) − 2ďθ̌p(η̌υ̃)
1−p

2 V
p+1

2 (t).
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where ẽ(t) = (∥e1(t)∥, ∥e2(t)∥, . . . , ∥eN (t)∥)T , C̃ = diag[ci]N .
By the Assumption (A4), one can obtain

V̇ (t) ≤ρ
N∑

i=1

N∑
j=1

c̃iυibij(∥ej(t)∥2 − ∥ei(t)∥2) − 2ȟθ̌qm̃
1−q

2 (η̌υ̃)
1−q

2 V
q+1

2 (t) − 2ďθ̌p(η̌υ̃)
1−p

2 V
p+1

2 (t).

By the difinition of c̃i and the lemma 1, yields

V̇ (t) ≤ − 2ȟθ̌q(m̃η̌υ̃)
1−q

2 V
q+1

2 (t) − 2ďθ̌p(η̌υ̃)
1−p

2 V
p+1

2 (t).

When t = tk, it can be obtain from (6) that

V (tk) =
N∑

i=1
c̃ie

T
i (tk)ei(tk)

=
N∑

i=1
c̃i(−λk

i + 1)2eT
i (t−k )ei(t−k )

≤λ̃
N∑

i=1
c̃ie

T
i (t−k )ei(t−k )

≤V (tk)

where λ̃ = max1≤i≤N (−λk
i + 1)2.

According to Lemma 2, the drive system (1) is globally synchronized with response systems (2) within
fixed time, which is

T = 1
2ȟθ̌q(m̃η̌υ̃) 1−q

2 (q − 1)
+ 1

2ďθ̌p(η̌υ̃) 1−p
2 (1 − p)

.

The proof is completed.

Especially, when πi = υi = µ ≥ 0 for i ∈ L, the Assumption (A2) is instead by the following
assumption:

(A′
2) Hij(xi, xj), for any i, j ∈ L, satisfies

∥Hij(xi, xj) −Hij(yi, yj)∥ ≤ µ∥xi − yi∥ + µ∥xj − yj∥,

for any (xi, xj), (yi, yj) ∈ Rmi × Rmj .
Accordingly, we have the following result.

Corollary 1. Assume the weighted matrix B is irreducible. Suppose that Assumptions (A1)(A′
2)(A3)

hold and the following assumptions are fulfilled:
(A′

4)Ω + ρΠ̄B̄ − Γ ≤ 0;
(A5)λ̃ = max1≤i≤N (−λk

i + 1)2 ≤ 1.
Then, under the controller (5), the drive-response systems (3) and (2) can realise synchronisation within
a fixed-time

T = 1
2ȟθ̌q(m̃η̌υ̃) 1−q

2 (q − 1)
+ 1

2ďθ̌p(η̌υ̃) 1−p
2 (1 − p)

.

Remark 1. If Hij(xi(t), xj(t)) and Hij(yi(t), yj(t)), for any (xi, xj), (yi, yj) ∈ Rmi × Rmj , in drive-
response systems (3) and (2) are replaced by Λ(xj − xi) and Λ(yj − yi), respectively, the converted
system will be complex network. Then the result of corollary 1 hold with µ = ∥Λ∥.
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3.2 Without Strongly Connected Digraph

Theorem 2. Let Assumptions (A1) − (A3) hold, assume further that
(A5)λ̃ = max1≤i≤N (−λk

i + 1)2 ≤ 1;
(A6)Ω + ρΠB̄ + ρΥBs − Γ ≤ 0.

Then, under the controllers (5), the controlled system (3) is said to be synchronized with the response
system (2) within a fixed time

T = 1
2ȟθ̌qm̃

1−q
2 (q − 1)

+ 1
2ďθ̌p(1 − p)

,

Proof. Select a Lyapunov function as

V (t) =
N∑

i=1
eT

i (t)ei(t). (10)

The derivative of V (t) along the trajectories of (4) gives that, for t ̸= tk,

V̇ (t) =
N∑

i=1
2eT

i (t)(fi(xi(t)) − fi(yi(t))) +
N∑

i=1
2eT

i (t)ui(t)

+ ρ
N∑

i=1

N∑
j=1

2eT
i (t)bij(Hij(xi, xj) −Hij(yi, yj)).

In view of fi(·) ∈ QUAD(ωi), i ∈ L and Assumptions (A2)(A3), we can show that

V̇ (t) ≤
N∑

i=1
2ωie

T
i (t)ei(t) −

N∑
i=1

2γiei(t)T ei(t) + 2ρ
N∑

i=1

N∑
j=1

bij∥ei(t)∥(πi∥ei(t)∥ + υi∥ej(t)∥)

−
N∑

i=1
2hi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|q −

N∑
i=1

2di|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|p.

By the Assumption (A3) and Lemma 3, we obtain

N∑
i=1

hi|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|q

=
N∑

i=1

mi∑
j=1

hi|eij(t)||ϕij(xij(t)) − ϕij(yij(t))|q

≥
N∑

i=1

mi∑
j=1

hiθ
q
i |eij(t)|q+1

≥ȟθ̌qm̃
1−q

2 (
N∑

i=1

mi∑
j=1

|eij(t)|2)
q+1

2 ,

(11)

164 Journal of Advances in Applied Mathematics, Vol. 4, No. 4, October 2019

JAAM Copyright © 2019 Isaac Scientific Publishing



N∑
i=1

di|ei(t)|T |ϕi(xi(t)) − ϕi(yi(t))|p

=
N∑

i=1

mi∑
j=1

di|eij(t)||ϕij(xij(t)) − ϕij(yij(t))|p

≥
N∑

i=1

mi∑
j=1

diθ
p
i |eij(t)|p+1

≥ďθ̌p(
N∑

i=1

mi∑
j=1

|eij(t)|2)
p+1

2 ,

(12)

By the inequalities (11) and (12), yields

V̇ (t) ≤
N∑

i=1
2ωie

T
i (t)ei(t) −

N∑
i=1

2γiei(t)T ei(t) + 2ρ
N∑

i=1

N∑
j=1

bij∥ei(t)∥(πi∥ei(t)∥ + υi∥ej(t)∥)

− 2ȟθ̌qm̃
1−q

2 (
N∑

i=1

mi∑
j=1

|eij(t)|2)
q+1

2 − 2ďθ̌p(
N∑

i=1

mi∑
j=1

|eij(t)|2)
p+1

2

= 2ẽ(t)T (Ω + ρΠB̄ + ρΥBs − Γ )ẽ(t) − 2ȟθ̌qm̃
1−q

2 V
q+1

2 (t) − 2ďθ̌pV
p+1

2 (t).

where ẽ(t) = (∥e1(t)∥, ∥e2(t)∥, . . . , ∥eN (t)∥)T .
When t = tk, it can be obtain from (10) that

V (tk) =
N∑

i=1
eT

i (tk)ei(tk)

=
N∑

i=1
(−λk

i + 1)2eT
i (t−k )ei(t−k )

≤λ̃
N∑

i=1
eT

i (t−k )ei(t−k )

≤V (tk)

where λ̃ = max1≤i≤N (−λk
i + 1)2.

According to Lemma 2, the drive system (3) is globally synchronized with response systems (2) within
fixed time, which is

T = 1
2ȟθ̌qm̃

1−q
2 (q − 1)

+ 1
2ďθ̌p(1 − p)

.

The proof is completed.

Corollary 2. let the Assumptions (A1)-(A3) hold, except that Assumption (A2) is replaced by the (A′
2).

Assume further that
(A5)λ̃ = max1≤i≤N (−λk

i + 1)2 ≤ 1;
(A′

6)Ω + 1
2ρΠ̄B̄ + 1

2ρΠ̄B
s − Γ ≤ 0.

Then, under the controllers (5), the drive-response systems (3) and (2) are synchronized within a fixed
time

T = 1
2ȟθ̌qm̃

1−q
2 (q − 1)

+ 1
2ďθ̌p(1 − p)

.
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Remark 2. Especially, considering the complex network, which meansHij(xi, xj) = Λ(xj−xi),Hij(yi(t),
yj(t)) = Λ(yj − yi), for any (xi, xj), (yi, yj) ∈ Rmi × Rmj , i, j ∈ L in drive-response systems (3) and (2).
Then the corollary 2 hold with µ = ∥Λ∥. For this reason, the model in [31] is special cases of this work.
And Corollary 2 extends those corresponding theoretical results in [31].

Remark 3. Note that we do not assume that the weight configuration matrix B is irreducible or
symmetric in Theorem 2. So the result of Theorem 2 can be used in many models. Moreover, the inner
coupling matrix Λ, which is identity matrix in [33], is not assumed to be diagonal or positive definite in
our paper. Therefore, the corollary 2 is more general than these in [33].

Remark 4. In the literature, finite time synchronization, whose convergence time is attached to the
original states of system, was studied in many papers, see [26]. In this paper, the fixed-time controllers
are introduced to synchronize DRCS with impulsive effects, which means that better performance of the
system can be achieved. From the perspective of practicality, the fixed-time controllers are more widely
used.

Remark 5. Suppose ϕi(x) = x. Then the controllers Eq.(5) can be

ui(t) = −γi · ei(t) − hi · sign[ei(t)]q − di · sign[ei(t)]p,

which is consistent with the controllers in [37]. For this reason, the controllers in this paper are less
conservative than ones in [37]. What’s more, [37] didn’t consider the topological structure of (G, B).
Therefore, our results are more rich than its.

4 Numerical Example

In this section, some simulation examples are given to verify the effectiveness and feasibility of the criteria
established above.

For this purpose, we study the complex network and consider Rössler-like system [43] as the node
dynamics.

0
4

1

2

2 4

3z

4

2

y

0

5

x

6

0
-2 -2

-4 -4

Figure 1. The chaotic trajectories of the Rössler-like system with initial values (0.3,0.4,0.5).

The Rössler-like system is presented as

ẋ = f(x) = α

 −Γ −β −λ
1 γ 0
0 0 −µ

 x1
x2
x3

 +

 0
0

αµψ(x1)

 ,

where x = (x1, x2, x3)T ∈ R3 is the state vector
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ψ(s) =

{
0, s < 2.56;
ξ(s− 2.56), s ≥ 2.56,

which has a chaotic attractor when α = 0.03, Γ = 0.075, β = 1.5, λ = 0.75, γ = 0.2, µ = 1.5, and
ξ = 21.43, see Fig.1.

Figure 2. A simple directed complex network with five nodes.

In this section, the following derive-response complex dynamical network with impulsive effects is
considered: 

ẋi(t) =fi(xi(t)) + ρ
5∑

j=1
bijΛxj(t) + ui(t), t ̸= tk

△xi(tk) = −dk
i ei(t−k ), t = tk,

ẏi(t) =fi(yi(t)) + ρ
5∑

j=1
bijΛyj(t).

(13)

where
fi(xi(t)) = f(x), fi(yi(t)) = f(x), i = 1, 2, . . . , 5,

the coupling strength ρ = 1, B is an irreducible matrix(see Fig.2).

B =


0 1 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
0 1 1 0 0

 , Λ =

2 1 0
0 2 1
1 1 0

 ,

the controllers ϕi(x) = x for i = 1, 2, . . . , 5 and x ∈ R3. Therefore, µ = ∥Λ∥ = 2.9746, Π̄ = 5.9492I5,
θi = 1, B̄ = diag[2, 1, 1, 2, 2], λk

i = 0.5. And there exist ωi = 0.492, for i = 1, 2, . . . , 5, satisfying (A1) for
the analysis of [43]. Hence, ∆ = 0.492I5. If γi ≥ 7, i = 1, 2, . . . , 5, the left side of (A′

4) is a negative definite
matrix. Hence, the system (13) can achieve synchronization within the estimated fixed-time according
to Corollary 1.

Under the controllers Eq.(5) with γi = 7, hi = 5, di = 5, q = 1.5, p = 0.3, the system (13) can achieve
synchronization within T = 0.0531 by Corollary 1(see Fig. 3).
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Figure 3. The trajectories of the complex system with xi(0) = [e−i, 0.1i, cosi], yi(0) = [cosi, 1 − sini, e−i].

Remark 6. In [44], synchronization method for Rössler chaotic system was constructed and applied to
secure transmission of speech and images under the impulsive control, but the time of synchronization is
not sure. our result can handle this problem shown in numerical example. Therefore, our result is better
applied in communication than the result in [44].

5 Conclusions

In this paper, considering the effects of impulsive effects, fixed-time synchronization of derive-response
coupled system was studied. By using Lyapunov stability theory and designing more general controllers,
sufficient conditions were obtained to ensure synchronization of DRCS with impulsive effects within
fixed-time. Finally, some numerical simulations were presented. It is worth noting that the digraphs
with strongly connected and without strongly connected were studied in section 2. A future work is to
study the dynamical systems with the harmful impulses to extend the theorems established in the paper.
Besides, time delays are unavoidable for real DRCS. Hence, the fixed-time synchronization of impulsive
dynamical networks with time delayed will be challenging.
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