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Abstract We consider the consequence of breaking with a fundamental result in complex analysis
by letting i2 = ±1 where i =

√
−1 is the basic unit of all imaginary numbers. An analysis of the

Mandelbrot set for this case shows that a demarcation between a Fractal and a Euclidean object is
possible based on i2 = −1 and i2 = +1, respectively. Further, we consider the transient behaviour
associated with the two cases to produce a range of non-standard sets in which a Fractal geometric
structure is transformed into a Euclidean object. In the case of the Mandelbrot set, the Euclidean
object is a square whose properties are investigate. Coupled with the associated Julia sets and other
complex plane mappings, this approach provides the potential to generate a wide range of new
semi-fractal structures which are visually interesting and may be of artistic merit. In this context,
we present a mathematical paradox which explores the idea that i2 = ±1. This is based on coupling
a well known result of the Riemann zeta function (i.e. ζ(0) = −1/2) with the Grandi’s series, both
being examples of Ramanujan sums. We then explore the significance of this result in regard to an
interpretation of the fundamental field equations of Quantum Mechanics when a Higgs field is taken
to be produced by an imaginary mass im such that (±im)2 = +m2. A set of new field equations
are derived and studied. This includes an evaluation of the propagators (the free space Green’s
functions) which exhibit decay characteristics over very short (sub-atomic) distances.

Keywords: non-standard Mandelbrot set, transient characteristics, imaginary mass, causal tachyons,
Higgs fields.

1 Introduction

In complex analysis [1], i =
√
−1 is the basic unit of all imaginary numbers. It is taken by default that

i2 = −1 which appears to be the only rational way in which the unit of an imaginary number can conform
to a real number system consisting of numbers in both the negative and positive half space. In this paper,
we study the effect of breaking with this fundamental result and consider the case when i2 = ±1. We
show that this has a significant effect on the result of iterating non-linear maps in the complex plane. For
the Mandelbrot set [2], it is revealed that we can distinguish between a self-similar Fractal structure [3]
and a Euclidean [4] structure (namely, a square) on the basis of whether i2 = −1 or i2 = +1, respectively.
Consequently, we study the transitory behaviour of a Mandelbrot set to investigate the structures that
are obtained as i2 changes from −1 to +1.

The prototype .m code used to undertaken this study is presented in an appendix which consists of two
MATLAB functions for computing the non-standard Mandelbrot and non-standard Julia sets (e.g. [5] and
[6]) together with other non-analytic sets. The code is provided to give interested readers an opportunity
to repeat the results presented in this paper and to explore new results above and beyond those that are
considered in this work. The principal purpose of this approach is to investigate the structural complexity
of the Mandelbrot and Julia sets (and other non-analytic maps) when we break with one of the most basic
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rules of complex analysis. This leads to a range of new and original images that are visually interesting
and may be of value in an artistic sense. In this context, breaking with the standard result that i2 = −1
is inconsequential. However, at a deeper level, such a break with convention offers a route to some more
fundamental analysis in mathematics and theoretical physics which is also investigated in this work.
In this respect, we introduce an analysis that yields a mathematical paradox using the Riemann Zeta
Function [7] and the Grandi’s series [8]. Based on a Ramanujan summation for assigning values to a
divergent series, the analysis presented appears to justify a case for i2 = ±1. On the basis of this result,
we explores the effect of breaking with convention in regard to the study of an imaginary mass and the
characteristics of the Tachyonic fields generated by particles with an imaginary mass [9].

For a particle with an imaginary mass im, it is shown that if (±im)2 = +m2, such a particle can
conform to the principle of causality in the sense that no particles can travel faster than light speed. This
has consequences for the Partial Differential Equations that define the fields for both a relativistic and
non-relativistic quantum mechanical system. Using a one-dimensional analysis, we study the Klein-Gordon
equation [10] whose wave function describes scalar Bosons [11] and show that if (±im)2 = +m2, the
equation must include an additional term which depends on the gradient of the Higgs field [12], a field
that accounts for the physical manifestation of mass through the Higgs Boson as verified experimentally
in 2015 [13]. The propagator (i.e. the free space Green’s function) for this new case is derived and its
basic characteristics (in regard to its spatial decay) briefly studied and quantified.

2 Structure of the Paper

Section 3 revisits the principles of iteration in the complex plane, considers the basis for computing the
Mandelbrot set and Julia sets and briefly reviews some of their properties which is presented in Section 4
. The purpose of this is to inform readers who are not familiar with the iteration of non-linear functions
in the complex plane and the analysis thereof. Section 5 then introduces some examples of generating
non-analytic sets such as the ‘Mandelbar set’ and the further generalisations of non-linear iterations.
This provides a short background to an original contribution which is the study on the non-standard
Mandelbrot set. This is the Mandelbrot set that is obtained when i2 = +1 as presented in Section 6. This
section also includes some examples of non-standard Julia sets and the transient characteristics of such
iterations when i2 is taken to change between −1 and +1 leading to objects that have both self-affine and
Euclidean characteristics - ‘Semi-fractals’.

Section 7 explores a paradox associated with the question as to whether i2 = ±1 in order provide an
analysis to complement the basis (a fundamental break with convention) upon which the results given in
Section 6 are conceived. This leads to a study of Tachyonic fields as given in Section 8 which discusses
the issue of causality in the context of an imaginary mass. Section 9 then provides a brief review on
the fundamental equations of Quantum Mechanics, specifically, the derivation of the Dirac equation
for a one-dimensional case. This provides a background for the analysis presented in Section 10 which
formulates new quantum field equations based on a complex plane analysis when i2 = +1. The propagator
characteristics of these fields are explored in Section 11 through an evaluation of the corresponding free
space Green’s functions. Sections 12 and 13 provide a conclusion to the work and some ideas for further
analysis, respectively.

3 Iteration in the Complex Plane Revisited: The Mandelbrot and Julia Sets

Consider a complex function f(z) where z = x+ iy is the complex independent variable. Iteration in the
complex plane then involves an analysis of the iterative equation

zn+1 = f(zn), n = 1, 2, 3, ... (1)

for some initial condition z0. This iteration represents the application a map which is denoted by

f : z → f(z), z ∈ C

Referred to as the trajectory or ‘orbit’ (in the complex plane), the sequence of complex values zn that
is produced by this iteration will depend on the function f(z) and the initial condition z0 that is applied.
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When f(z) is a linear function, the iteration may or may not converge depending upon the characteristic
of the function and its parameters (coefficients and constants, for example). However, when the function
is non-linear, the iteration may give rise to a range of different orbits in the complex plane which are
characterised by divergence, convergence, periodicity or chaos.

A divergent orbit is one where the value of zn continually increases in value as the iteration progresses
and is said to ‘escape to infinity’ as <[zn] and/or =[zn] →∞ as n→∞ where < and = denote the real
and imaginary components of the complex value zn at any iteration n, respectively. A convergent orbit is
one that tends to a specific point in the complex plane (a constant complex number). A periodic obit is
one that oscillates between two numbers with a given periodicity which may involve different fixed or
variable cycles. If the orbit is chaotic, then the values of zn are taken to have no specific pattern as the
iteration progresses. In this context, the analysis of Equation (1) can be divided into observing two specific
characteristics; the points in the complex plane when the orbit diverges or ‘escapes to infinity’ and those
points in the complex plane when the orbit does not escape to infinity and is either convergent, cyclic or
chaotic. By analysing the patterns in the complex plane that emerge through the implementation of this
distinction, self-similar and/or self-affine structures become apparent whose features and complexity are
determined by the specific function f(z) and the initial conditions that are considered. The self-affine
characteristics of the complex map that is obtained are typically revealed in terms of the boundary
that represents the demarcation between the two cases. This is the basic principle upon which fractal
structures can be generated from Equation (1)

The Mandelbrot set and the Julia sets [14], [15] are concerned with a study of the orbits when f(z) is
a quadratic, i.e. f : z → z2 + c and variations upon this theme. Thus, the basic iteration that we are
interested in studying is given by

zn+1 = z2
n + c, n = 1, 2, 3, ...

where c is a complex constant for some initial condition z0. There are two approaches that can be
considered in this respect. We can analyse the iteration for a fixed value of c and different initial condition
z0 or we can analyse the iteration for different values of c for the same initial condition z0. The difference
between these two approaches defines the difference between the Julia set and the Mandelbrot set,
respectively, where, in the latter case the initial condition is z0 = 0 + i0. Hence, we can formally define
the Mandelbrot set and Julia sets as follows:

(i) The Mandelbrot set is the set of complex numbers c for which the complex function f(z) = z2 + c
does not diverge when iterated for the initial condition z0 = 0 + i0.

(ii) A Julia set is the set of complex numbers z for which the complex function f(z) = z2 + c does not
diverge when iterated for a fixed value of c and different initial condition z0.

If we restrict the analysis of the set of complex numbers to a specific rectilinear region of the complex
plane so that x ∈ [−X,X] and iy ∈ [−Y i, Y i], then it is clear that there can be many Julia sets obtained
for different values of c, but that there is only one Mandelbrot set, at least for the case when z0 = 0.
Further, if we define a subset of the complex plane to be

K(f) = {z ∈ C : ∀n ∈ N, |fn(z)| ≤ R}

where fn(z) is the nth iterate of f(z) and R is some upper bound, then a Julia set J(f) of this function
is the boundary of K(f). For the Mandelbrot set | c |≤ 2 and for this reason (of compatibility) we set
R = 2.

In both cases, the output is viewed in the complex plane that c or z defines (for the Mandelbrot and
Julia set, respectively). Thus, both sets consists of all of those values in the complex plane for which the
corresponding orbits under the map z → z2 + c do not ‘escape to infinity’. Figure 1 shows the Mandelbrot
set (left) and an example Julia set (right) when c = −0.835 + 0.2321i, for x ∈ [−2, 2], iy ∈ [−2i, 2i]
computed over a 103 × 103 grid for 100 iterations. These results have been generated using MATLAB
based on the .m code which is given in the Appendix and will be discussed later on. The data is displayed
using a continuously coloured environment. For this purpose the MATLAB colour map ‘jet’ (which is a
‘heat map’) has been used to display the sets given in Figure 1.
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In both cases, the central complex structured components of the images shown in Figure 1 are displays
of those regions in the complex plane where the obits do not tend to infinity. The decentralised components
of these maps (with the uniform background dark-red colour) are those regions in the complex plane
where the orbits do ‘escape’ tending to infinity as the iterations proceed. In the practice of computing
and graphing sets of this type, the numerical floating point values that are obtained after a finite number
of iterations are normalised, quantised and presented as a 24-bit pseudo-colour map (as given in Figure 1).
Other colour maps can be applied including grey-level displays of the data.

Figure 1. The Mandelbrot set (left) and a Julia set for c = −0.835 + 0.2321i (right). Both sets are computed for
x ∈ [−2, 2] (horizontal axis) and iy ∈ [−2i, 2i] (vertical axis) using a 103 × 103 grid and 100 iterations. Both maps
have been presented using the MATLAB ‘jet’ colour map.

4 Some Basic Properties

4.1 The Mandelbrot Set

The Mandelbrot set shown in Figure 1 consists of the central region - the ‘main cardioid’ - with a secondary
attached ‘bulb’ to the left. This basic structure is repeated periodically along the boundary at smaller
and smaller scales. The set is therefore an example of a self-similar object, a fractal with a boundary
Hausdorff dimension of 2. The dark-blue areas of the set are those regions in the complex plane where
the orbits do not diverge and ‘escape to infinity’ as n→∞. The set is symmetric in the imaginary plane,
i.e. the set for iy ∈ [−2i, 0i] is a mirror image of the set for iy ∈ [0i, 2i]. For the real axis, the set exists
over the interval x ∈ [−2, 1/4] where the point x = 0 lies within the main cardioid and the point x = −1
lies within the left bulb.

The Mandelbrot set is an example of a compact set. This is because it is closed and contained in a
closed disk of radius 2 around the origin. More specifically, a point c belongs to the Mandelbrot set if
and only if | zn |≤ 2 ∀n ≥ 0, i.e. the absolute value of zn must remain at or below 2 for c to be in the
Mandelbrot set; if the absolute value exceeds 2, the sequence will escape to infinity.

4.2 Julia Sets

Julia sets are specific for a chosen and fixed value of c associated with the map z → z2 + c. Each map
(a filled Julia set) is different to the next and vary significantly in their construction and complexity
with some specific commonality. This is illustrated in Figure 2 which shows two example Julia sets for
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c = −0.4− 0.6i and c = 0.285 + 0.01i. Filled Julia sets fall into two principal categories. They are either
connected sets (i.e. consist of one component alone) or consist of infinitely many components, each of
which is a single point. In the latter case, the Julia set produces a point cloud or Cantor set.

Figure 2. The Julia set for c = −0.4− 0.6i (left) and the Julia set for c = 0.285 + 0.01i (right) computed over
x ∈ [−2, 2] (horizontal axis) and iy ∈ [−2i, 2i] (vertical axis) using a 103× 103 grid for 100 iterations and displayed
using the MATLAB ‘jet’ colour map.

5 Non-analytic Mappings and Generalisations

There are many ‘variations on the theme’ associated with computing Mandelbrot and Julia sets that can
be investigated. Some examples of such maps are briefly discussed in this section in order to introduce
to the reader the idea that one is free to invent a wide range of complex plane iterations that do not
necessarily have to conform to convention and study their outputs. These are examples of non-analytic
mappings because they do not conform to the Cauchy-Riemann equations.

5.1 The Mandelbar Set

The Mandelbrot set is compounded in the mapping [14]

f : z → z̄2 + c, z ∈ C (2)

where z̄ denotes the conjugate of the complex variable z. This is a non-analytic mapping, and, in comparison
with the results shown in Figure 1, produces the results given in Figure 3. Here, the Mandelbrot set
transforms to a Tricorn often referred to as a Mandelbar set because of the notation used to denote
a complex conjugate where z̄ ≡ z∗. Unlike the Mandelbrot set, the Mandelbar set associated with
Equation (2) has a centre of gravity at z = 0 + 0i. It consists of three self-affine projections, each of which
are symmetric about the line of projection with complex plane angles or ‘phases’ of π/3, π and 5π/3. The
central component of this set is not self-affine as it has well defined convex curves each with a definable
edge. It is therefore an example of a connected set that has both Euclidean and Fractal properties over
different regions of the complex plane - a ‘Semi-fractal’. The effect on the non-analytic Julia set associated
with Equation (2) is to dissipate the locality of the set shown in Figure 1. The set is isometric in the
sense that a reflection in the real and complex planes reproduces the set.
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Figure 3. The ‘Mandelbar’ set (left) and an associated Julia set for c = −0.835 + 0.2321i (right) obtained using
the mapping z → z̄2 + c, both sets being computed for x ∈ [−2, 2] (horizontal axis) and iy ∈ [−2i, 2i] (verticle
axis) using a 103 × 103 grid, 100 iterations and the MATLAB ‘jet’ colour map.

5.2 Multibrot Sets

A Multibrot set is one that is based a generalisation of the Mandelbrot set to include an arbitrary power
exponent d leading to a family of iterations based on the map

f : z → zd + c, z ∈ C (3)

where d ∈ (−∞,∞), i.e. where z can have positive, negative or fractional powers. The same approach can
be taken to produce a family of multi-Julia sets. Thus, the Mandelbrot set becomes the case for d = 2.
For positive integer values of d > 2 the sets consist of d− 2 cardioids, each with a secondary attached
bulb, the centre of gravity of all such sets being at 0 + 0i.

5.3 The Burning Ship Fractal

The ‘Burning Ship Fractal’ (BSF) is based on the iteration [16]

zn+1 = (| <[zn] | +i | =[zn] |)2 + c, z0 = 0 (4)

and is shown in Figure 4 together with a non-analytic Julia set for c = 0.25 + 0.15i. The BSF is highly
asymmetric where as the Julia for this value of c is symmetric in the complex plane.

6 Non-standard Mandelbrot and Julia Sets

In the definition, analysis and visualisation of all the complex plane sets considered in the previous
sections, a fundamental result has been assumed, namely that i2 = −1. Given that i =

√
−1 is the basic

unit of all imaginary numbers, the equation i2 = −1 is fundamental to relating any imaginary number
system conform to a real number system with both positive and negative values. Nevertheless, i is still
imaginary; meaning that it can not be defined and is, in effect a fictitious number. In this context, let
us now consider a fictitious and non-standard result that is inconsistent with (conventional) complex
analysis and where i2 = +1 (non-standard) as well as i2 = −1 (standard). Here, i is still taken to be
equal to

√
−1 but has the property that i2 = ±1. What are the ramifications for the in terms of the

geometry of a Mandelbrot set, a Julia set and beyond?
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Figure 4. The ‘Burning Ship Fractal’ (left) and a (non-analytic) Julia set for c = 0.25+0.15i (right) obtained using
the iteration given by Equation (4), both sets being computed for x ∈ [−2, 2] (horizontal axis) and iy ∈ [2i,−2i]
(vertical axis) using a 103 × 103 grid and 100 iterations. The colour map used to display these results is the
MATLAB ‘jet’ colour map.

6.1 Non-standard Mandelbrot Set

If z = x+ iy, then the map f : z → z2 + c, z ∈ C has an iteration that can be written as

zn+1 = z2
n + c

or, in terms of real and imaginary parts

zn+1 = z2
n + c = <[zn]2 −=[zn]2 + 2i<[zn]=[zn] + c (5)

given that i2 = −1. However, suppose we consider the case when i2 = +1. In this case, the iteration
becomes

zn+1 = z2
n + c = <[zn]2 + =[zn]2 + 2i<[zn]=[zn] + c (6)

which is of course equivalent to the iteration

zn+1 =| zn |2 +2i<[zn]=[zn] + c

Figure 5 shows the difference between the iteration schemes for Equation (5) and Equation (6) where
z0 = 0 + 0i for x ∈ [−2, 1] and iy ∈ [−1.5i, 1.5i], a 103 × 103 grid and 100 iterations.

In studying the maps shown in Figure 5, it is apparent that there is a dramatic change from a Fractal
(a self-similar object) to a ‘Euclid’ (a non-self-similar object) in the complex plane where we define a
Euclid as a geometric object corresponding to a Euclidean geometry associated with ordinary experience.
In the case of Figure 5, the Euclid is a square, and, unlike the Mandelbrot set, is symmetric with respect
to both the imaginary axis and the real axis (shifted to the left of x = 0). On the real axis, the sets exist
over the interval x ∈ [−2, 1/4]. Thus, the length of the hypotenuse of the equilateral triangles above and
below the real axis is 2.25. From Pythagoras’ theorem, the length ` of any one of the four sides of the
square is given

` =
√

2.25
2 =

√
2 + 0.25√

2
=
√

2
√

1 + 0.25/2√
2

=
√

1 + 0.125 = 1.060660171779821...

which is an irrational number, as is the combined length of the four edges which is given by 4.242640687119284....
However, the area of the square is given by `2 = 1.125 = 1125/1000 and is therefore a rational number.
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Figure 5. The conventional Mandelbrot set (left) based on Equation (5) and the non-standard set (right) based
on Equation (6). Both sets are computed for x ∈ [−2, 1] (horizontal axis) and iy ∈ [−1.5i, 1.5i] (vertical axis) for
a 103 × 103 grid and 100 iterations. Both sets are displayed using the MATLAB ‘jet’ colour map.

In the context of Figure 5, it is compelling to differentiate between the specific Fractal (the Mandelbrot
set) and a specific Euclid (the square) in the complex planes with regard to the following equations:

Fractal :f : z → z2 + c, i2 = −1, z ∈ C (7)

Euclid : f : z → z2 + c, i2 = +1, z ∈ C (8)

If we consider the Euclid given in Figure 5 to have a Topological Dimension DT = 2, then the Fractal
object (the Mandelbrot set) has a Fractal Dimension DF ∈ (1, 2). In both cases, the geometries of the each
object are a manifestation of an infinite set of points with non-infinite values in the complex plane. In this
respect, Figure 5 illustrates that we may at least define a square for the mapping given by Equation (8)

The fractal dimension (specifically, the Hausdorff dimension) for the boundary of the Mandelbrot
set defined by the mapping of Equation (7) is 2 where the boundary and the set itself have the same
Hausdorff dimension. Thus, the Hausdorff dimensions are the same for both the sets displayed in Figure 5
and defined by Equations (7) and (8). However, for the Euclid, a line (of finite extent) can be defined in
terms of the gradient across a boundary. This is the (complex plane) boundary between those points in
which the set converge and those points where it diverges, i.e. the edges of the square that yield a set of
points defined by a delta function when n→∞.

An equivalent definition for a gradient can not be defined for a conventional Mandelbrot set because
of its self-affine characteristics at all scales. In the context of a Mandelbrot set for i2 = ±1, this provides
a demarcation between a geometry that supports or otherwise differentiability; a demarcation between
regularity and complexity. This is further illustrated in Figure 6 which shows the difference between the
iteration schemes for Equation (5) and Equation (6) but with i := −i for z0 = 0 + 0i, x ∈ [−2, 1] and
iy ∈ [−1.5i, 1.5i], for a grid size of 103 × 103 and 100 iterations.

6.2 Non-standard Julia Sets

Figure 7 shows the Julia sets that are equivalent to those given in Figure 2 but for the case when i2 = +1.
As is the case for the Mandelbrot set, the results yield objects that are not self-affine. In the first case
(for c = −0.4− 0.6i), the result is clearly a rectangle oriented at an angle of 3π/4 radians in the complex
plane with a centre of gravity at 0 + 0i. For c = 0.285 + 0.01i, the result is a rectilinear ‘potential’ centred
at 0 + 0i with an orientation of π/2 radians.
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Figure 6. The set (left) based on Equation (5) with i changed to −i and the set (right) based on Equation (6)
with i also changed to −i. Both sets are computed for x ∈ [−2, 1] (horizontal axis) and iy ∈ [−1.5i, 1.5i] (vertical
axis) for 100 iterations over a 103 × 103 grid displayed using a MATLAB ‘jet’ colour map.

Figure 7. Non-standard Julia sets for c = −0.4−0.6i (left) and the Julia set for c = 0.285+0.01i (right) computed
over x ∈ [−2, 2] (vertical axis) and iy ∈ [−2i, 2i] (horizontal axis) using a 103 × 103 grid and 100 iterations.
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6.3 Transient Characteristics

Suppose we want to investigate the transition from the standard to non-standard Mandelbrot sets as
i2 = −1 transforms to i2 = +1. One way to do this is to consider the iteration

xn+1 + iyn+1 = x2
n + exp(iαπ)y2

n + 2ixnyn + c, x0 = 0, y0 = 0 (9)

The Mandelbrot set is then recovered for all α = ±1,±3,±5, ... (i.e. all positive and negative odd integers)
and the non-standard map is obtained for all α = ±0,±2,±4, ... (i.e. all positive and negative even
integers including zero). Any values of α between an odd and even integer then provides the transitional
behaviour from one map to the other.

Figure 8 shows an example of this transition for the Mandelbrot set based on Equation (9) for
α = 1, 1.2, 1.4, 1.6, 1.8, 2, with x ∈ [−2, 1] and iy ∈ [−1.5i, 1.5i].

Figure 8. Transitions of the Mandelbrot set based on Equation (9) for α = 1, 1.2, 1.4, 1.6, 1.8, 2 (top-left through
to lower-right, respectively). The set is computed for x ∈ [−2, 1] and iy ∈ [−1.5i, 1.5i] where x and iy are the
horizontal axis and vertical axis in the complex plane, respectively. In each case the set is compute using a grid
size of 103 × 103 and 100 iterations. Each set is colour coded using the MATLAB ‘jet’ colour map.

6.4 Software Provision

In addition to the graphical results presented in this paper, provision is made for interested readers
to repeat and verify these results and to further investigate the standard, non-standard and transient
characteristics of the Mandelbrot set as discussed in Section 6.3, Julia sets and other sets based on the
invention of non-analytic maps. For this purpose, two MATLAB [17] functions are provided in Appendix
A and Appendix B whose use and operations are explained.
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6.5 Discussion

While the application of i2 = +1 to investigate Mandelbrot and Julia sets (and other mappings in the
complex plane) can be implemented out of interest, it nevertheless raises an underlying issue. This is on
how the result i2 = +1 can be justified and interpreted. The rest of this paper is based on an investigation
into this question and its potential ramifications. In the following section, we introduce an argument
which appears to imply that i2 = +1 is plausible. This is by way of a mathematical paradox, namely, a
set of connected statements that lead to a contradiction while simultaneously seeming rational and logical.
The paper then goes on to explore the application of i2 = +1 in quantum physics, and, in particular, the
role that it can play in re-defining the nature of a Higgs field generated by an imaginary mass.

7 Can i2 = ±1? A Paradox based on the Riemann Zeta Function

For a complex variable s, the Riemann zeta function is given by [7]

ζ(s) =
∞∑
n=1

1
ns

(10)

This series maps a value of s in the complex plane to a value of ζ in the complex plane and converges
∀ <[s] > 1. However, the function has more general representations the lie beyond this condition. This
is because the function is meromorphic throughout the whole complex plane and it is holomorphic
everywhere except for a simple pole that occurs at s = 1 when it has a residue of 1.

Apart from ζ(1), when the function is undefined, this function has a range of different values for
specific values of s. This includes the following:

ζ(0) =
∞∑
n=1

1n ≡
∞∑
n=1

1 = 1 + 1 + 1 + ... = −1
2

Given that i2 = −1, this value of the zeta function immediately suggests the non-standard result

∞∑
n=1

i2 = 1
2 (11)

In the context of this result, we now consider a construction of the Gandi’s series [8] as follows.
Let i2 = −1, j2 = +1,

x =
∞∑
n=1

i2 and y =
∞∑
n=1

j2

Then the sum of x and y yields the Grandi’s series, i.e.

S = x+ y =
∞∑
n=1

j2 +
∞∑
n=1

i2 = (1 + 1 + 1 + ...) + (−1− 1− 1 + ...) = 1− 1 + 1− 1 + 1− 1 + ... =
∞∑
n=0

(−1)n

We can write out this series in two ways, i.e.

S = (1− 1) + (1− 1) + (1− 1) + ...+ (1− 1) = 0

and
S = (1− 1) + (1− 1) + (1− 1) + ...+ (1− 1) + 1 = 1

Thus, it appears that this sum has two ‘values’, namely, 0 and 1. However, if we also consider the geometric
series

G = 1 + r + r2 + r3 + ... = 1 + r(1 + r + r2 + ...) = 1 + rG ⇒ G = 1
1− r , | r |< 1
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then as r → −1, G→ 1
2 . Under this limit, we can then write

S =


1, or
1
2 , or
0.

where
1
2 ≡ lim

ε→0

1
2 + ε

= 0.49999999..... (12)

thereby conforming to the condition required for the geometric series given above to converge, i.e. | r |< 1.
The Grandi’s series can also be written as

S = y + x =
∞∑
n=1

i2 +
∞∑
n=1

j2 = (−1− 1− 1− ...) + (1 + 1 + 1 + ...) = −1 + 1− 1 + 1− 1 + ...

In this case, we have

S = (−1 + 1) + (−1 + 1) + (−1 + 1) + ...+ (−1 + 1) = 0

and
S = (−1 + 1) + (−1−+1) + (−1 + 1) + ...+ (−1 + 1)− 1 = −1

Further, we can consider the geometric series

G = −1− r − r2 − r3 − ... = −1− r(1 + r + r2 + ...) = −1− r(−G) = −1 + rG ⇒ G = −1
1− r , | r |< 1

In this case, if we let r → −1, then G→ − 1
2 so that under this limit, we can write

S =


−1, or
− 1

2 , or
0.

where the value of 1
2 again conforms to Equation (12). Combining the results for the sum S, it is apparent

that

S =


±1, or
± 1

2 , or
±0.

The Grandi series S has no sum in the conventional sense of convergence to a single specific value.
Instead, it appears to have six values (if we include the trivial result that 0 = ±0). Thus, we have the
following three equations:

x+ y = ±0 (13)

x+ y = ±1
2 (14)

x+ y = ±1 (15)

Equations (13) and (15) are compatible with the Equation (14) given that if we add Equations (13) and
(15) together, then we obtain Equation (14). Thus the equations are self-consistent.

Given Equation (11), Equation (13) is easily satisfied. However, we also have to satisfy Equations (14)
and (15). In the former case, and, with regard to Equation (11), we have two choices. Either x = − 1

2 and
y = ±0 or x = ±0 and y = 1

2 . To satisfy Equation (15) in regard to Equation (11) requires that y = 1
2

and x = 1
2 or x = − 1

2 and y = − 1
2 . This yields the following results:

∞∑
n=1

i2 = ±1
2 ⇒ i2 = ±1
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and
∞∑
n=1

j2 = ±1
2 ⇒ j2 = ±1

given Equation (11).
These result appear to imply that i2 = ±1. However, it should be appreciated that this paradox

is a result of combining a non-standard result compounded in Equation (11) with the Grandi’s series.
Equation (11) has been derived from the Riemann zeta function and relies on the meromorphic properties
of this function to consider what is in effect a divergent series. It is an example of a Ramanujan summation
for assigning a value to a divergent series and is not an infinite sum in the conventional sense.

The Grandi’s series is neither a convergent or a divergent summation but an indeterminate series. Thus,
the above analysis relies on combining two non-standard results and the paradox must be understood
within the context of these results. On the other hand, it should be noted that both the Grandi’s series
and the series for ζ(0) are examples of Ramanujan sums [18] when we can write

∞∑
n=1

1n R= −1
2 and

∞∑
n=0

(−1)n R= 1
2

where R denotes a Ramanujan sum. Thus, as a Ramanujan sum, Equation (11) is valid.
In the context of the paradox presented in this section, we now consider its effect on the study of a

hypothetical concept in physics, namely, imaginary mass.

8 Tachyonic Fields

A Tachyonic field is one that is generated by particles with an imaginary mass [9]. The existence of such
fields is currently only of hypothetical interest and there is continued debate as to whether imaginary
mass particles can actually exist. One of the reasons for this is that imaginary mass particles can travel at
faster than light speeds, therefore violating one of the underlying principles of physics, i.e. causality, in the
sense that light speed is a universal upper bound [19], [20]. In this section, we consider the consequences
of considering an imaginary mass im but whose square is +m2 and not −m2. The reason for this is that
it forces a particle with an imaginary mass to conform with the principal of causality. To explain why
this is the case, we revisit the relativistic energy equation as given in the following section.

8.1 The Relativistic Energy Equation

The relativistic energy equation (the energy-momentum relation) is a consequence of the special theory of
relativity and expresses the square energy of a particle with a mass m as (e.g. [21] and [22])

E2 = p2c2 +m2c4

where E, p = mv and c ' 2.99792458... × 108 m · s−1 denote energy, momentum (for a particle with
velocity v) and light speed, respectively. It is useful (in the sense of reducing ‘equation clutter’ due to the
repetition of having to include physical constants) to use ‘natural units’ and set light speed to 1. This
allows the energy equation to be expressed in the form (with c = 1)

E2 = p2 +m2 (16)

The causality principle is then associated with the universal upper bound on the velocity of a particle
being 1. Thus, in the analysis that follows, p := pc and m := mc2. In this form, i.e. Equation (16), it
is clear that E, p and m are quantities associated with a right-angle triangle, thereby confirming to
Pythagoras’ Theorem, a Theorem that is further quantified and justified by the relatively recent proof of
Fermat’s Last Theorem [23]. Thus, for positive energy,

E =
√
p2 +m2
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Note that this equation can be written, using a binomial expansion, as

E = m

(
1 + p2

m2

) 1
2

= m

(
1 + p2

m2 + ...

)
= m+ p2

2m + ... ' m+ p2

2m

which expresses the energy in terms of the sum of rest mass energym and the non-relativistic or Newtonian
energy p2/2m. This result is applicable for any particle with a mass m but with a low velocity v such
that p2/m2 << 1, i.e. v2 << 1. The kinetic energy Ek is then defined as

Ek = E −m = p2

2m (17)

Imaginary Mass and Complex Energy The concept of an imaginary mass evolves if we consider
Equation (16) to be a manifestation of the square amplitude in the complex plane with real axis p
and imaginary axis im. If we consider the energy to be a complex value given by E = p ± im , then
Equation (16) is recovered if we take the square modulus of the complex energy, given that

E2 ≡| E |2= (p± im)(p± im)∗ = (p± im)(p∓ im) = p2 +m2 (18)

In this sense, an imaginary mass, by default implies a complex energy, both concepts being hypothetical
within the ‘accepted standards’ of the physical world. Moreover, introducing an imaginary mass in this
way has implications in regard to causality as shall now be shown.

Imaginary Mass and Causality Consider the energy E to be the rest mass energy of a particle with
real mass M when E = M . Then, since the momentum of such a particle is p = Mv where v is the
velocity of a particle, we can write

1
M

= v

p
= 1√

p2 +m2

so that
v = p√

p2 +m2
= 1√

1 + m2

p2

If m = 0, then v = 1 (light speed). For any other value m > 0, v < 1 (less than light speed). However, if
m := ±im, then

v = 1√
1− m2

p2

(19)

and now for any m > 0 where m2/p2 < 1, the velocity of the particle becomes greater than light speed.
This is of course a bizarre result that does not conform to the central principle of the theory of relativity.
So how can we make sense of this result?

Non-standard Imaginary Mass One approach to make sense of an imaginary mass is to assume that
there are particles with an imaginary mass and that they can propagate at velocities greater than light
speed. Another approach, which is the one considered in this work, is to assume that imaginary mass
particles can exist but that they conform to the non-standard rule:

(±im)2 = +m2 ⇒ i2 = +1 (20)

This result does not of course conform to what is arguably the single most fundamental rule of complex
analysis, a rule that is designed specifically to make the square of

√
−1 conform to a real number system

inclusive of negative numbers from which
√
−1 arises naturally. However, introducing the rule that i2 = +1

for a non-standard imaginary mass, ensures that an imaginary mass particle conforms to the inequality
v < 1 in Equation (19) and is therefore causality preserving.

It is this break with a standard definition that is explored in the rest of this paper where we consider
an imaginary mass to be the only physical entity that adheres to the non-standard result quantified in
Equation (20). This result is taken to be a physical manifestation of the paradox considered in Section
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7. Thus, in the material that follows, we consider the ramifications associated with a Tachyonic field
generated by a particle with an imaginary mass subject to Equation (20). The key associated with
the approach that is now taken, is to note that Equation (20) yields an incompatibility in regard to
Equation (18) which becomes

E2 ≡| E |2= (p± im)(p± im)∗ = (p± im)(p∓ im) = p2 −m2

and is not the relativistic energy equation (or Pythagoras’ theorem). However, we note that

E2 = (p± im)(p± im) = p2 +m2 ± 2imp (21)

does yield compatibility with Equation (16), if and only if we consider that the square energy is now a
complex entity whose real component is p2+m2, subject to an imaginary mass conforming to Equation (20).
This idea has ramifications for the equations of relativistic quantum mechanics which is explored in the
following sections.

9 Principal Equations of Quantum Mechanics

We now consider the principal partial differential equations that are fundamental to relativistic quantum
mechanics. Such equations are essentially based on Equation (16) subject to the energy and momentum
operators of quantum mechanics, namely, that [24]

Ê ≡ i~ ∂
∂t

and p̂ ≡ −i~∇

respectively, where t denotes time, ~ = 1.054571817...× 10−34 J · s is the Dirac constant, and, for unit
vectors x̂, ŷ and ẑ defining a three-dimensional Cartesian space,

∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

For the sake of simplicity and clarity in regard to introducing the ideas that follow, we consider a
one-dimensional model with natural units ~ = c = 1. Further, we use the notation

∂x ≡
∂

∂x
, ∂t ≡

∂

∂t
, dx ≡

d

dx
and dt ≡

d

dt

In the following sections, a brief review is given on some of the fundamental equations of relativistic
quantum mechanics for the one-dimensional case. This material is presented to contextualise the field
equations for the case when an imaginary mass is taken to conform with Equation (20) as discussed in
Section 10.

9.1 The Klein-Gordon Equation

Using the energy and momentum operators of quantum mechanics, for a wave function Ψ(x, t), Equa-
tion (16) is consistent (as a phenomenology) with the following wave equation

(∂2
x − ∂2

t −m2)Ψ(x, t) = 0 (22)

Equation (22) is the Klein-Gordon equation (e.g. [25], [26] and [27]) and the wave function Ψ describes
the Higgs field generated by a Higgs Boson [11]. The Higgs Boson is a particle that accounts for the
mass m and is the only Scalar Boson that has been experimentally verified to date [13]. Note that for a
quantum potential with potential energy denoted by V , Equation (16) extends to the form

(E − V )2 = p2 +m2 ⇒ (−∂2
t − 2iV ∂t + V 2)Ψ = (−∂2

x +m2)Ψ
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9.2 The Schrödinger Equation
The Schrödinger equation (e.g. [28] and [29]) is the non-relativistic equivalence of the Klein-Gordon
equation and can be derived from the Klein-Gordon equation as follows. Let Ψ(x, t) = Φ(x, t) exp(imt).
Then

∂tΨ = exp(imt)(im+ ∂t)Φ,
∂2
t Ψ = exp(imt)(∂2

t + 2im∂t −m2)Φ
and Equation (22) is given by

(∂2
x − ∂2

t + 2im∂t)Φ(x, t) = 0 (23)
However, suppose that the kinetic energy defined by Equation (17) is small compared to the rest mass
energy so that the effect of relativistic energies is negligible. Then, in the non-relativistic limit, Ek << m,
or, using the energy operator of quantum mechanics,

| i∂tΦ |<<| mΦ | ⇒ | ∂2
t Φ |<<| im∂tΦ |

In the context of this inequality, Equation (23) is reduced to

(∂2
x + 2im∂t)Φ(x, t) = 0 (24)

which is Schrödinger’s equation (for natural units when ~ = 1) where the wave function Φ describes
non-relativistic particles with Probability Density Function | Φ |2. This equation is of course the wave
equation associated with the kinetic energy and momentum operators applied to Equation (17). For a
potential V , the energy equation is

Ek − V = p2

2m ⇒ i∂tΦ = − 1
2m∂2

xΦ+ V Φ

9.3 The Fractional Shrödinger-Klein-Gordon Equation
Equations (22) and (24) both describe spin-less particles. In terms of the differential operators associated
with these equation, Equation (24) is second order in space and first order in time whereas Equation (22)
is second order in both space and time. Equation (24) describes non-relativistic quantum systems such
the electrons associated with atoms and molecules (subject to their interaction with a nuclear potential
compounded in the potential energy V ). Equations (22) describes Scalar Bosons such as Mesons which
are hadronic subatomic particles composed of one quark and one antiquark, bound together by the strong
interaction (subject to interaction with a nuclear potential). Thus, one may think of the difference between
Equation (24) and Equation (22) as being the difference between atomic/molecular physics and nuclear
physics, respectively.

In terms of the eigen-functions or standing wave patterns that Equations (24) and (22) describe
(subject to an interaction with a potential), they can loosely be taken to represent the difference between
the behaviour of an atom (a non-relativistic system) and the nucleus of an atom (a relativistic system)
which provides the potential energy for the standing wave patterns associated with an electron cloud to
evolve. In this sense, the distinct nature and associated characteristics of these equations are analogous to
the distinct components associated with the basic Bohr model for an atom, i.e. a dense nucleus surrounded
by an electron cloud.

Given Equations (24) and (22), is would appear that there are no intermediate component states (states
that exist between the relativistic and non-relativistic regimes). So how can such states be modelled? The
essential difference between Equations (24) and (22) relates to the time derivatives being first and second
order, respectively. Thus, an approach to solving this problem is to consider the idea of introducing a
fractional time derivative ∂αt where 1 < α < 2 to generate a Fractional Shrödinger-Klein-Gordon equation.
On the basis of this approach, we can construct the equation [30][(

1
2m

)2−α
∂2
x + iα∂αt − (α− 1)m2

]
Ψ(x, t) = 0

It is then clear that when α→ 1 and α→ 2, Equations (24) and (22) are recovered, respectively, for the
common wave function Ψ .

42 Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021

JAAM Copyright © 2021 Isaac Scientific Publishing



9.4 The Dirac Equations

Given Equation (24), we can also consider the equation,

(∂2
x − 2im∂t)Φ∗(x, t) = 0

and hence write
Φ∗(∂2

x + 2im∂t)Φ = 0 and Φ(∂2
x − 2im∂t)Φ∗ = 0

Subtracting these two equations, we can write the result in the form

∂tρ+ ∂xj = 0 (25)

where
ρ =| Φ |2 and j = 1

2im (Φ∗∂xΦ− Φ∂xΦ∗)

Equation (25) is the one-dimensional continuity equation which relates the probability density ρ of the
wave function Φ to the probability current density j. In this case, the probability density is positive
definite and convective according to conservation law compounded in the continuity equation. Applying
an equivalent analysis to Equation (22) does not result in the same conservation law. This is because the
probability density function now becomes given by

ρ = 1
2im (Ψ∗∂tΨ − Ψ∂tΨ∗)

which is not positive definite, meaning that the ρ can be both positive and negative and consequently
incompatible with the concept of a probability density. It for this reason that a different approach to
quantifying Equation (22) is required, one that allows a relativistic equation to be written in terms of E
and not E2. This approach is the basis of the Dirac equations ([31] and [32]), as shall now be presented.

The basic idea is to consider an expression for the energy that is given by E = Ap+Bm, where A
and B are arbitrary coefficients. Equation (16) is then given by

E2 = A2p2 +B2m2 +ABmp+BAmp

In order for the square energy to be consistent with Equation (16), we require that A2 = B2 = 1 and
AB +BA = 0. The only way to satisfy this requirement, is for A and B to become the (Pauli) matrices

A =
(

0 1
1 0

)
and B =

(
1 0
0 −1

)
given that

A2 =
(

0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
, B2 =

(
1 0
0 −1

)(
1 0
0 −1

)
=
(

1 0
0 1

)
,

AB =
(

0 1
1 0

)(
1 0
0 −1

)
=
(

0 −1
1 0

)
and BA =

(
1 0
0 −1

)(
0 1
1 0

)
=
(

0 1
−1 0

)
In this case, the wave function ψ must take on not one but two states ψ1 and ψ2 so that with

Ψ =
(
ψ1
ψ2

)
where | Ψ |2=| ψ1 |2 + | ψ2 |2

we can write
i∂tΨ = −iA∂xΨ +mBΨ

which represents two coupled equations for ψ1 and ψ2 given by

i∂tψ1 = −i∂xψ2 +mψ1 and i∂tψ2 = −i∂xψ1 −mψ2

The function Ψ describes a ‘Spinor field’ where the two states ψ1 and ψ2 are taken to describe the ‘spin-up’
and ‘spin-down’ properties of an electron, an example of a ‘ 1

2 -spin Fermion’. However, the concept of
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a spin is merely a visual representation for a Spinor, in the same way that the Bohr model is a visual
representation for an atom (in the non-relativistic case).

The key point about these Dirac equations is that in both cases, the probability density is a positive
definite entity when defined in terms of the associated continuity equations that are given by

∂tρ1 = ψ1∂xψ
∗
2 − ψ∗1∂xψ2, ρ =| ψ1 |2

and
∂tρ2 = ψ2∂xψ

∗
1 − ψ∗2∂xψ1, ρ =| ψ2 |2

In other words, unlike the Klein-Gordon equation, the Dirac equations for ψ1 and ψ2, conform to a
conservation law determined by the continuity equation. However, there is another and seemingly equally
valid approach that may be considered. This is addressed in the following section.

10 Formulation in the Complex Plane

Let E = p± im where i =
√
−1. Any (complex) wave function ψ associated with this equation must also

have two states as defined by ±i. Let this two state wave function be denoted by

Ψ =
(
ψ+i
ψ−i

)
where | Ψ |2=| ψ+i |2 + | ψ−i |2

Expressing the relativistic energy as a complex entity recovers Equation (16) if and only if we consider
the square energy to be the square modulus of E since

EE∗ = (p± im)(p± im)∗ = (p± im)(p∓ im) = p2 +m2

This yields the field equations
∂tψ+i = −∂xψ+i +mψ+i

and
∂tψ−i = −∂xψ−i −mψ−i

which can be written as
∂t

(
ψ+i
ψ−i

)
= −∂x

(
ψ+i
ψ−i

)
+m

(
1 0
0 −1

)(
ψ+i
ψ−i

)
or as

(∂x + ∂t −mσ)Ψ = 0

where
σ =

(
1 0
0 −1

)
This approach provides a two-state wave function whose states are determined by ±im. Further, the

probability density is positive definite and given by

ρ =| ψ±i |2,

the continuity equation being given by

(∂t + ∂x)ρ = ±2mρ

An equally valid approach is to consider the complex energy equation E = m ± ip given that
| E |2= m2 + p2 which yields the field equation

(σ∂x − i∂t −mσ)Ψ = 0

and the continuity equation

∂tρ = ±2mj where j = 1
2im (Ψ∗∂xΨ − Ψ∂xΨ∗)
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The problem with either approach is that it introduces the concept of a complex energy through a
particle having an imaginary mass and real momentum or an imaginary momentum and a real mass (i.e.
a real mass with an imaginary velocity). These are concepts that are not required in the derivation of the
Dirac equation. Moreover, as soon as we introduce the concept of an imaginary mass, causality is not
preserved as compounded in Equation (19) for the case when m is replaced with ±im.

One way to avoid this problem is to retain the Dirac equations and the approach to their construction.
However, a complex plane formulation is an equally valid approach. In this case, the problem is avoided if
we consider E = m ± ip instead of E = p ± im. But then the latter case is also equally valid. So how
can we make this equally valid complex energy equation generate field equations based on an assumed
imaginary mass such that causality is preserved?

Suppose we attempt to generate self-consistency not through an equation for | E |2 but for E2. In this
case, for E = p± im

E2 = p2 −m2 ± 2imp

which is incompatible with Equation (16). However, if we let (±im)2 = +1 rather than −1 we obtain

E2 = p2 +m2 ± 2imp (26)

It is then clear that self-consistency with Equation (16) is achieved in terms of the real component of E2

for this non-standard definition of the square of an imaginary mass. In this context, we now consider the
modifications to the field equations presented in Section 9 that are required in order for Equation (26) to
be satisfied.

10.1 Modified Klein-Gordon Equation

Using the energy and momentum operators i∂t and −i∂x, respectively, the wave equation for <[E2] =
p2 +m2 yields Equation (22). However, for Equation (26), we obtain

(∂2
x − ∂2

t −m2 ± 2m∂x)Ψ = 0 (27)

As discussed earlier, the concept of particles with an imaginary mass leads to an incompatibility
with the principle axiom of special relativity unless we describe them in terms of having an imaginary
component im where i2 = +1 which breaks with a fundamental convention. A consequences of this is that
the Klein-Gordon equation evolves an extra term involving a spatial field gradient ∂xΨ . This equation is
analogous to the Telegrapher’s equation [33] which, for arbitrary real constants α and β is given by

(∂2
x − ∂2

t − α∂t − β2)Ψ = 0

and is similar to the Klein-Gordon equation with dissipation in time [34]. However, in the case of
Equation (27), the dissipation term is not in time but in space. Consequently, for the time independent
case, the solution of

(d2
x −m2 ± 2mdx)Ψ(x) = 0

where ψ(x)→ 0 as x→ 0, and, for the initial condition ψ(0) = 1 is,

ψ(x) = exp[−(
√

2− 1)mx], x ≥ 0

which is the solution to

(d2
x −m2 − 2mdx)ψ(x) = 0, Ψ(0) = 1, Ψ(∞) = 0

This solution is comparable to the time-independent solution to the (conventional) Klein-Gordon equation,
i.e.

(d2
x −m2)ψ(x) = 0, Ψ(0) = 1, Ψ(∞) = 0

when
Ψ(x) = exp(−mx), x ≥ 0

In the context of the analysis considered above, if imaginary mass particles are taken to exist then:
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(i) they travel faster than light speed which defies the fundamental physical principle of the theory of
relativity;

(ii) they conform to this fundamental physical principle but defy the law of imaginary numbers where
i2 = −1 is replaced with i2 = +1 for an imaginary mass (and for mass alone).

In respect to the latter point above, the conventional Klein-Gordon equation adheres to <[E2] = p2+m2

where =[E2] = ±2mp. As a consequence of this, the Klein-Gordon equation must be modified to include
the effect of the imaginary component of the square energy. This has consequences for the characteristics
of a Higgs Boson given that the Higgs field Ψ is now characterised not by m2Ψ but by (m2 + 2m∂x)Ψ .

10.2 Modified Schrödinger Equation

By repeating the analysis given in Section 9.2 for Equation (27), the equivalent modified Schroödinger
equation is given by

(∂2
x + 2im∂t ± 2m∂x)Φ(x, t) = 0 (28)

In this case, the Schrödinger equation includes an additional term which depends on the gradient of the
wave function.

10.3 Non-standard Imaginary Mass and Euclidean Geometry

In regard to the (complex) energy equation E = p± im where

E2 = p2 +m2 ± 2imp,

consider the case when we can write E2 = E − c for some complex value c which implies that

E = 1±
√

1− 4c2

2
We can then consider the complex plane iteration

pn+1 ± imn+1 = p2
n +m2

n ± 2imnpn + c, p0 = m0 = 0

For the case of +i, this iteration for the momentum and mass then conforms to the generation of the
Euclid given in Figure 5. The region of non-divergence associated with this iteration for a complex
energy E = p + im where (im)2 = +m2 and variable c can then be said to be compatible with the
generation of a Euclid in the sense of the iteration leading to the construction of a square. This leads to the
fascinating idea that Euclidean geometry might be a manifestation of an imaginary mass which conforms
to Equation (20). In other words, Euclidean geometry is predicated on the existence of a non-standard
imaginary Higgs field.

11 Green’s Functions

Green’s function provide an intrinsic property of any and all wave field equations (i.e. a partial differential
equations for a wave function) as they describe the free propagation of the wave field from one point in
space-time to another. In this sense, the Green’s function is a fundamental characteristic of a quantum
field. Thus, in this section we consider the Green’s function for Equation (22), which is a standard and
well known result, and Equation (27), which is a non-standard result.

For a linear operator L defining a one-dimensional partial differential equation

LΨ(x, t) = 0

the Green’s function G is given by solving the equation [35]

LG(x, t) = −δ(x)δ(t)

where δ is the one-dimensional Dirac delta function.
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11.1 Time Independent Green’s Functions

We consider the computation of the Green’s function based on the Fourier transformation from time to
frequency space when

G(x, t) = 1
2π

∞∫
−∞

g(x, ω) exp(iωt)dω and δ(t) = 1
2π

∞∫
−∞

exp(iωt)dω

where we use the non-unitary definition of a Fourier transform for the angular frequency ω.
For Equation (22), the Green’s function required is given by the solution of

(∂2
x + ω2 −m2)g(x, ω) = −δ(x) (29)

and for Equation (27) is given by

(∂2
x + ω2 − 2m∂x −m2)g(x, ω) = −δ(x) (30)

where we consider the term −2m∂x so that the solution conforms to the condition that g(±∞, ω) = 0. To
solve either of these equations, we resort again to use of the Fourier transform and let

g(x, t) = 1
2π

∞∫
−∞

g̃(x, ω) exp(ikx)dk and δ(x) = 1
2π

∞∫
−∞

exp(ikx)dk

Equation (29) is then transformed to (expressed in terms of the Green’s function g̃)

g̃(k, ω) = 1
k2 − ω2 +m2 ⇒ g(x, ω) =

∞∫
−∞

exp(ikx)dk
k2 − ω2 +m2 (31)

Similarly, Equation (30) transforms to

g̃(k, ω) = 1
k2 − ω2 − 2imk +m2 ⇒ g(x, ω) =

∞∫
−∞

exp(ikx)dk
k2 − ω2 − 2imk +m2 (32)

Let us consider the integrals in Equations (31) and (32) for the case when m = 0. In this case the
Green’s function is well known and given by [35]

g(x, ω) = i

2ω exp(iωx) (33)

This is an expression for the ‘free space’ Green’s function, i.e. the Green’s function that is not subject to
any boundary conditions. Further, this Green’s function represents an out-going wave travelling away
from the origin and is therefore referred to as the ‘out-going Green’s function’, the in-going free space
Green’s function being given by

g(x, ω) = − i

2ω exp(−iωx)

The Green’s function describing both out-going and in-going waves is therefore given by

f(x, ω) = i

2ω exp(iωx)− i

2ω exp(−iωx) = − sin(ωx)
ω

The standard method of computing this function is through the application of contour integration to
the integrals given in Equations (31) and (32) for m = 0. However, there is another approach that can be
considered and is useful in regard to evaluating the integrals given by Equations (31) and (32) for m 6= 0.
This approach involves the evaluation of the corresponding indefinite integral and the application of an
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integral calculator. Using, for example, the online integral calculator available at [36], for example, we
obtain ∫ exp(ikx)dk

k2 − ω2 = eiωx Ei [ix (k − ω)]− e−iωx Ei [ix (k + ω)]
2ω

where Ei(x) is the Exponential Integral given by

Ei(x) =
x∫

−∞

exp(y)
y

dy

It is then clear, by induction, that we can consider the function i exp(iωx)/2ω based on this result, given
knowledge of the known result obtained from contour integration of the corresponding improper integral,
i.e. the integral for k ∈ (−∞,∞). This is the approach that is taken in regard to the integrals given by
Equations (31) and (32). Thus, using [36], we obtain (ignoring the constant of integration)∫ exp(ikx)dk

k2 − ω2 +m2 = −
e−i
√
ω2−m2x

[
Ei
(
ix
(
k +
√
ω2 −m2

))
− e2i

√
ω2−m2)x Ei

(
ix
(
k −
√
ω2 −m2

))]
2
√
ω2 −m2

⇒ g(x, ω) = i
exp(i

√
ω2 −m2x)

2
√
ω2 −m2

(34)

Similarly, using [36] again, we obtain (ignoring the constant of integration)∫ exp(ikx)dk
k2 − ω2 − 2imk +m2 =

−
e−(i

√
w2−2m2+m)x

[
Ei
[
x
(
i
(
k +
√
w2 − 2m2

)
+m

)]
− e2i

√
w2−2m2x Ei

[
x
(
i
(
k −
√
w2 − 2m2

)
+m

)]]
2
√
w2 − 2m2

⇒ g(x, ω) = i
exp(i

√
ω2 − 2m2x)

2
√
ω2 − 2m2

exp(−mx) (35)

In both cases, it is clear that for massless ‘particles’ the Green’s functions given by Equations (34) and
(35) reduce to the form given by Equation (33). Further, both Green’s functions have the same functional
form in regard to the variable ω other than the change from

√
ω2 −m2 to

√
ω2 − 2m2. However, in the

case of Equation (35) the Green’s function is characterised by a negative exponential.
Reverting back from the natural units that have been used for this analysis and re-introducing the

numerical values for the physical constants ~ and c provided earlier, this negative exponential term
becomes

exp
(
−mc

2x

~

)
= exp(−amx) where a ' 2.8427× 1042

Thus, for an electron, say, with a mass m = 9.1093837015(28)× 10−31 kg, the length ` over which the
Green’s function decays in amplitude by a factor of exp(−1) is given by ` ' 3.8616× 10−13 m, i.e. the
order of 0.4 pico metres. This is significantly less than the diameter of a hydrogen atom by some three
orders of magnitude and two orders of magnitude greater than the diameter of a hydrogen nucleus
(the diameter of a hydrogen atom is approximately 1.06× 10−10 m and the diameter of the nucleus is
approximately 2.40× 10−15 m). Thus, the propagation a scalar Boson associated with an imaginary mass
subject to Equation (20) takes place over sub-atomic scales at least for the case when ω >

√
2mc2. This

result is similar for the Green’s function associated with Equation (28) given that, using an identical
approach to the one already discussed, we can show that

g(x, ω) = i
exp[i

√
m(2ω −m)x]

2
√
m(2ω −m)

exp(−mx)

which is characterised by the same negative exponentiation when ω > mc2/2. Thus, both the relativistic
and non-relativistic models for a wave function describing a particle with an imaginary mass subject to
Equation (20), yield the same exponential decay characteristics in regard to the propagation of a particle
through a one-dimensional free space.
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11.2 Time-Dependent Green’s Functions

For completeness, we now consider the time-dependent Green’s function. These are obtained by Fourier
inverting with regard to ω. For Equation (33), we are required to compute the integral

G(x, t) = 1
2π

∞∫
−∞

i

2ω exp(iωx) exp(iωt)dt

We then note that [37]
sgn(t)↔ 2

iω

where ↔ denotes the transformation to the Fourier domain and

sgn(t) =
{
−1, t < 0;
+1, t > 0.

It is then clear that
i

2ω ↔ −
1
4sgn(t)

and hence
G(x, t) = −1

4sgn(x+ t)

In the case of Equation (34), the time dependent Green’s function is given by [38]

G(x, t) = 1
4π [(1− sin(mt))(δ(x+ t) + δ(x− t) +mH(t− | x |)J0(mu)], u =

√
t2 − x2

where H(x) = [1 + sgn(x)]/2 is the Heaviside step function and J0 is the zero order Bessel function. Thus,
in the case of Equation (35), by induction, the time dependent Green’s function is given by

G(x, t) = 1
4π [(1− sin(

√
2mt))(δ(x+ t) + δ(x− t)) +

√
2mH(t− | x |)J0(

√
2mu)] exp(−mx)

12 Conclusions

The concept of an imaginary mass in physics is not new and is the basis for the hypothesis of a Tachyonic
field. However, as soon as this idea is considered, causality fails. In order to prevent this, in this paper we
have considered a break with the fundamental rule of complex analysis and let i2 = ±1. This break with
conformity in regard to the basic unit of imaginary numbers yields some interesting properties. These
have been studied in the Section 6 and reveal that in the case of the non-standard Mandelbrot set, a
square is formed with no self-affine boundary structures. Thus, in the context of the Mandelbrot set,
the difference between letting i2 = +1 and i2 = −1 appears be compounded in the difference between
Euclidean and Fractal geometry, respectively, where, in both cases, the Hausdorff dimension is the same
and given by 2.

By considering the effect of letting i2 = +1 for an imaginary mass only, the properties of a Higgs field
change, such that the principle of causality is maintained subject to both the relativistic energy and its
square being complex entities. In this case, the wave function for the relativistic case has a two state
solution but the Klein-Gordon equation requires modification which introduces an extra term involving
the field gradient. The connectivity between this result and Euclidean geometry associated with the
properties of iteration in the complex plane has very briefly been identified and flagged in Section 10.3.
On a physical but purely phenomenological basis, this connectivity implies that Euclidean geometry
might be a by-product of a universe consisting of imaginary mass particles that are causal entities for
which Equation (20) is applicable. In this context, the paradox presented in Section 7 provides a possible
mathematical basis for this form of non-standard analysis and the possible physical consequences thereof.
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13 Further Analysis

The analysis considered in this paper is constrained by the one-dimension models that have been considered.
Thus, an obvious extension to this work, is to develop models for the field equations in a two- and three-
dimensional space. In such a development, the quaternion formulation of the Dirac equations [39] may be
of value but based on representing the complex energy in the form (for fundamental quaternion units i, j
and k)

E = im+ ipx + jpy + kpz
where px = −i∂x, py = −i∂y and pz = −i∂z define the three components of the field gradients in a
three-dimensional Cartesian space. In this case, the scalar component of the quaternion is an imaginary
mass which is once again required to conform to Equation (20) for the Euclidean norm to be positive
definite in the sense that

‖E‖2
2 = m2 + p2

x + p2
y + p2

z

Appendices

The functions given in this Appendix are provided to give the reader a guide to the basic programming
used to implement the computational procedures discussed in this paper for computing the non-standard
Mandelbrot and Julia sets. They are provided for interested readers to repeat the results presented,
investigate the transient behaviour for different maps and to extend the computational methods discussed.
Where possible, the notation used for array variables and constants are based on the mathematical
notation used in this paper as are the acronyms used for the function names. The functions have not
been exhaustively tested and do not include data I/O or processing error checks. Both the code and
commentary have been somewhat condensed in order to comply with the format of this publication while
minimising the number of pages required to present it. The software was developed and implemented
using (64-bit) MATLAB R2020b with double precision floating point arithmetic.

Appendix A

The function that follows is a MATLAB function for computing and visualising the transient characteristics
of the non-standard Mandelbrot set based on Equation (9).

function NSMS(meshsize,iterations,negxval,posxval,negyval, posyval,alpha)
%FUNCTION Non-Standard Mandelbrot Set (NSMS)
%
%INPUTS:
%meshsize - Size of (square) mesh used to compute the set.
%iterations - Number of iteration used to compute the set.
%negxval - lower negative bound on the real x-axis.
%posxval - upper positive bound on the real x-axis.
%negyval - lower negative bound on the imaginary y-axis.
%posyval - upper positive bound on the imaginary y-axis.
%alpha - a value between 1 and 2 inclusively where,
%alpha = 1 gives the standard Mandelbrot set with i^2=-1,
%alpha = 2 gives the non-standard Mandelbrot set with i^2=+1
%and 1<alpha<2 gives a transitory characteristic set.
%
%OUTPUT: Graphical presentation of the map using the ’jet’ colour map
%
%EXAMPLE to generate a conventional Mandelbrot set on a square mesh of size
%1000 x 1000 for 100 iterations and a numerical range in the complex plane
%of [-2,2] x [-2,2]: Run NSMS(1000,100,-2,2,-2,2,1)
%
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%Set complex plane meshgrid size.
[x,y] = meshgrid(linspace(negxval, posxval, meshsize),...

linspace(negyval, posyval, meshsize));
%Set c as a complex array of size x * iy
c = x + 1i * y;
%Intialize complex variables
z = zeros(size(c)); k = zeros(size(c));
%Compute alpha
alpha=cos(alpha*pi)+1i*sin(alpha*pi);
%Start iteration process
for n = 1:iterations

%Apply quadratic map modified by value of alpha
z=real(z).^2+alpha*imag(z).^2+2*1i*real(z).*imag(z)+c;
%Compute iteration k for case when abs(z) > 2 & k=0
k(abs(z) > 2 & k == 0) = iterations - n;

end
%Display image of set in Figure 1 using function ’imagesc’
figure(1), imagesc(k),
colormap jet %Use colour map ’jet’
set(gca,’XTick’,[], ’YTick’, [])%Turn off ticks for both axis.
pbaspect([1 1 1])%Use uniform aspect ratio for display

Appendix B

The .m code that follows is a MATLAB function for computing and visualising the transient characteristics
of an arbitrary complex map f(z) which must be constructed prior to running the function as an input
to the function.

function NSFS(meshsize,iterations,negxval,posxval,negyval,posyval,map)
%FUNCTION Non-Standard Function Set (NSFS)
%
%INPUTS
%meshsize - Size of (square) mesh used to compute the set.
%iterations - Number of iteration used to compute the set.
%negxval - lower negative bound on the real x-axis.
%posxval - upper positive bound on the real x-axis.
%negyval - lower negative bound on the imaginary y-axis.
%posyval - upper positive bound on the imaginary y-axis.
%alpha - a value between 1 and 2 inclusively where,
%alpha = 1 gives the standard Mandelbrot set with i^2=-1,
%alpha = 2 gives the non-standard Mandelbrot set with i^2=+1
%and 1<alpha<2 gives a transitory characteristic set.
%map - iteration function
%
%OUTPUT: Graphical presentation of the map using the ’jet’ colour map
%
%EXAMPLE to generate the conventional Julia set for c=-0.4-i0.6
%over a mesh of size 1000 x 1000 for 100 iteration and a numerical range
%in the complex plane of [-2,2] x [-2,2], set the corresponding function
%f(z) as f= @(z) z.^2 -0.4-1i*0.6; and then run NSFS(1000,100,-2,2,-2,2,f);
%
%Set complex plane meshgrid size.
[x,y] = meshgrid(linspace(negxval, posxval, meshsize),...

linspace(negyval, posyval, meshsize));
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%Initialise complex array z.
z = x + 1i * y;
%Initialise complex variable
k = zeros(size(z));
%Start iteration process
for n = 1:iterations

%Apply iteration to input map
z=map(z);

%Compute iteration k for case when abs(z) > 2 & k=0.
k(abs(z) > 2 & k == 0) = iterations - n;

end
%Display image of set in Figure 1 using function ’imagesc’
figure(1), imagesc(k),
colormap jet %Use colour map ’jet’
set(gca,’XTick’,[], ’YTick’, [])%Turn off ticks for both axis.
pbaspect([1 1 1])%Use uniform aspect ratio for display

Figure 9. Transitions of the set based on the iteration given by Equation (36) for α = 1, 1.2, 1.4, 1.6, 1.8, 2 (top-left
through to lower-right, respectively). The set is computed for c = 0.268+0.06i, x ∈ [−4, 2] and iy ∈ [−3i, 3i] where
x and iy are the horizontal and vertical axes in the complex plane, respectively. In this example, 100 iterations
are performed using a mesh size of 103 × 103. The maps are colour coded using the MATLAB ‘jet’ colour map.

As an example of the utilisation of this function, consider the map

f : z → f(z) = (z2 + z)
log(z) + c, z ∈ C

Using the approach considered in Section 6.3, the transient properties of this map are explored using the
iteration

zn+1 = <[z]2 + exp(iαπ)=[z]2 + 2i<[z]=[z] + z

log(z) + c (36)
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where α ∈ [1, 2]. This is undertaken by constructing the following .m code

alpha=value;
alpha=cos(alpha*pi)+1i*sin(alpha*pi);
f = @(z) ((real(z).^2+alpha*imag(z).^2+2*1i*real(z).*imag(z)+z)./log(z))+c;

where value is the numerical value of α ∈ [1, 2] and c is the complex constant. Figure 9 shows an example
of the transitions associated with Equation (36) for c = 0.268 + 0.06i and α = 1, 1.2, 1.4, 1.6, 1.8, 2 with
x ∈ [−4, 2] and iy ∈ [−3i, 3i].
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