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Abstract Let R = (—co,0), and let @ € C'(R) : R — [0,00) be an even function which is
an exponent. We consider the weight w(z) = e~ 9@ 2 € R. Let us denote the partial sum of
Fourier series for a function f by s, (f;x) := sn(f;w?; ), and the de la Vallée Poussin mean of f
by vn(f) := va(f;w?). Then we investigate the convergences of s, (f) and v, (f) with w(z).
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1 Introduction

Let R = (—00,0), and let @ € C*(R) : R — [0,00) be an even function. We consider the weight w(x);

w(z) :=exp(—Q(z)), x €R.
Then we suppose that fooo x"w?(x)dr < oo for alln = 0,1,2,.. ..

Now we can construct the orthonormal polynomials p,(x) = p,(w?;z) of degree n for w?(x), that is,
/ P (2)pm (2)w? (x)dz = 61y (Kronecker delta).
For the weight w we define the partial sum of Fourier series of f by
n—1
(D) = Yo nPmela), bulr) = [ SOmlu e
k=0

for n € N. Then we also the de la Vallée Poussin mean v,,(f) of f is defined by

2n
wlPE) = 3 ),
j=n+1

We say that f : R — [0,00) is quasi-increasing if there exists C' > 0 such that f(z) < Cf(y) for
0<z<y.

First we need the following definition from [5].
Definition 1.1. The weight w(z) = exp(—Q(x)) satisfies the following. Let @ : R — [0,00) be a
continuous and an even function, and satisfy the following properties:

(a) @Q'(x) is continuous in R, with Q(0) = 0.

(b) Q" (x) exists and is positive in R\{0}.

()

wlggo Q(x) = .
(d) The function
Q)
T(a) = To(a) i= sl @ #0 (L.1)
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is quasi-increasing in (0, 00), with
T(x)>2A>1, xe€R\{0}. (1.2)
(e) There exists Cp > 0 such that

Qx) _ Q)
Q] S

Then we write w = exp(—Q) € F(C?). If there also exists a compact subinterval J(3 0) of R, and Cy > 0
such that

, a.e. z € R\{0}. (1.3)

|g/((§))| > (Cy |%((f))|, a.e. x € R\J, (1.4)
then we write w = exp(—Q) € F(C?+).
Example 1.2. (1) If an exponential Q(x) satisfies
(zQ'(x))’
1< 4 < W < Ao,

where A;, i = 1,2 are constants, then we call w = exp(—Q(z)) the Freud weight. The class F(C?+)
contains the Freud-type weights.
(2) For a > 1, r > 1 we define

Q) = Qr.a(x) = exp,(|2|*) — exp,.(0),
where exp,.(z) = exp(exp(exp...expx)...) (r times). Moreover, we define
@r.am(x) = [x["{exp, (|z|*) — a"exp,(0)}, a+m>1, m=0, a>0,

where a* = 0 if @ =0, and otherwise a* = 1.
(3) We define

Qolz) = (142" =1, a>1.

If T(z) is bounded, then we call w the Freud-type weight, and if 7'(x) is unbounded, then we call w the
Erdos-type weight.

Definition 1.3. Let w = exp(—Q) € F(C?+),1 < A < %ﬁ and m > 1 be an integer. Then we write

w € Fa(C™F24) if Q € C™F2(R) and there exist constants C > 1 and K > 1 such that for all |z| > K

’ 7 (k+1)
GuR <C e I~ g ()
for every kK =1,...,m and also
QU (x), _ QU (x)
|Q(m+1)(x)| S Q) () (1.6)
In particular, w € Fy(C3+) means that Q € C3(R) and
Q' ()] Q" (x) Q" (z)
o) <O (1<A<3/2) and | o) | <C| ) | (1.7)

hold for |z| > K > 0.

In [3] we obtain the following result.
Theorem 1. ([3, Theorem 1.1]) Let w € F(C3+) with 0 < A < 3/2. Suppose that f is continuous and
has a bounded variation on any compact interval of R. If f satisfies

| @) <.

— 00
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then
. w
n];ngo II(f— Sn(f))W”LOQ(]R) =0.

First, we extend Theorem 1 to L,—space. To do so we need to define a new weight class.
Definition 1.4. For a weight w = exp(—Q), we set

)\w = lim sup W and Moy 1= lim E}lf (x()xQ)Q(l') .

If Ay = py holds, then we say that a weight w is regular.

All the weights in Example 1.2 are regular.
The Mhaskar-Rakhmanov-Saff number (MRS number) a; is defined by

1 /
tzz/’@%d@QM¢>Q
0

7o (1 —u2)i

Lemma 1.5. ([9, Corollary 5.5]) Let w be a regular weight. Then for any ¢ > 0 there exists a constant
C > 0 such that

T(a;) <Ct°, t>C.

Now, we can extend Theorem 1 to L,-space.
Theorem 2. Let w = exp(—Q) be a regular weight and w € F(C?+) with 1 < X\ < 3/2. Suppose that
f is continuous and has a bounded variation on any compact interval of R. Let 1 < p < co. We suppose
that f satisfies

| @l <.

— 00

If w is an Erdés-type weight, then we have

lim [[(f = 5(F) Zri7all ) = 0, (1.8)

n—oo

and if w is a Freud-type weight, then for 2/A < p < oo, where A is defined by Definition 1.1 (d), we have
(1.8).
For f € C(R), the degree of weighted polynomial approximation is defined by

Epn(w; f) = Piél7£, lw(f — P)||L,,(1R)7 where 1 <p< oo

Especially, if p = oo, then we write E,, (w; f) 1= Eoo n(w; f).

With respect to v, (f), we have the following convergence theorem.
Theorem 3. We suppose w € Fx(C*+) with 1 < A < 4/3, furthermore we assume T'(a,,) < C(2- )2/3 Let
v > 0 be an integer, and let 1 < p < co. We suppose that f € C”(R) with ||T(2”+1)/4f(”)w\|L (®) < 00.
Then we have for § > 1 and 0 < j < v,

1D (@) = P (f52))w(@) (1 + |2])°7P|| 1, )

a

< Oy (=) T (an) A By, (TR Ay, f0)] (1.9)
n
where
1 0<i<r—1:
*1/4 — ) S )
T{an) {Tmm”ﬂ j=v.

Remark 1.6. Let 1 < p < o0.
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(1) For 0 < j <v—1, (1.9) means

lim |(f9 (@) = o (f;2)w(@) (1 + |2])°/7|| 1, @) = 0. (1.10)

n—oo

(2) We consider (1.9) for j = v. We suppose that T(2*+1)/4f(*)yy is continuous and

lim T@*V/4(2) f) (2)w(z) = 0.

|z]| =00

If w is a Freud-type weight, then we also have (1.10) for j = v. If w is an Erdds-type weight, then we
further suppose that w is a regular weight and

Enil/(T(Qufl)/élw;f(V)) < CTL75

for some 8 > 0. Under these conditions we have (1.10) with j = v.
Throughout this paper, ¢, C, Cy, Cs, ... denote positive constants independent of n, x, ¢t or polynomials
P, (z).

2 Proof of Theorem 2

In this section we prove Theorem 2. To prove the theorem we need some lemmas.
Lemma 2.1. ([2, Corollary 14]) We obtained the following result: Let 1 < p < co. We assume that
w € F(C?+) satisfies

T(an) < C(—)/3, (2.1)

Qn

Then there exists a constant C' = C(w, p) > 0 such that, for every n € N and every wf € L,(R),

w
Il(f — Un(f))W”LP(R) < CEpn(w; f), (2.2)
and when TY4wf € L,(R), we have

1Cf = vn (D)l @) < CEpun(T w5 f). (2.3)

Remark 2.2. Let w € F\(C3+) with 0 < A < 3/2, then (2.1) holds true (see [2, Remark 16]).
Lemma 2.3. Let A > 1 be defined in Definition 1.1 (d) and a,, > 1. Then we have

a, < On/. (2.4)

Especially, if w is an Erdés-type weight, then for any n > 0 there exists C;, > 0 depending only on n
such that

an < Cyn' (2.5)

(see [9, Lemma 3.2 (3.6)]).
Proof of (2.4). Let > 1. From (d) in Definition 1.1, we have

> A —dt.
/1 0 dt > /1 tdt

Hence we see

so for a,, > 1 we have
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By [5, Lemma 3.4 (3.18)] we see

n A
n 2 c——F——— 2> Ca,.

Q)T (an)

Therefore, we have (2.4). #
Lemma 2.4. ([7, Lemma 3.6]) Let w € F(C?+), P € P, and let 1 < p,q < oco. Then for ¢ < p,

1_1
|lwP||L,®) < Can *||wP|L, ), (2.6)
and for p < ¢,
w n . i1_1
—P <C(—)r 4a||lwP . 2.7
”\/T lz,®) (an) lwPl L, ®) (2.7)

Lemma 2.5. ([3, Proof of Theorem 1.1 (5.3)])

In

[(on(f) = sn(fNwllLo@) = o(1)

o
Lemma 2.6. ([9, Theorem 4.1 and (4.11)]) Let 1 < A < 3/2 and o € R. Then for w = exp(—Q) € F(C3+)
we can construct a new weight w, = exp(—Q) € F(C?+) such that

T(z)%w(x) ~ we ()
on R and
an/CO < an(wa) < ACyn-
Lemma 2.7. ([5, Theorem 1.9 (a)]) w € F(C?+), 0 <p < oo and P € P, (n > 1). Then
PwllL,®) < 2[Pw||L,(z<an)-
Proof of Theorem 2. Let w be an Erdos-type weight. We see
w
I(f — Sn(f))mHLp(R)
w w
S I = ol alle,w + 1walf) = sa(F) piglle, @)

<N = o) 7 Iy + 200a(F) = 50 () 777 |, ol <020

by Lemma 2.7 with Z7 ~ w_1,4 € F(C*+)

< CBpo(w; £) + CT(an) (v £) = 80 (1) 775 1,
by Lemma 2.1 (2.2) (we note that (2.1) holds)
= o(1) + OT(an) " 0a(F) = 50 (F) 75 |2, (2.8)

(see [6, Theorem 1.4 and 1.6] about E, ,(w; f) — 0 as n — 00). From Lemma 2.4 (2.7) and Lemma 2.5
we see

T(an) " Wwn () = sn () gz ey < CT (@) ()3 F lon(F) = su()wleae
< CT(an) () F Fo(1)y /7 = o(1)T(an) /()17 = o(1)
by Lemma 1.5. Therefore, (2.8) means
i [(F = su () 7 1,0 = 0 (2.9)
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Let w be a Freud-type weight. If 2 < p < oo, then as above we have (2.9) because of T'(x) ~ 1. Let
2/A < p < 2. Then by Lemma 2.4 (2.6), Lemma 2.5 and Lemma 2.3 (2.4) we see

[(0n(f) = sn(f) T1/2”L ®) S < Caf F(walf) — sulf Nl

\/>0 1/p\/>0 1/pA\/>O() (2.10)

because of pA > 2. Consequently, from (2.8)-(2.10) we have the result. #

3'@@
m\»—A

3 Proof of Theorem 3

To prove the theorem we need some lemmas.
Lemma 3.1. ([1, Theorem 1.2]) Let v > 0. We suppose that w € Fx(C*+), 1 < A < (v+4)/(v+3). Let
|\T(2”+1)/4waLOO(R) < oo with an integer v > 0. Then there is a constant C' > 1 such that for 0 < j < v,

[0 (Fwllr m)y < C(a*)jHT(%H)MJCWHLOO(R) (3.1)

n

holds for all n € N.
Lemma 3.2. (cf. [4, Theorem 2.3]) Let v > 0 be an integer. Let

w = exp(—Q) € F\(C*+), 1 <\ < 4/3. (3.2)
Suppose that f € C¥(R) with
T4 F | gy < 0.

Then there exists an absolute constant C,, > 0 such that for 0 < k < v and z € R,
k
(£ B (2) = PP (@)yw(@)] < CT (@) B,y (w0, F ), (3.3)

where TV4(z)w(z) ~ w4 € F(C?+).
Proof. Let v > 0. [4, Theorem 2.3] states that under the condition;

w € Fr(C"34), 1< A< (v+3)/(v+2), (3.4)

(3.3) holds (see Appendix; Theorem C). In [Appendix; Theorem D] we will show that the assumption
(3.4) is reduced to the assumption (3.2). #

Lemma 3.3. [8, Theorem 1 and Corollary 8] Let w € F(C?+). Let f be s — 1 times continuously
differentiable for some integer s > 0, and let f (5’1)(90) be absolutely continuous in each compact interval
(Here we omit this condition if s = 0). Let wf(*) € Lo(R). Then we have

An S S
E,(w; f) < C(;) [wf )HLOO(R),

equivalently,

Qn

Ea(wi ) < O3 By )

Proof of Theorem 3. Let 1 < p < oo and 0 < j < v. We easily see that by § > 1,

1(f9(x )*’U(j)(f, 2))w(x) (1 + 27| L, @)
1(f(z) — o9 (f5 2)w (@) L ) | (L + 12177 , m)
Cll(f9(z) —Ur(f)(f§$))w($)||Loo(R)~

<
<
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Therefore, for T2V +1)/4y ~ W(a,41)/2 € F(C?+) we may show

a

I(F9 = o@D (Fwllm < Cu(;”)”_jT(an)*l/‘lEnfu(w<zu+1>/4; ). (3-5)

Let P, fuw,,, € Pn be the best approximation polynomial for f with respect to the weight w, ;. First,
we rewrite (3.3) as follows. Using w, /o, we have

|(f9) () — pY (z))wy o ()] < CTj/Q(x)En—j(w(2u+1)/4;f(j))' (3.6)

n Jfrwy /2
Hence, we see
(f9 (@) =PI}, @)w@)] < [(f9 (@) = PP, (@)w-j @)
< CT(@) 2 (fD (@) = PV}, (@)wjo(@)]
CEn—j(Way1)43 f9). (3.7)

N

For j <v —1 we see

|(FD (@) = o (f;2))w(=))
= |(f @) =PI}, @) = 0D(f = P g, (@) w(@))
<|(f9 @) = P, D@w@)] + [09(f = Paga,) w0l po

. n ..
< CEn_j(wiays1ya; f9) + C(;V”(f = Po fowy ) 025 41) /4l Loo (R)

by (3.7) and (3.1)

S CE,- J(w(2u+1)/47f(J))+C( ) N (f = Pa o) w2l Lo )
< CEn_j(wiays1y4; f9 )+C(a*n) En(wy2; f)

< CEn_j(Wavs1y4; f9) + CEnj(wy jo; f9)

< C(al)y_jEn—V(w(zV*f’l)/ll; £

n

by Lemma 3.3. Let j = v. As above we have

|(F (@) = o) (f52))w (@)
= |(F (@) = P}y, (@) =08 (f = Pa g, 0 0)) ()]

f
<T(@) "2l (@) = PY)., (@) jo(@)]
o (f = Pafao, )0l ®)
v n v
< CEny(wiaut1y/as ) + C(a*) I(f = P, fw, ) WEvr1)/all Lo (R)
by (3.6) with j = v and (3.1)
< CEnfu(w(Qu—Q—l)/él; f(y))
n v
C(;) ”{f - P"»f7w(2u+1)/4 + (vaw(2u+1)/4 - vawu/2)}w(2y+1)/4||L00(R)

v n v
< CEp_y(wiapi1y/a: f) + ()N = Poafawu s )W /all e @)

( ) | (Po, w0 i1y s = Prfay o) W@ 11) /4l Lo (21 <an)
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by Lemma 2.7
< CEpey(Wapt1y/a5 F) + Eney(wiaps1) 43 f))]
+C(a%)”T(an)”4II(Pn,f,w<2y+1>/4 = P fw, ) Wo /2]l L (01<an)
by Lemma 3.3
= CEn—y(Weapt1y/4; f)
+C(%)”T(an)” HI=F + Popgassnya + F = Popan, 200 p2ll )
< ClEn—v(Wiap41)/45 )
+(%)”T(an)1/4{En(w(2V+1) Ja5 )+ En(w, 25 )]
< CVT(an)1/4En71/(w(21/+1)/4; f(u))]
by Lemma 3.3.

Consequently we have (3.5), that is, (1.9). #
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Appendix

In this appendix we prove Lemma 3.2 which is an improvement of [9, Theorem 4.2]. We need to prepare
some results.
Theorem A. (cf. [9, Theorem 4.2]) Let

w = exp(—Q) € Fa(C*4), 1< \<3/2 (A1)

and let w be an Erdos-type weight. Let p, v, «, 8 € R. Then we can construct w,, , .5 € F(C?+) such
that

To(2)*(1+ )" (14 Q(2))*(1 + Q' (x) ) w (@) ~ Wy pa,5(x) (A.2)
on R. And for some 0 < ¢ < C we have

Qen(w) < Qw0 p (wu,wa,ﬁ) < acn(w), (A.3)

JAAM Copyright © 2020 Isaac Scientific Publishing
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on N, and

T,

Wy, v, B (CL‘) ~ Tw(x) (A4)
on R. Furthermore, if we suppose w € Fy(C*+), 1 < X\ < 4/3, then
Wy, v,0,8 € fA(03+)~ (A.5)

Proof. We suppose (A.1). To prove this theorem we apply the method of [9, Proof of Theorem 4.1]. We
consider

Qo5 (2) 7= plog T(w) + vlog(1+a?) + alog(l+ Q(x)) + Blog(1 + Q' (x)]).

For x > r, where r > 0 large enough, we consider

Qpv,,8(7)
= {ulogz +vlog(l+ 2%} + {—plog Q(z) + alog(l + Q(x))}
+{plog Q'(z) + Blog(1 + Q'(x))} =: s(x) + u(z) + v(x). (A.6)

For this formula g, ,, o, g We put the proof into practice as [9, Proof of Theorem 4.1]. We take a polynomial
P (&) = Dpviapr(@) = (2r — 2)(az® + bx + ¢)
such that

P, 8(r) = Qs (r)s P (r) = @ o p(r)s P a,8(r) = 4" v,p(r)-

Now we set

Q(x), if [z| <7
Qu,u,a,ﬁ(z) = Q(.’E) - qu,l/,a,ﬁ(m) +p,u,,l/,a,5($)7 if r < |$| < 2T;
Q(z) — qup,a,p(x), if 2r <|z|.

We see

1

Puv,a,p(T) = ﬁ(%ﬂ - x)g[{12qM7V7aﬁ(r) + 6q/H7V7a7ﬂ(T) + q”u,l/,oc”@(r)rQ}xQ

~2{991.0,0.8(r) + 5 v.0,8(r) + @ v p(r)r*}ra
H8pr0.8(1) + 46 10 p (1) + @ v (r)r?}r%],
so that for every x € [r, 27]
1P1s0,8(@)] < Clldpva,p (] + 710 w0 ()] + 7210 s (1)1} (A7)

where C' > 1 is a constant independent of r. Similarly we have

C
1P r08@) € Ay s ()] + 710 0,8 (1) + 7216 0,8 (1)1} (A8)
and
| // < C / 2,11 A9
P i@ < 5 dpras (1) + 710 s (1) + 7716 e, (1)1} (A9)

We shall show that if we take r = 7,48 > 0 large enough, then @, , s satisfies all conditions in
Definition 1.1 and wy v,0,8 = €xp(—Qpu.v,a,8) is the desired weight.

We begin with estimates of g, ,,q,5. For & > r we estimate s(z), u(x), v(z) in (A.6). Then we use
(1.2), (1.3), (1.4), (1.5) and (1.6). We see

(A.10)

=
2

1
s(z) ~logz, s'(z)~—, |s"(
T

u(@) ~ log Q(), w/(x) ~ Q@) 2 o@D (A1)
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and

Q') Q)
T <o

)2 < C(g((f)) )2 < 0Q(2)2~D. (A.12)

Therefore, by (A.10), (A.11) and (A.12) we have the followings. Let x > r.

v(z) ~log Q'(z) < ClogQ(z), |v'(z)|<C < CQx)M,

q ,u,a,ﬁ(x) IOgQ(fE) q/ ,V,a,ﬁ(l') 1 q// ,u,a,ﬁ(x) 1

00 o aw %G Tow <o (4.13)
Qpv,0,8() log Q(z) zlogQ(z) ¢ pv.ap(x) 1
o oW STow 0 o SYquEv
@) Q) 1

o SYQue2 SQuEr

(A.14)

and

22Q(z) log Q(x) 2% log Q(x)

<C =C

(z)? Q(x)? Qx)

Qv 5() log Q(x) Q(x)log Q(z)
Q//(x) < C Q”(I) < C Ql
q/u,u,a,,ﬁ(x) Q/(.T)
o' SQme@ <o S Quy
q”p,l/,oz,ﬁ’(x) 1 Q/(gj) Q(I) 1

Consequently, by (A.13), (A.14), (A.15) and 2? << Q(z) we have

lim q/(j)ualB( )

Furthermore, by (A.7), (A.8) and (A.9), we also see that = € [r, 2r], then we have

=0, i,j=0,1,2. (A.16)

‘p81a5<> C logQ(r) r r?

Qu>‘<w[Qm Q>
‘puya

Q'(x

(ﬂU) C rlog Q(r) T r?

oW Selaem fam e
() C r?log Q(r) r2 r2
)

p,u,ua ~
o <5 en - Tom taw

for j =0,1,2. For A > 1in (1.2), we take ¢ > 0 sufficiently small such that

A =A1—-¢e)/(1+¢) > 1. (A.17)
By above estimates there exists r = 7, ,, 4,8 > 0 such that |z| > r, Q"'(x) > 0 and

Quyop(®)  Quvap(®)  Q"puvap@)
Q) = Q) = Q=)

The inequality (A.18) means wy, , o5 € F(C?+). We see that (A.3) and (A.4) follow as [9, pp.94-95].
Under the condition w € F)(C*+) we will show (A.5). We see

1-e< <1+e. (A.18)

Q/('r) |3
Qx)

(@) < O W@l < OGP, 10" @) < C
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Hence we have
1" ()] 1 @) 1 @) 1
Q@) S0 ™ Q) Yo @) S Yo
@), 1
Qo) S Q@

Now, we take a polynomial

P () = Ppvapr(®) = (2r — ) (ax® + ba® + cx + d)
such that

Ppwna (1) = Quas(1)s P pvias(t) = 4 pwa,p(r),
P w0 (r) = 4" 10 (r)s D" v (r) = 4" wvas(r).

Now we set

Q). it Jol <
Q/L,V,()t,ﬁ(z) = Q(l‘) - qu,u,a,ﬁ(x) +p,u,u,a,6(x)7 if r< |{,l7| < 2r
Q(z) — qup,a,p(x), if 2r <|z|.

We also see that x € [r, 2r|, then we have

p;(ila,@( ) C logQ(r) r 72 3

Tow SECam TamE T amE s ame

p,(j,la 5(@) C rlogQ(r) r r2 3

T Q'(z) <l Q) Q) T QEE T Q(r)?’—?/\]’
€

Puvas®), _ C r?logQ(r) = r? r2 2

oW 'SP Tom Taw tom e

for j = 0,1, 2, 3. Therefore, there exists r =7,,,.4,5 > 0 such that |z| > r, and

Qurap®)  Quras®) Quvasl) Q@"uvop)
Q) =~ Q) = Q') T Q")

Consequently, we have (A.5).  #
Theorem B. Let oy, ag, ..., ap € R and let w € Fy(C*+), 1 < A < 4/3. Then we have

1-e< <1l+4e

T w ~ wy, € F(C*+),

and

T Wg, ~ Way.an ~ Way +an € F(CP4),
generally, for j =0,1,...,k—1

T Wa, g, ™~ Way+aot..tapss € F(C34).

Proof. If w € F\(C*+), then we have w,, € F\(C3+) by (A.5), and so

T~ gy, ~ T~ T*w ~w € Fa(C34).
Here we note that there exists r; > 0 such that for |z| > 2r;

Wa, () = exp(—Q(z) + a1 log T'(x)),
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and for some ro > 2rq, if |x| > 2ry, then we have
T™" (2)wa, (v) = exp(—Q(z) + arlog T(z) — arT(x)) = exp(—Q(x)).
Consequently, we see
T2y, = T TO2T ™%y, ~ T2 w0, € F(C34).
We continue this method inductively, then we have

Tk+1 _ Ta1+-~~+ak+1T*(Oé1+~-.+ak)wal+m+ak

Way+...+ag
~ Ty € F(C*4). #
w Way+...4akq1 .

We have the following.
Theorem C. ([4, Theorem 2.3]) Let v > 0 be an integer. Let w = exp(—Q) € Fi(C"*3+), where
0< A< (v+3)/(v+2). Suppose that f € C¥(R) with

lim TY4(z) ™) (z)w(z) = 0. (A.21)

|| — o0
Then there exists an absolute constant C,, > 0 which depends only on v such that for 0 < & < v and

z R,

(£ (2) = P} (@) w(@)] < CTH(2) By g (w4, f9)

n,fw

Ap \ v
< CVTk/2(l‘)(;) kEn—k(w1/47f( ))7

where TV4(z)w(z) ~ w4 € F(C?+).
Now we can improve Theorem C.
Theorem D. Let v > 0 be an integer. Let

w = exp(—Q) € Fa(C*+), 0< < 4/3. (A.22)
Suppose that f € C”(R) with
||T1/4f(y)wHLoo(]R) < 0. (A23)

Then there exists an absolute constant C, > 0 which depends only on v such that for 0 < k& < v and
z € R,

(B (@) = PY), (@)w(@)] < CTH2(2) By (wya, 1)

n, f,w

<O T2 (2) (22 R By (wn 4, £O),
n

where TV4(2)w(z) ~ wy /4 € F(C?+).
To prove Theorem C we have used the following theorem (see [4, Proof of Theorem 2.3]).
Theorem E. (]9, Corollary 6.2]) Let v > 0 be an integer, 1 < p < oo and

vr+3
v+2

w e Fr(C"T34), 1< A< (A.24)

Then there exists a constant C' > 0 such that for any 0 < k < v, any integer n > 1 and any polynomial
PcP,,

PP wl|p, @y < C(—)F|I T2 Puw|| L, ). (A.25)

n
an

If in Theorem E we can reduce the assumption (A.24) to the assumption (A.26), then we have the
following.
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Theorem F. Let 1 < p < oo and

we Fr(CH), 1< A< % (A.26)

Then there exists a constant C' > 0 such that for any 0 < k < v, any integer n > 1 and any polynomial
P e P,,

n
I1P®w] L, @) < C(a*)kHTk/QPwHLAR)- (A.27)

Proof. In Theorem E we consider the case of v = 2, then we have the following.
Theorem G. (]9, Theorem 1.1]) Let 1 < p < oo, and let

4
we FA(CH+), 1< A< 3 (A.28)

Then there exists a constant C' > 0 such that for any 0 < k£ < 2, any integer n > 1 and any polynomial
PcP,,

n
[P®w| @) < C(;)k\\Tk/QPw\\LP(R)- (A.29)

In the proof of Theorem G, for k = 1, w € Fx(C*+) we use T ?w ~ wy /5 € FA(C3+) (see (A.5)), and
k=2, we F\(C*) weuse TV?w 5 ~ wy € Fr(C3+) (see (A.5)). If we consider the cases of k = 3,4, ...,
then with respect to w our assumption leaves w € Fy(C*+), then Tl/zw(k_l)/Q ~ Wy o € Fx (C34) (see
(A.5)). In fact, Theorem B guarantees it.

Therefore, under the condition (A.28) we have the result for ¥ = 1,2 by Theorem G, and for k > 3
we see

TF2 (z)w(z) ~ wy/2 € F(C?4), k=3,4,....

by Theorem B. Consequently, we have Theorem F. #

Now we show Lemma 3.2, that is, Theorem D.
Proof of Lemma 3.2. Using the method of the proof of Theorem C, we can prove Theorem D applying
Theorem F (see [4, Proof of Theorem 2.3]). Consequently, we have Lemma 3.2. #
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