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Abstract. In order to analyze the presupposition of the invariance of light speed, the actual 
propagation distance of satellite signals between satellites and ground was measured by GNSS receivers 
in GNSS measurement experiments. It was found that the actual propagation distance was not the 
distance between the space position point of the satellite signal at the moment of transmitting, which 
we usually think of as the satellite ephemeris, and the receiving station, but the distance between the 
instantaneous satellite position point when the receiver receives the signal and the receiving station. It 
was concluded that for different reference systems, only by standing in the high-order multi-dimensional 
space of four or more dimensions, can we correctly understand that the essence of the invariance of light 
speed, which is actually the same mutual space distance with the same mutual time interval, rather 
than the different mutual space distance with the mutual different time. 

Keywords: principle of invariance of light speed, relativistic effect, global positioning system, 
high-order multidimensional space, invariance of spatial distance. 

1   Introduction 

For the speed of light, whether Newton's classical mechanics or Einstein's theory of relativity, both 
theories presuppose the premise that if a light pulse is emitted from one place in space to another, the space 
distance traveled by light is inconsistent for different observers in this process (e.g., for two inertial 
reference objects in relative motion P and Q when a light pulse is emitted everywhere from P at the 
position a and when the light pulse is received by Q, P already moves at the position c, it is generally 
accepted by physicists either Newton or Einstein that the space distance that light travels in this process 
is cb for P and ab for Q, which is shown in Figure 1). 

On this basis, the divergence arises from Newton's theory and relativity theory. Newton's theory believes 
that different observers have no objection to the time spent on light in this process, so the speed of light 
propagation will be different for different observers; while relativity theory, based on Michelson's 
interference experiment, believes that different observers will spend different time for the light propagation 
on the premise of affirming the constant speed of light[1][2][3][4]. However, the author finds that for the 
problems of Michelson's interference experiment and the time paradox after the establishment of relativity, 
as well as the disputes and incompatibilities between quantum theory based on relativity and string theory 
after that, all of them are rooted in the subjective illusion of the presupposed premise in the sense of space 
distance. The situation is that the space distance and time spent by light in this process should be 
consistent for different observers or reference frames (that is, the space distance traveled by light in this 
process should be in fact the same for both observers, either P or Q, should be cb)! 

The reason is that people overlook the issue that, unlike the speed of motion of particles or other objects, 
the space where the speed of light travels is not definitive in advance by either observer's frame of reference 
or any other frame of reference and it is absolutely static three-dimensional space; in other words, any two 
relative inertial frames of reference or reference, although relative to each other, are moving, both are 
essentially static for the entire universe or for light. Therefore, when light propagates between the two 
inertial reference systems or reference objects, the light does not travel through a three-dimensional space 
distance based on the stationary system as one of the reference systems or reference objects, but travel 
through a high-order space distance using the whole cosmic space as the background; even if the distance 
varies with time, it has nothing to do with the selection of the coordinate system[5][6]. This also means that 
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the starting point of the spatial distance covered by light during this period can not be calculated by the 
conventional 3-D rectangular coordinates. 

Figure 1. Spatial distance traveled in the process of light pulses being emitted from one part of space to another 

Figure 2. Spatial distance actually propagated by satellite signals 

2   Experiments 

In fact, we can judge this by the experiment of GNSS measurement: that is, we assume that a 3-D 
rectangular coordinate system with the geocentric origin o is established in the geostationary reference 
system o xyz− , and the time of the ground t is used as the time standard. When an earth satellite over the 
ground S sends out a signal at any time t1, the instantaneous position of the satellite is set to A; when the 
GNSS receiver located at the point of ground observation C receives the signal transmitted at t2, the 
satellite has actually moved to the position of B above the ground (as shown in Figure 2). At present, in 
the process of GNSS precise positioning, the international consensus is to take the 3-D coordinate values of 
the point ( ), ,A A AA x y z  as the starting point of the space distance transmitted by the satellite signal
during this period to consider the influence of relativistic effect when measuring the point 

( ), ,C C CC x y z [7][8][9][10][11][12][13]. In other words, according to Einstein's special and general relativity theory, 
when a clock with a frequency of f0 on the ground is installed on a satellite running at a certain speed of 

Sv , it will generate motion frequency shift and gravitational frequency shift. The total time error resulting 
from this is assumed to be that the satellite signal is StΔ  without considering the influence of other factors 
such as earth rotation, satellite ephemeris error and signal propagation error. The spatial distance 
propagated during this time “t12=t2−t1” is “D=ct” with the elimination of StΔ , which is: 
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 ( ) 2 2 2
12 ( ) ( ) ( )S C A C A C Ac t t x x y y z z− Δ = − + − + −  (1) 

There must be a problem here: if the satellite transmits optical signals from the freely stationary point A 
over the earth, then there is no objection that the propagation distance of the satellite signal in space for 
the GNSS receiver located at the observation point C is DAC; however, if the satellite transmits optical 
signals from the point A over the earth where it just arrives instantaneously by free movement, is the 
propagation distance of the satellite signal in space for the GNSS receiver located at the observation point 
C still DAC? This is uncertain! Because this distance is the conclusion that we take the earth as the 
three-dimensional space of the geostationary system. If we stand in the perspective of satellite, the actual 
propagation distance of satellite signal measured by GNSS receiver in space is not DAC; however, it is the 
distance between the satellite's position point ( ), ,B B BB x y z  and the receiver's location point C when the 
receiver receives the satellite signal! Obviously, if we take the coordinate value of the point as the starting 
point B and consider the coordinate calculation of the observation point C, the results are actually 
different, which is the following: 

 
( )( ) ( )( ) ( )( )

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

C B C B C B

C A AB AC C A AB AC C A AB AC

ct x x y y z z

x x x t y y y t z z z t

= − + − + −

= − + + − + + − +
 (2) 

In other words, on the premise of considering only the influence of this error factor, assuming the 
measurement coordinate error of the observation point C1 is 1 1 1, ,C C Cx y zΔ Δ Δ , and the coordinates of the 
point ( )1 1 11 , ,C C CC x y z  calculated according to the theoretical values are as the following 

 
1 1 2 11 1 1

1 1 1 1 1 2 1

1 1 11 1 2 1

C J J JC C C

C J C C C J J

C C CC J J J

x x x xH G
y y H L y y

G Lz z z z

δ
δ

δ

     − −
      

= + − −      
      − −      

 (3) 

then, the obtained 1 1 1, ,C C Cx y zΔ Δ Δ  based on the principle of formula (1) are independent variables 
unrelated to each other and should oscillate up and down on the three coordinate axes of the point C1, 
because 

 
1 1 1 2 11 1 1 1 1 1

1 1 1 1 1 1 1 1 1 2 1

1 1 1 1 1 11 1 1 2 1

C C C J JC C C C C C

C C C C C C C C C J J

C C C C C CC C C J J

x x x x xH H G G
y y y H H L L y y

G G L Lz z z z z

δ δ
δ δ

δ δ

     ′Δ − − ′ ′ ′− − − +
      ′ ′ ′ ′Δ = − = − + − − −      
      ′ ′ ′− − + −′Δ − −      

 (4) 

While, the obtained 1 1 1, ,C C Cx y zΔ Δ Δ  based on the principle of formula (2) are non-independent variables 
related to each other, and there are obvious systematic errors related to the coordinates on the three axes 
because the error results are as the following: 

 

2 1 3 223 23 23 1 1 1
1 1 2 11 1 1 1 1 1 1
2 1 2 2 2 3 2 1

1 1 1 1 1 1 2 1 1
2 2 22 1 3 2
1 1 11 1 1 2 1

t t t tt t t t t t
J J J JC C C C C C C
t t t t t t t t

C J J C C C J J C C
t t tt t t t
C C CC J J J J

x x x xx H G H G
y y y H L y y H

G Lz z z z z

δ δ
δ δ

δ

   − −   Δ − −
      

Δ = − + − − − −      
         −Δ − −      
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2 1

1 1 1 1
1 1 2 1

1 1 1 1 1
1 1 1 2 1

t t
J J

t t t t
C J J

t t t t t
C C C J J
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L y y

G L z zδ

 − 
  

−  
    − −   

 (5) 

However, the actual situation is not as simple as imagined, because the actual measurement results often 
contain comprehensive errors of many factors. For example, the measurement errors of the above point C1 
may include not only the satellite clock error oscillating up and down on the three coordinate axes of the 
point C1, but also the ephemeris errors related to the three coordinate axes. Namely 

 
1 1 1 2 11 1 1 1 1 1

1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 11 1 1 2 1

C J J J JC C C C C C

C J J C C C J J C C C

C C C C C CC J J J J

x x x x xH G H G
y y y H L y y H L

G L G Lz z z z z

δ δ
δ δ

δ δ

     ′ ′ ′Δ − −   ′′ ′′ ′′ ′ ′ ′− −
       ′ ′′ ′′ ′′ ′ ′ ′ ′ ′Δ = − + − − − −       
       ′′ ′′ ′′ ′ ′ ′− −′ ′ ′Δ − −        

2 1

2 1

2 1

J J

J J

J J

x x
y y
z z

 −
 

− 
  − 

 (6) 

In this way, how can we effectively distinguish this difference? Here, a relatively simple solution is that 
if the side length of the two observation points from which two GNSS receivers synchronously measure the 
satellite signal are compared with the known side length, the difference between the difference mentioned 
above can be clearly distinguished. Specifically, if assuming that the coordinates of another observation 
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point ( )2 2 22 , ,C C CC x y z , which synchronously measures the satellite signal, are calculated according to its 
theoretical values as the following: 

 
2 1 2 12 2 2

2 1 2 2 2 2 1

2 2 22 1 2 1

C J J JC C C

C J C C C J J

C C CC J J J

x x x xH G
y y H L y y

G Lz z z z

δ
δ

δ

     − −
      

= + − −      
      − −      

 (7) 

then, the theoretical coordinate difference between the point C1 and the point C2 should be: 

 
2 1 2 12 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 12 1 2 1

C C J JC C C C C C

C C C C C C C C J J

C C C C C CC C J J

x x x xH H G G
y y H H L L y y

G G L Lz z z z

δ δ
δ δ

δ δ

   − − − − − +
    

− = − + − − −    
    − − + −− −    

 (8) 

Now, if the principle of formula (1) is followed, the difference of coordinates between these two points is: 

 
2 1 2 12 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 12 1 2 1

C C J JC C C C C C

C C C C C C C C J J

C C C C C CC C J J

x x x xH H G G
y y H H L L y y

G G L Lz z z z

δ δ
δ δ

δ δ

   ′ ′ ′ ′− − ′′ ′′ ′′ ′′ ′′ ′′− − − +
    ′ ′ ′′ ′′ ′′ ′′ ′′ ′′ ′ ′− = − + − − −    
    ′′ ′′ ′′ ′′ ′′ ′′− − + −′ ′ ′ ′− −    

 (9) 

However, if the principle of formula (2) is followed, the difference of coordinates between these two 
points is: 

 

4 2 5 445 45 45
1 1 2 42 1 1 1 1 1
4 2 45 45 45 5 4

2 1 1 1 1 1 1 2 1
45 45 454 2 5 4
1 1 12 1 1 1 2 1

t t t tt t t
J J J JC C C C C C
t t t t t t t

C C J J C C C J J
t t tt t t t
C C CC C J J J J

x x x xx x H G
y y y y H L y y

G Lz z z z z z

δ δ
δ

δ

   − −   ′ ′− −
      

′ ′− = − + − − −      
         −′ ′− − −      
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23 23 23 3 2
1 1 1 2 1
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t tt t t
J JC C

t t t t t
C C C J J

t t t t t
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x xH G
H L y y
G L z z

δ
δ

 − −
  

− −  
    − −   

 (10) 

Obviously, when comparing the measured side lengths ( )1,2,3,is i′ =   with their theoretical values si, 
we safely draw the conclusion that based on the principle of formula (1), the results have a very small 
variance, while based on the principle of formula (2), the results have a very big variance! 

Next, in order to verify this situation, 49 national first-class traverse points with known Beijing 54 plane 
coordinates and elevations are selected as the observation points in this experiment in an area near 111 
degrees of the central meridian in China. 

During the measurement, 49 test machines are used to measure the phase of the same carrier of four or 
more satellites above the ground at each observation point in the surveying area and at the same 
observation epoch, respectively, using a dual-frequency geodesic GNSS receiver of Zhonghaida v90 (plane 
accuracy of static differential positioning is 2.5mm+1ppm×D, elevation accuracy is 5mm+1ppm×D and 
single positioning accuracy is 1.5m). After observing 16 epochs synchronously and statically, by calculating 
the known Beijing 54 plane coordinates and elevations of 49 observation points, they are transformed into 
3-D rectangular coordinates in the same ellipsoid space. Then, the set of undifferentiated WGS-84 
coordinates of these points measured by GNSS are compared with the set of its known Beijing 54 
coordinates, and the coordinate deviation ( )2 1,2, ,1176Nd N =   of each point and its average 

, ,x y zΔ Δ Δ , variance , ,x y zσ σ σ  and covariance , ,xy yz zxσ σ σ  are obtained. At the same time, the side 

lengths and its coordinate-difference of ( )1 49 49 1 1176
2

× × − =  baseline vectors between observation 

points calculated by GNSS coordinates is compared with the length and the coordinate-difference of 
baseline vectors calculated by known coordinates, and the deviations of the lengths dN (N=1,2,…,1176) of 
each baseline vectors and its average value d , variance dσ  are calculated; moreover, the deviations of 
the coordinate-difference , ,N N Nd x d y d zΔ Δ Δ  of each baseline vectors and its variance , ,dx dy dzσ σ σ , 
covariance , ,dxy dyz dzxσ σ σ  are obtained. 

3   Results and Discussion 

As can be seen from the table 1: 
 , , 2 ,2 ,2dx dy dz x y zσ σ σ σ σ σ→ , 0d →  
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It showed that there are obvious systematic errors related to coordinates in the three coordinate axes of 
GNSS measurement. In order to further understand the details, the GNSS measurement data are 
transformed through rigorous coordinates transformation, and the rigorous adjustment is carried out in the 
following two different ways: 

Table 1. The comparison of the measured coordinates of GNSS with the known coordinates 

Measuring 
point 

The difference between 
the measured 

coordinates and the 
known coordinates (m) 

Measuring 
point 

The difference between 
the measured coordinates 

and the known 
coordinates (m) 

Measuring 
point 

The difference between 
the measured 

coordinates and the 
known coordinates (m) 

Δx Δy Δz Δx Δy Δz Δx Δy Δz 
01 -4.5 -133 -63.25 18 -3.5 -131.5 -66.75 35 -1.875 -130.5 -67.75 
02 -2.125 -136 -66 19 -3.5 -132 -66.75 36 -1.875 -130.5 -67.5 
03 -2.125 -136 -66 20 -3.5 -132 -67 37 -3.625 -133.5 -64.75 
04 -2.125 -136 -66 21 -4.375 -130 -69.25 38 -3.625 -133.5 -64.75 
05 -10.25 -127 -52.75 22 -4.5 -130 -69.25 39 -3.625 -133.5 -64.75 
06 -10.25 -127.5 -52.75 23 -3.625 -132 -66.75 40 -3.75 -133.5 -64.75 
07 -10.25 -127.5 -52.75 24 -3.625 -132 -66.75 41 -3.625 -133 -64.75 
08 -10.25 -127.5 -52.75 25 -5.625 -132.5 -63 42 -3.625 -133.5 -64.75 
09 -10.25 -127.5 -52.75 26 -5.625 -133 -63.25 43 -3.625 -133.5 -64.75 
10 -4.5 -130 -69.5 27 -2.75 -132.5 -67.5 44 -3.625 -133 -65 
11 -4.375 -130 -69.25 28 -5.625 -132.5 -63.25 45 -3.625 -133 -65 
12 -2.5 -140.5 -59.75 29 -5.625 -133 -63.25 46 -4.5 -132.5 -63 
13 -2.5 -140 -59.5 30 -5.75 -133 -63.25 47 -3.625 -140 -59.5 
14 -2.375 -140.5 -59.75 31 -5.75 -132.5 -63.25 48 -3.5 -140 -59.75 
15 -2.5 -140.5 -59.5 32 -4.375 -131 -58.25 49 -3.625 -140 -59.5 
16 -10.25 -127.5 -53 33 -4.375 -131 -58.25     
17 -10.25 -127.5 -53 34 -4.5 -131 -58.25     

The precision 
statistics 

4.689x mΔ = − , 132.8y mΔ = − , 62.5z mΔ = −  

6.291x mσ = , 14.117y mσ = , 25.271z mσ =  

6.27xy mσ = − , 3.28yz mσ = , 9.24zx mσ = −  

23.561d mσ = , 12.581dx mσ = , 28.239dy mσ = , 50.542dz mσ =  

1.233d m= − , 12.8dxy mσ = − , 6.688dyz mσ = , 18.866dzx mσ = −  

 
The first method is based on the difference technology commonly used in GNSS data, that is, the 

one-time difference between stations and epochs is mainly between two stations and two epochs, which 
means that 47 synchronous observations in this experiment are redundant observations, while 14 of 16 
observations in each station are processed according to redundant observations. In this way, the difference 
equation between the two stations should be as follows, by considering only the elimination of relativistic 
effect: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

0 0 0

2 2 2

1 0 1 1 1

2 2 2

2 0 2 2 2

( )

( )

S t t t

S t t t

c t t t x x y y z z

c t t t x x y y z z


− + Δ = − + − + −


 − + Δ = − + − + −

 (11) 

In the formula: 

0 0 0
, ,t t tx y z --The position coordinates of satellites in space obtained from the ephemeris of satellites; 

( ), , 1,2, ,227i i ix y z i =  --GNSS measurements at observation point i; 

StΔ --Satellite clock error caused by relativistic effect. 
While, the difference equation between the two epochs should be: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

1 1 1

2 2 2

1 0

2 2 2

2 1

( )

( )

S i t i t i t

S i t i t i t

c t t t x x y y z z

c t t t x x y y z z


− + Δ = − + − + −


 − + Δ = − + − + −

 (12) 

The second method is to take into account that the 3-D coordinate value of the satellite ephemeris at the 
point of “A” as the starting point of GNSS receiver ranging, and the measurement result is likely to have 
gross error related to the propagation time t of satellite signals in the three coordinate axes of the satellite 
( ( )( ), ( ), ( )x t y t z tΔ Δ Δ ). If assuming that this gross error is a second-order polynomial with six unknowns, 
that is: 

 
( )
( )
( )

( )

( )

( )

( )

( )

( )

1 2

1 22

1 2

1
2

x t x x
y t t y t y

z zz t

    Δ
    
    Δ = +
    

     Δ     

 (13) 

Then, the difference technology used in this method needs to make a difference between at least seven 
stations and seven epochs in order to eliminate these six gross error unknowns ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 2 2 2, , , , ,x y z x y z . 

In other words, only 42 synchronous observations in this experiment are redundant observations, and only 
9 of 16 observations in each station are processed according to redundant observations. Therefore, in this 
way, the difference equation between the seven stations should be as the followings, only considering the 
effect of eliminating the gross errors of satellite coordinates: 

 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
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0 0 0

0 0 0

2 2 2

1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2

2 2 2

7 7 7 7 7 7 7

( ) ( ) ( )

( ) ( ) ( )

( ) ) ( )

t t t

t t t

t t t

ct x x x t y y y t z z z t

ct x x x t y y y t z z z t

ct x x x t y y yt z z z t


= − + Δ + − + Δ + − + Δ



 = − + Δ + − + Δ + − + Δ





= − + Δ + − + Δ + − + Δ

   

 (14) 

The difference equation between the seven epochs should be: 

 

( )( ) ( )( ) ( )( )
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 (15) 

In the formula: 
 ( )1 1,2, ,16i i it t t i−Δ = − =   

The results were combined with the first method and the second method showing that the second 
method is obviously better in the reconstruction accuracy than the first method, neither on the precision 
( , ,x y zm m m ) in the coordinates of the observation points nor the precision ( dm ) in the coordinate 
difference of baseline vectors, namely[19][20]: 
 2 2 2 1 1 1, , , ,x y z x y zm m m m m m< , and 2 1d dm m<  

 1 1 1 1 1 1, , 3 ,3 ,3dx dy dz x y zm m m m m m→ , and 2 2 2 2 2 2, , , ,dx dy dz x y zm m m m m m→  
This demonstrates that for GNSS ranging, there must be the coordinate deviation on the directions of 

three coordinate axes, which can not be completely solved with the current differential technology and are 
relevant and independent to each other! The fundamental reason for this result is that the propagation 
distance of satellite signal measured by GNSS receiver is not actually the distance between the point of 
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space where the satellite signal is transmitted at the moment and the point of position where the receiver 
is located, but the distance between the point of space where the satellite moves at the moment when the 
receiver receives the signal and the point of position where the receiver is located. This distance is not 
actually a 3-D space distance, but a real-time high-order multi-dimensional space distance. It mainly 
consists of two parts: one is the 3-D space distance DAC, which is between the point in the stationary space 
“A” that the satellite is passing when it transmits the signal and the observation point “C”; the other is the 
hyperspace distance AD A A′Δ = − , which is the distance difference between the 3-D space distance of the 
stationary system on the ground between the point “A” and the point “C” when the satellite transmits the 
signal and the 3-D space of the motion system of the satellite “S”. This distance varies with time, i.e. 
 ( )A ABD D tΔ =  (16) 

Assuming that the three-dimensional space of the stationary system where the point “A” and the point 
“C” are located and the motion system where the satellite “S” is located are two parallel two-dimensional 
planes, as shown in Fig. 3, it is not difficult to understand that when the satellite transmits signals from 
the point “A”, the satellite is actually not at the position of the point “A” in the three-dimensional space 
which is the stationary system as the earth at this moment, but at the orbital position which is located in 
one of the another higher-order multi-dimensional spaces parallel to the three-dimensional space of the 
stationary system in the whole universe and appearing to be moving for the stationary system. The orbital 
coordinates of this point have definitive values ( ) ( ) ( )( ), ,A A Ax t y t z tΔ Δ Δ  in the three coordinate axes 
corresponding to the position of the point “A”. The orbital coordinates depend on the space order “n” of 
the orbital point where the satellite is located, and are independent of the quality, size and shape of the 
satellite. For example, assuming that the space order of the orbital point of the satellite is 50 (n=50), the 
50-order partial derivation of the satellite for the time “t” in three coordinate axes will be essentially a 
constant, that is: 

 
50 50 50

50 50 50
, ,A A A

x y z

x y z
C C C

t t t
∂ Δ ∂ Δ ∂ Δ

= = =
∂ ∂ ∂

 (17) 

Therefore, to be exact, if the space order of the satellite orbital points is 50, the difference between 
stations or epochs should be calculated at least once between 151 stations or 151 epochs. Thus, only 151 
stations or 151 epochs in the synchronous loop are redundant observations in GNSS data processing. This 
also means that when we use light to measure the distance between any two reference objects or motion 
systems in space, the coordinate transformation relationship established between the two reference objects 
or motion systems can neither be Galileo or Newton transformation based on "velocity relative" nor 
Lorentz transformation or Einstein transformation based on "time relative", but should be a more rigorous 
coordinate transformation relationship based on the absolute space distance. Here, the so-called concept of 
"absolute spatial distance" includes, on one hand, that the spatial distance between any two relatively 
static points in space remains an absolutely constant value, that is, it is the same fixed value for any 
reference system and does not change with time; on the other hand, that the spatial distance change 
between any two relatively uniform or uniformly accelerated motion and n order uniformly accelerated 
motion keeps an absolute constant ratio, that is, the ratio is the same for any reference frame at any time, 
which is: 
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 (18) 

Inside, 
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 (19) 

It is worth mentioning that, according to this principle, if more than ( )13 51 51 1 3978
2

N = × × × + =  

fixed stations with known coordinates are selected on the ground and one GNSS receiver is installed in each 
station to observe the satellite synchronously and statically in the experiment, then we can use the space 
distance rendezvous method (except that the space distance rendezvous is obviously not the distance 
rendezvous in the three-dimensional space we usually understand, but is higher than 3978-dimensional 
space rendezvous) to accurately calculate the actual orbit of the satellite S in space, and this measurement 
result has naturally excluded the so-called "multi-body problem", "earth rotation" and "relativistic effect" 
and other factors[14][15] [16][17] [18], its accuracy does not drift with time! 

 

Figure 3. The actual location of the satellite when transmitting signals 

4   Summary 

It can be concluded that it is a misunderstanding to think that the Michelson interference experiment is in 
conflict with the aberration phenomenon discovered by Bradley in the past. Because the aberration of light 
is a phenomenon observed when light travels between the two motion systems of the luminous star and the 
earth. The light source and the receiving point are located in the three-dimensional space of the two 
different reference systems of the luminous star and the earth respectively. The space distance between the 
light source and the receiving point essentially represents two high-order multi-dimensional spaces of four 
or more dimensions and the distance between points varies with time due to the relative motion between 
the light source and the receiving point. On the contrary, interference experiments are carried out between 
several relatively stationary points on the interferometer with the earth's motion, all of which are in the 
same three-dimensional space with the earth as the reference frame. No matter how the earth moves in the 
universe, the distance between the light source point and each receiving point always represents one of the 
two points in a three-dimensional space. On this premise, even if the earth itself rotates and revolves 
around the sun, any distance experienced by light on the interferometer (whether parallel to the direction 
of the earth's motion or perpendicular to the direction of the earth's motion) will undergo the same time 
variation. 

Therefore, the essence of the so-called "speed invariance of light" is not the result of "different distances 
for different times", but the result of "the same distance for the same time". In other words, the relativistic 
effect is essentially not "the relative inconsistency of time", but “the unity of opposites of the absolute 
consistency of space distance and the relative inconsistency with time change”. 
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